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Industrial and commercial firms accumulate vast quaatities of data in the course of their day-to-
day business. The primary use of this data is to monitor business processes: inventory, maintenance
actions, and so on. However this data contains much valuable information that, if accessible,

would enhance the understanding of, and aid in improving the performance of the processes being
monitored.

Tladitional statistical procedures provide some insight into this data, but they are often misused
in non-expert hands. With the rapidly increasing quantity of data, it is no longer cost effective
for trained statisticians to analyze a,ll the data. The number of nariables and observations in
these datasets is often very la,rge, and the number of candidate statistical models that might be

considered is too la,rge to permit manual systematic exploration. In this type of situation, a

Knowledge Discovery (KD) tool is the most effective way to explore the data.

1 Generic Knowledge Discovery Toolkit

Our current goal is to develop a generic toolkit for KD. In our previous work we have developed a
suite of tools and shown their potential on actual industrial data; these tools must now be enhanced
to ma,ke them into generic tools. This suite of tools can be thought of as a collection of exploratory
data analysis techniques; it uses nonparametric, multivariate methods to identify a large number
of candidate models in the form of rules. The algorithms identify rules where the independent
variables have a high probability of a,ffecting the dependent variable. The effectiveness of these
algorithms has been demonstrated at Boeing in several datasets containing massive numbers of
variables and observations. We have successfully explored datasets with over 100,000 observations
and datasets with over 140 va.riables.

Currently the tools must be extensively hand-tuned by a data analysis expert (e.g., machine
learning expert, statisticiaa, etc.) to work with each dataset from each new domain. Hand-tuning
refers to the initial data engineering, setting algorithm parameters, a,nd analysis of the results.
Data engineering refers to the transformation of the data from its initial form into an appropriate
form for data analysis. The data analyst's expertise is currently a big factor in the successful use
of this technology. We are currently automating this hand-tuning process. The reason we refer to
it a.s a toolkit, is that the set of generic tools will be too complicated for a novice user to combine
correctly. We envision a data analysis expert crafting a domain specific tool from the tools in the
toolkit. This domain specific tool will be appropriate for novice use.
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John Tukey's advice to the statistics community is "...we are going to see more data-dredging
in aII fields. So we must learn to work effectively with its results."(Tukey, 1986) The focus of our
work is very much in the spirit of this advice; the creation of an automated tool for novice use.

This is in the same spirit as the work in statistical expert systems (i.e., expert systems to help a
novice do statistics).

2 Knowledge Discovery Environment

The environment of our knowledge discovery work is slightly non-standard and worth a little elab-
oration. The results we produce (for instance rules predicting rejected parts), will not be used to
create an expert system for determining whether a part should be rejected. Instead these rules will
[s exa.miagd by a human to lea.rn more about their process and thereby achieve process improve-
ment. Also our dependent variables typically have multiple causes, e.g. there is probably more
then one responsible cause for rejected parts. We therefore typically expect multiple hypotheses,
but there is no reason why these multiple hypothesis should partition the space (i.e., certain ob-
serrrations can be covered by multiple rules). These two factors were two of the main reasons why
we ventured away from a staada.rd decision tree approach to our currmt approach.

Two terms common in machine learning a,re accuracy, positive coverage, and coverage and they
are used throughout this paper. The accuracy is the (empirical) conditional probability of the
rule's postcondition being true given that the rule's precondition is true. The positive coverage is
the (empirical) conditional probability of the rule's precondition being true given that the rule's
postcondition is true. The combination of these two measures gives the strength of the implication
in each of the two directions. The rule's coverage is the probability that the rule's precondition is
true.

The era,mple used throughout this paper shows results from an actual dataset from the Boeing
company. The nariable na.mes and values have been disguised for proprieta,ry reasons but all the
results are from this actual dataset. There were 6384 obsenrations and 141 va,riables, which were
ordinal (i.e., some discrete and some continuous) and categorical. The base rate of the dependent
variable is 23.5%. The base rate is the proportion of the "value of interest" in the dependent
va.riable. We transform the independent variable Y into a binary va,riable, called the target, by
partitioning the range of Y into two sets: a set containing the value of interest, Target=True, and
its complement. The rule is made up of a precondition and a postcondition (i.e., the ta.rget). The
independent variables used in the precondition of the rule a,re also called predictor variables.

