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Abstract

This paper introduces a novel enhance-
meut for learning Bayesian networks with
a bias for small, high-predictive-accuracy
networks. The new approach selects a sub.
set of features which ma:rimizes predic-
tive accuracy prior to the uetwork learn-
ing phase. We examine explicitly the ef-
fects of two aspects of the algorithm, fea-
ture selection and node ordering. Our ap-
proach generates networks which are com-
putationally simpler to evaluate and which
display predictive accuracy comparable to
that of Bayesian networks which model all
attributes.

1 INTRODUCTION

Bayesian networks are being increasingly recog-
nized as an important representation for probabilis-
tic reasoning. For many domains, the need to spec-
ify the probability distributions for a Bayesian net-
work is considerable, and learning these probabili-
ties from data using an algorithm like K2 [8]1 could
alleviate such specification difficulties.

We describe an extension to the Bayesian net-
work learning approaches introduced in K2. Rather
than use all database features (or attributes) for
constructing the network, we select a subset of
features that maximize the predictive accuracy
of the network. Then the learning process uses
only the selected features as nodes in learning the
Bayesian network. Our goal is to construct net-
works which are simpler to evaluate, but which still
have high predictive accuracy relative to networks
which model all features. We examine explicitly the
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1K2 is a Bayesian reformulation of the Kutato lea,rn-
ing atgorithm [12].
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effects of two aspects of the algorithm: (a) feature
selection, and (b) node orderiug.

Our experimental results verify that this approach
generates networks which are computationally sim-
pler to evaluate and which display predictive ac-
curacy comparable to that of Bayesian networks
which model all features. Our results, similar to
those observed by other studies of feature selection
in learning [6, 13, 17, 18], demonstrate that feature
selection provides comparable predictive accuracy
using smaller networks. For example, by selecting
as few a"s 15To of the features for the gene-splice do-
main, we obtained a predictive accuracy of 94.8T0
(as opposed to 96.8% with all features). However,
the reduction offeatures is not always as significant
(e.g. 7l%o for the letter recognition domain), which
implies that feature selection should be used advis-
edly, and its effect is domain- and data-dependent.

The remainder of the paper is organized as follows.
Section 2 introduces the Bayesian network learning
algorithm which we modify, the K2 algorithm. Sec-
tion 3 describes our new learning approach. Sec-
tion 4 outlines the experimental design, and Sec-
tion 5 summarizes the experimental results. Sec-

tion 6 compares and contrasts our approach with
other related work. Finally, we summarize our con-
tributions in Section 7.

2 Bayesian Network Learning

We now define the learning algorithm used in K2.2
Assume that we have a database D of rn cases,
where each case contains an instautiation for each
of a set Z of n discrete features. 85 denotes a be-
lief network structure representing the features in
Z. In a belief network, a node represents a feature,
and the absence of an arc between two nodes de-
notes the independence of the two nodes given the
remaining network structure. The posterior prob-

2We use the nomenclature used in the papers on K2
by Herskovits and Cooper [12, 8].
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ability of a network given the data, P(B5ID), is
proportional to the joint probability, so networks
can be ranked according to their joint probabilities.
The single most likely network is given by

B s ^n, = argm&xs. [P(BslD)].

K2 constructs a Bayesian network from a set of fea-
tures as follows. K2 selects the network (out of a
set of possible networks exponential in the number
of network nodes) which maximizes the network's
posterior probability, P(Bs,D). K2 requires an or-
dering on the features from which the network will
be constructed. Given an ordering flt,rtz,...,n* of
the rzl features, K2 takes each successive feature
in the ordering, adds it as a node n; in the net-
work, and creates parents for n; in a greedy fashion:
rather than evaluate all subsets of network nodes
TLt,n2, ...,rti-! as parent nodes, K2 selects as a par-
ent node the the single node in {n1, n2,...,n;-t)
which most increases the posterior probability of
the network structure. New parent nodes are added
incrementally to n; as long as doing so increases the
posterior probability ofthe network given the data.

Our new approach proceeds in two phases. The
first phase computes a subset A g Z of features
that generates the network ,B1 with highest predic-
tive accuracy, where Bg denotes the network formed
from the subset C g Z of features. The second
phase computes the network (from the set of fea-
tures A) which maximizes the predictive accuracy
over the test data.

The learning algorithm that we use, called CB, is a
modified version of K2 l2al. Whereas K2 assumes
a node ordering, CB uses conditional independence
(CI) tests to generate a "good" node ordering, and
then uses the K2 algorithm to generate the Bayesian
network from the database D using this node or-
dering. The CB algorithm starts by using CI tests
of order 0 and keeps constructing networks for in-
creasing orders of CI tests as long as the predictive
accuracy of the generated network keeps increas-
ing. Since CB uses the K2 algorithm to generate
the Bayesian network from a particular ordering,
CB is correct in the same sense that K2 is [24].
Singh and Valtorta show the importance of deriv-
ing a good node orderin E 124), given the n! possible
node orderings on n features.