3 Boeing's Knowledge Discovery flamework
There are three main extensions to existing technology which are necessary to achieve this generic
knowledge discovery capability. These research directions are:

1. to develop a statistically valid process for selecting and ordering the "good" rules produced
by the algorithm and expressing the uncertainty associated with competing rules,

2. to develop a summa,rization and visualization methodology that allows process owners and
data analysis experts to enamine how the rules compete with and complement each other,
and
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3. to develop a methodology for deriving data representations which best capture the objectives
of the process owners, and at the seme time ma:rimize the efectiveness of the rule extraction
algorithms used for KD.

Figure 1 shows the interrelations between these three foci and the rule extraction algorithm.
These three aspects of applying KD tools have received little attention from academic investigators.
But more importantly, these foci a^re the aspects of this technology which must be resolved (at least

partially) if KD is to become really useful for commercial applications.

lndustrialand
commercial process

owners

Figure 1: Boeing Knowledge Discovery Ila,rnework

W. Heisenberg states "It is probably true quite generally that in the history of human thinking
the most fruitful developments frequently take place at those points where 2 different lines of
thought meet." The fields of Artificial Intelligence (of which machine learning (Mt) is a subfield)
and Statistics have begun to cross-pollinate in the last few years. We intend to marry these two
fields by using new and innovative algorithms and also providing a firm statistical foundation for
them to rest upon.

The rule extraction algorithm on which we are currently focusing is the Brute/Beam-Brute al-
gorithm. The dependent variable must be represented in categorical form, while the other variables
caa be either categorical or ordinal. Note that the dependent va^riable need only be categorical
but is treated as bina,ry once the value ofinterest is chosen. For instance ifthe dependent variable
contains a value from the set duck, dog, cat and the value of interest is defined as "duck", the
algorithm treats the variable as a "duck" *not duck" variable. The requirement that the dependent
rnriable be categorical means that in cases where the dependent rrariable is ordinal it must be

discretized. We have done this with datasets in the past by using quantiles.
Brute determines conjunctive rules which predict the target. It exhaustively explores all possible

conjunctive rules over the independent rrariables up to the ma:<imum depth, orders these rules
using an evaluation function, and returns the top X rules where X is the size of the rule bucket
(e.g., the top 200 rules ordered by the evaluation function). Brute was developed by Etzioni &
Segal at University of Washington Computer Science Department in collaboration with Riddle
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at Boeing, based on their experiences using the IND algorithm (Buntine and Ca.ruana, 1991) on
Boeing datasets. IND simulates several decision tree algorithms including CARI and C4.5. The
difficulty in using decision tree algorithms in these domaius which led to the development of Brute
is discussed in (Riddle et a1.,1994) which also contains a thorough description of the algorithm
and experiments compa,ring it to CART and C4.5. The major focus in developing Brute was to
develop an algorithm which would discover a few good rules which may only cover a small number
ofobservations instead offocusing on covering the entire space ofobservations with a decision tree.
This is based on the notion that we are dealing with domains which are fundamentally multiple
causal domains.

In our use of Brute within Boeing, statistical measiures (accuracn positive coverage, .,rrd X')
derived by the algorithm during lea,raing are an integral part of the resulting learned rule. This is
a fundamental difference between our work and most of the historical work in the field of machine
learning.

4 Statistical Foundation

Brute discovers collections of rules (models). We must determine how to select, rank, compa,re
and validate these models. KD often generates very different rules which cover disjoint or nearly
disjoint groups of obsenrations in the dataset. Informally, we could say that rules can be competing,
complementa,ry or subsumed. Competing rules uexplain" roughly similar sets of obserriations using
different sets of predictor rariables. Complementa,ry rules "explain" roughly disjoint pieces of the
space of observations. Subsumed rules cover nested subsets of the observation space, coveriag less

and less points but being increasirgly accurate. Widely rrarying complementary rules may indicate
extreme heterogeneity in the dataset. The possibility of differing e:qplanations for diferent parts of
the dataset as complementary must be ad.mitted.

Until we have a firmer probabilistic foundation aad understanding of our sea,rching algorithms,
we will consider the rules discovered by Brute as descriptive statistics. Because of this, the only
type of "bad rules" we are trylng to prevent from being reported by our statistical methodology
are those rules which a^re random rules. KD should not find rules when the ta,rget is statistically
independent of the predictor variables. We can imagine a mechanism that assigns the dependent
variable's values randomly (blindly) 1s a gr.mple of predictors. If this is the case, then we should not
find any rules, whatever the distribution of the predictors. Any mechanism other than randomness,
like use of an unseen variable to assign the rralues of the dependent variable, may cause rules to be
found, if this nnseen variable is associated with seen ones.