3 Feature Selection Algorithm

We implemented the Feature Selection Algorithm
using the CB algorithm in both the node selec-
tion as well as the network construction phase. We
call this approach K2-AS, since it uses the basic
K2 algorithm allied with .Attribute ,Selection in the
node selection phase. The algorithm we use is what
has been described as a urapper rnodelllSl, in that

"the feature subset selection algorithms conducts a
search for a good subset using the induction algo-
rithm itself as part of the evaluation function" [13,
page 1241.

Our learning approach consists of two main steps,
node selection and network construction. In the
node selection phase, we choose the set of nodes
from which the final network is constructed. In the
network construction phase, we construct the net-
work from the subset of attributes selected in the
previous phase. Finally, we test the predictive ac-

curacy of the network.

The algorithm used for the node selection phase is
a forward selection algorithm, in that it starts with
an empty set of features and adds features using a
greedy sea,rch. This forward selection is just like
K2. We now describe the different phases of the
algorithm:

o node selection phase: In this phase, K2-AS
chooses the set ofattributes A, A g Z (Z isthe
set of all attributes) from which the final net-
work is constructed. The algorithm starts with
the initial assumption that A consists of only
the class variable classuor. It then adds incre'
mentally that attribute (from Z - L) whose ad-
dition results in the maximum increase in the
predictive accuracy of the network constructed
from the resulting set of nodes. When there
is no single attribute whose addition increases
predictive accuracy, the algorithm stops adding
attributes. We define O(A) to be the predic-
tive accuracy of the set A of attributes, and

9(M) to be the network constructed from the
set M of nodes. This phase can be described
as follows:

L * lclassoor\
(b otit + O(closs, o' )
NotDone * Tlue
while NotDone do

Y a e Z - A, Iet Bs" -9(A u{c})
ebn"- * max" o(8s.)
z = ar8maxc{Oc}
if On". ) Oora then

(bdd * Qnew
A-AU{z}

else NotDone * false
end {while};

o uetwork construction phase: K2-AS uses

the final set of nodes A selected in the node
selection phase to construct a network using
training data. Once again, the CB algorithm
generates networks for increasing orders of CI
tests as long as the predictive accuracy (on
evaluation data) keeps increasing and stops
when there is no further increase. The network
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Table 1: Summary of databases and learning approaches. The first two columns summarize the total
number of features and the nodes selected by K2-AS. The last four columns summarize information about
how we the databases.

corresponding to the maximum predictive ac-
curacy is the final network.

o reetwork erraluation phase: In order to test
the quality of the network, we test the uetwork
for its predictive accuracy on the test data.

4 Experimental Design

We divide the database into three parts. The first
two parts are used for the node selection phase: the
first pa^rt, the training data, is used for learning
the network (from the current subset of nodes and
the node under consideration); the second part, the
eoalaation data, is used to test it for predictive ac-
curacy (to decide whether to add the new node to
the set of selected nodes). Once we have finished
with the selection ofthe subset ofnodes, we use the
first part ofthe database to learn the network using
the CB algorithm (the network construction phase).
The third part of the database, the lesl data, is
then used for determining the predictive accuracy of
the network derived from the network construction
phase. We performed inference on the networks us-
ing the Lauritzen-Spiegelhalter inference algorithm
as implemented in the HUGIN [3] system.3

The K2-AS approach trades off the time required
to construct a network from the full feature set (as
done in K2) with precomputing a feature subset
and subsequently constructing a network with this
feature subset. The node selectiou phase in K2-AS
adds a modest amount of computational expense
to the network induction. At each iteration of the
node selection phase, K2-AS constructs a network
(for each of the nodes not in the current set of se-
Iected nodes) by adding each node to the current set
of selected nodes and then perform inference using
the constructed network. At each stage, since a
very small subset of the features is used, the net-
work generated is very small and so the network
construction as well as the inference phase is very
fast (a matter of seconds for the databases consid-
ered).

3We gratefully acknowledge that HUGIN has been
kindly supplied to the second author for doctoral
training.

Note that the node selection phase depends on se-

lecting a relatively small number of features to cre-
ate Bayesian networks that are efficient to perform
inference on. Our results confirm the success of this
approach, in that no more than a dozen features
were selected in each of four domains studied.

5 Results

We have performed a set of experiments to com-
pare the networks generated by our approach with
those created by CB. We tested this method on
four databases acquired from the University of
California, Irvine Repository of Machine Learn-
ing databases [21], namely Michalski's Soybean
database, Slate's Letter Recognition database, the
Gene-Splicing database due to Towell, Noordewier,
and Shavlik,a and Shapiro's Chess Endgame
database.