Target T Target F'

Precondition T Pt Prz
Precondition F Pzt Pzz

Table l: 2x2 Table

Our current experimental methodology for insuring the statistical validity of our rules is as
follows. We run Brute on all the data and use the / statistic as Brute's internal evaluation
function to order the rules and keep the best ones in a very large bucket. The 12 statistic comes
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from the 2x2 table generated by the target being treated as binary and the rule's precondition
being true or false. This is shown in Table 1. Then we use a 1000-fold bootstrap with the same

data to determine the the 20 percentile of the accuracy of each rule. If the base rate, is above

this percentile, then the rule is removed from consideration. It would be natural, for base rates
closer to 0, to demand the bootstrapped 20 percentile to be an integer multiple of the base rate.
We choose accuracy because it is usually the measure that users ca,re about the most. We used to
use accuracy as the evaluation function internal to Brute, but we found it did not give good rule
selections when the coverage of a rule was small. Any other simple statistics would be easily added

to the bootstrap erraluator. The accuracy and positive coverage statistics given previously, c:ln now
be formally defined as

accuracy - \1f (P::+ Prz)

positiae cooerage = htl(Pn + Pzr)

The other popular resa,mpling technique, cross-validation, has been tried, but the maae of rules
generated by Brute multiplies. For each cross-validation fold Brute would lea,rn a new set of
rules. Strong rules tend to appeax in all subsrmples almost unchanged, but wea.ker ones sometimes

disappear or a,re greatly modified. In how ma,ny s1lsa.mples must a rule appea.r to be accepted?

How much variation of its ranking and 12 across su[samples would be acceptable? The task of
managing all this variation seems difrcult.

As we stated, we a.re using X2 to order the rules and the bootstrapping on accuracy to define

the cut-off point. X2 does a good job of ordering the rules but cannot be used as a cut-off since

the size of the dataset has such a large impact on the results. Normalizin E X2 , 6 in Pearson's

contingencycoefrcient,@wou]dsolvethis1astproblem,butwewouldstill
have to work to find the right cut-off value. For 2x2 tables, 12 is known to be a bad discriminator
of the hypothesis of independence vs. the hypothesis'chosen at random", even for sa,mple sizes as

Iarge as 500 (Diaconis and Efron, 1985). Although all these objections to the / could be overcome,
we a,re still experimenting with other measures of association because of the following problem: 12
rates highly those rules which are both very predictive of the target and very unpredictive of the
target. But we are only interested in the predictive ones. Natural candidates a,re the cross product
ratio and an a-posteriori odds ratio. The first one,

mtlPrzo=M
, computed over the 2x2 tabLe, has an intuitive interpretation: it is the ratio where the numerator
equals the odds of the target being true given that the rule is true and the denominator equals the
odds of the target being true given that the rule is false A la.rge rralue of alpha will signal a strong
rule. Another possibility is the entropy statistic as used by CN2 (Clark and Niblett, 1989).

We did a number of experiments with the combination of X2 and bootstrap. One question
which arises is whether the ordering imposed by X2 is close enough to the ordering given by the
bootstrapped accuracy, so that rules left outside the X2 bucket would not found to be "good" rules by
the bootstrap evaluator. The bootstrap evaluator cannot be used as the internal evaluation function
of Brute for computational reasons. The Brute process is very CPU-intensive and the evaluation
function must be modest in terms of its computational requirements. A further adrantage of the
bootstrap, not exercised yet, is that it allows the construction of simultaneous confidence intervals
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for all these rules (models) and their accuracies. We normally treat each rules as an isolated model,

but one must not forget that they are highly redundant and statistically dependent.

The following experiment shows that if you ma,ke your bucket large enough the chi-square

ordering will not put any good predictive rules lower than any bad predictive rules (which are of
the right sign). So the combination. of. y2 with a large bucket and bootstrapping to decide cutoff
works well. The horizontal line represents the base rate in this dataset.

chFsquare rule ordedng

Figure 2: Experimental Results

We know that the users' temptation to ma,ke inferences form these models will be great. We
a,re exploring the application of graphical models (Whittaler, 1990) to be able to assess how much
these models a,re supported by the data.

5 Result Summarization & Visualization

Model summarization and visualization tools are needed because the aggressive search strategies
for rule extraction in our current algorithms produce too many rules (models) for detailed human
review. After statistical screening and validation, the user is left with many rules that a,re either
"competing", *complementa"ry" or "subsumed". The set of rules produced a,re therefore naturally
grouped into fa,milies. We currently use statistical hierarchical clustering techniques to automate
the family creation process.
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The intention is to help the process owners choose from among those models which pass the

statistical screen of model selection. It is important to present as many of the valid models as

possible to the process owners, as it is a priori unclear which of the models might make the most

sense to them. Competing models will allow the user to work with several 'working hypothesis"
until further analysis sheds more light on the subject; they also show correlations between predictor
variables that could suggest further statistical modeling. One important notion to remember is that
when we say two rules are competing (e.g., aliasing for each other), we a,re viewing this through
the projection of the postcondition. This is very diferent than two rrariables which a"re directly
aliasing for each other in aII situations. We use the term 'aliasing" to specify that two variables

are associated or correlated with each other. Complementa,ry models may suggest actions with
different cost/payback ratios and thus allow the user to direct efforts where returns a,re higher or
immediate.

5.1 Visualizing Multiple Rules

One of the major problem's with the Brute methodology is that we end up with too many rules

for a person to process efrciently. This is especially a problem when the va^riables alias for each

other. One approach we have ta,ken to this is hiera.rchically clustering the rules. We produce a

matrix that has the rules as rows and 2x the obsenrations as columns. For each rule we specify

which obsernations satisfy its precoudition of the rule and which observations satisfy both its
precondition aad postcondition (hmce the doubling of observations). Once this matrix is created

we do a hierarchical clustering with a euclidean distance metric. This metric is

it2(RL,Rz) = !1ar1ar) - R2(obs))'+ I((at ATarset)(obs) - (R2 
^Tarset\(obs))2

The rules are considered close when their preconditions (R1 and R2) cover roughly the same points

and roughly the sa.me positives.
This allows us to see obvious sources of aliasing. An exa.mple of this is showa in Figure 3, only

a portion of the hiera,rchical cluster tree for the 121 good rules produced by Brute is shown. Notice
the rules on the branch marked X. These rules a,re clearly aliasing of the last conjunct. Our reason

for presenting equirralent rules is that we are tryrng to derive rules for a person to understand the
process. This is very different from producing a decision tree which will be used for prediction.

Since a human is going to process this information and we do not know what will or won't make
sense to them, we want to present all the possibilities.

Another type of visualization we have used is a subsumption matrix. Figure 4 presents the
results of this analysis. It is based on the matrix which specifi.es for each rule which observations
satisfy both the preconditions and postconditions. The system calculates which rules cover the
sa.me observations to some level of precision 80-90% and displays the list in the order of increasing
coverage. It shows each rule's accuracy, positive coverage, and chi-squared.

5.2 Visualizing Single Rules

We have used visualization of single rules in two ways. We have developed specific visualizations
which present accuracy, positive coverage, atoid X2 for a rule to show how it varies as one variable
moves a ordinal boundary. This is shown in Figure 5.
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Figure 3: Rule Clustering

We have also used standard statistical displays which were suggested by specific rules. This is
demonstrated in Figure 6 whic.h was suggested by the following rules: IF airline = X n component

= 1 THEN target = T and IF airline = X A component = 2 THEN target = T.
Rrrther displays are currently under development. One interesting display shows a sequence of

good rules with strictly increasing cumulative positive coverage. It is plausible, and has been our
experience, that we caa enhaust the set of excellmt rules a,nd yet leave a non-negligible proportion
of positives unexplained. This last phenomena should be common in obsernational studies when
some of the variables that explain positives are left unobserved.

6 Data Engineering

It is easy to see that each of the different forms in which the data is represented will allow different
types of patterns to be found in the data. The data representation is the result of formulating the
problem by selecting the rariables and specifying one irs the single predicted variable. The success
of the entire KD process is dependent upon the form in which the data is presented to the tool.
The first step is data cleaning where the data is made Ers error free and as consistent as possible.
But even if clean data is presented in a bad form, no patterns may be found even if there exist
patterns in the data. In principle there are many reformulations of the data (i.e., functions over
the data) which could be computed.

We are creating a libra,ry of low level generic data transformations. A transformation is a
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Figure 4: Subsumption Matrix

function which traaslates one va,riable or combination of va^riables into another va^riable. Exa.mples

of these generic data transformations are discretizing and interpolating. We have become very
proficient at reformattiug the data by iterating between changes to the data representation and
rule extraction algorithm runs. We a,re capturing this knowledge to embed it in a semi-automated
procedure, a reformulation advisor, which a process owner caJr use to reformat his own data, so

that the tool will perform well in that domain.
It is important to determine what effect the use of a lot of data transformations will have

on the algorithm's statistical validation measures. This problem is another side of the overfitting
problem mentioned above. Bear in mind our original description of a toolkit. We are developing
generic tools which can be assembled together by a data analysis expert for a particula,r domain. A
novice user then uses the tools within that domain to do his analysis. In this methodology a data
analysis expert will be available to assure that overfitting does not occur. Our current stance on
this problem is that a transformation which is "natural" in the domain will not cause overfitting.
Only artificial transformations a,re suspect.

For instance, if we ta^ke monthly wear information on arr airplane (usually measured in flight
time or number of cycles) and determine its *age" in flight hours or cycles and find correlations
between this notion of age and our predictor, then we would claim that is a real correlation and
not overfitting because airplane age measured in this way is a 'natural' attribute in this domain.
If we took monthly wear information and randomly took a mathematical function of it (square,
sin, etc.), then the possibilities of overfitting need to be considered. [n our domains we have found
cases where there are hundreds of natural transformations. It is interesting to note that the Brute

30 40 50 60 70 80

Percent ol total Population
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Figure 5: tend Diagra-

algorithm is invariant over monotone functions, so those need not be considered in a,ny case.

One effect of rra,riable-redefinition is Simpson's paradox (Whitta^ker, 1990) where the statistical
measures of correlation can nalidate a model which is incorrect in the untraasformed dataset. This
pa,radox is caused by not maLiug a natural distinction in the data, rather than ma,king too many.
So the use of data transformations to add more independent nariables, will ease the Simpson's
paradox problem.

7 Related Work

At the fra,mework level there is little related work to report. Most places a,re working on the discover
algorithms themselves (e.g., new Brutes) instead of total frameworks within which to place them.
On the other hand each of the pieces of our fra,mework has its own field of related work.

The Brute algorithm itself is most similar to ITRULE. The evaluation function they used is
more tuned to finding high coverage rules instead of high predictive rules as is the Brute evaluation
function. A comparison between Brute, ITRUTE and other rule extraction systems can be seen in
(niaate et a1.,1994).

Our current visualization work is a small portion of the field of scientific visualization. We have
not delved into the more advanced techniques in this field. Currently the more mundane aspects
of this field have been sufficient for our framework.

Likewise the field of data engineering is vast in itself in the a,reas of representation reformulation
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and constructive induction. Since our data is in an attribute value representation, we have not had

to use the more advanced techniques in this field either. But this is the portion of our framework
which has received the least work and still rema.ins a form of black art which requires the user to
know his data we1l.

In the area of the statistical foundation of our rules, there is the whole history of statistical
thought which is the vastest field yet. We have used numerous techniques form these fields most

cited in the statistical foundation section itself. It is not easy to find in the statistical literature an

analysis of the statistical valifity of a collection of rules; graphical models could provide a solution
(see next section). We generally find ourselves retrofitting techniques developed for other purposes.

8 E\rture Directions

Even with the bootstrap pruning and the rule clustering, in some domains with many variables

which alias each other, there will be too ma,ny good rules and the process o\rrners will feel over-
whelmed looking at them all. We are currently looking into the benefi.ts of using a two pass system.
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For instance, upon o(e.miniag the first set of rules which are produced, more data engineering can

be done. First, variables which never appea,r in the rules can be removed. Notice this will only

a,ffect the efficiency of the algorithm not the results, unless it a,llows enough efrciency to allow the

search to go to a lower depth (e.g., more conjunct allowed per rule). Second, variables which obvi-

ously alias for one another can be combined. Remember we consider two variables to alias for one

another if they can be substituted for each other in rules which predict the ta,rget. So the aliasing

is seen through a projection on the ta^rget and may not extend to a total aliasing of the variables

in all situations. When we discovered alias rariables, we can remove all the duplicate variables but

one, or we oan actually combine them. For instance if Vl = A seems to be aliased by V2 ) 5, then

both these variables can be removed and a new variable added which is true when either VL = A
or when V2 > 5 and false otherwise.

It is unclear whether in a two pass system both rule extraction Passes would be performed

by the Brute algorithm. We a.re also contemplating using a Graphical models algorithm in this
second pass. This could be done either by treating the rules'preconditions produced by Brute as

the random variables in the graphical model and see hon, these relate to each other. Or in similar
fashion to the two-pass Brute described above, the newly engineering va,riables from the first pass of
Brute could be used as the ra.ndom variables in the graphical model. The use of graphical models

would give us more complete information about dependencies, but we a.re not certain it can be

adapted for novice use.
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