Table 2: Comparison of
basic CB and

Uhess 9b 94.6b
Gene.splice 97 94.81
Soybean E6.2 9J.E3
Letter recognrtton E2.5 62.Ub

Table 1 summarizes the four databases used in
terms of number of cases and features, and com-
pares the number of features with the number of
nodes selected.s The K2-AS approach always se-

lects fewer features to be nodes in the network.

aWe used the database used to recognize genes in
DNA Sequences (which we call gene-splicing database),
as created by Towell, Noordewier, and Shavlik.

5In the case of the Chess database and the Gene.
splice database, we mixed up the cases in the database
prior to splitting it because the data.base had all cases
for one value of the class variable first, then all cases for
the next value and so on. In the case of the Soybean
database, due to less number of cases, both the eoalua-
tioa and the test parts of the database consisted of the
same 340 cases.

predictive accuracy for the
for K2-AS.

Ibatures Nodes
Selected

Uases
(TOTAL)

Uases rn
training set

Uases rn
eaalaation set

Uases rn
lesl set

1000 1000 1175Gene-splrce tir IU Jr /b
Soybean 36 L2 640 290 34U 340
Chess 37 6 ur90 rUUU rUUU r lgti
Letter L7 L2 ZUUUU 10000 6000 4000
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Figure 1: Learning curves for Gene.splice database Figure 2: Learning curves for Chess database
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The ratio of nodes selected (excluding the node for
the class variable) to total database features ranges
from 15% for the gene-splice domain to 71% for the
letter recognitiou domain.

Table 2 compares the predictive accuracy obtained
for the basic CB approach and for the K2-AS ap-
proach. In 2 out ofthe 4 cases, the K2-AS approach
created a network with higher predictive accuracy
than the CB approach.o

In the Gene-splice case the predictive accuracy was
smaller by just over 2Vo, but the network which had
2Tolower predictive accuracy was one sixth the size
of the full network created by the CB approach: i.e.,
of the 61 features, 10 were deemed to be important
to the predictive accuracy, resulting in a network
one.sixth the size of the network generated using
all 61 features. Note also that the time required for
performing inference on the networks induced using
K2-AS was substantially less than than required for
the networks induced using CB. This was partic-
ularly true for the network for the chess domain,
which is very densely connected.

Figures 1 and 2 show the learning curves for the

6The best results we ever got for the Soybean do-
main with CB were 86%. Herskovits [11], even with his
multiscore algorithm (using multiple networks for infer-
ence), got about 86%. As a point of comparison, in the
chess endgams dsmain decision trees are able to obtain
99% accuracy.

Subet{B-trth s.h
Subsr-K2+odl_sts

3ni,iit.tti- 
---- -------

SubsbK2

tB-
&-

Splice and Chess databases.T In these graphs K2
was given the node ordering selected by CB which
resulted in a network with the best predictive accu-
racy, which we call the pseado-optimal, and CB de-
rived an ordering from the data. We denote the fea-
ture selection algorithms using the "subset" prefix.8

Since the number of attributes used by the subset-
selection algorithm for these two domains is small
relative to the total number of attributes (approx-
imately 16%), few cases are needed to learn the
networks, and the Iearning curve is almost flat. In
addition, the predictive accuracy of the reduced-
feature networks is within 2To of the networks with
all attributes. Hence, in these domains K2-AS sig-
nificantly reduced network size with little loss of
predictive accuracy.

Figures 3 and 4 show the learning curves for the
Soybean and Letter-recognition databases. The
number of attributes used by the subset-selection
algorithm for these two domains is 33% and, TlVo
respectively. Since the reduced-attribute networks
are closer in size to the full-attribute networks, the
learning rates are comparable, and a modest reduc-

7A learning curve plots predictive accuracy versus
number of test cases.

sThe curves with suffix "both-sets" refer to predic-
tive accuracies obtained by using the first two parts of
the database for prior probabilities, as opposed to using
just the first pa.rt.

0.20
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Figure 3: Learning curves for Soybean databases

tion in network size is possible.

Figure 5 shows the learning curves for the soybean
database for a variety of node orderings: five ran-
dom orderings, the average of these five orderings,
the ordering computed by CB (subset-CB), and the
pseudo-optimal ordering for K2 (subset-K2). This
figure shows that although there is some variability
in predictive accuracy and learning rate for random
orderings, the final predictive accuracy is relatively
iusensitive to the ordering chosen: the predictive
accuracy results for all but one of the random or-
ders are within 2Vo of.the predictive accuracy ofthe
pseudeoptimal ordering.

We also compared the nodes selected by these
eight orderings (random, CB-derived and pseudo-
optimal), as shown in Table 3.

Table 3: Nodes always selected (regardless of order-
over multiple random

Table 3 shows that each ordering contained an iden-
tical set of nodes; we call these the relevant nodes.
For example, for the soybean database, 7 of the 12

nodes selected were common over all the runs us-

No. ofCm

50.m Im.00 150.m 200.m 250.m 300.00

x to3

2.m 4.m 5.m 8.00 10.00

Figure 4: Learning curves for Letter-recognition
database

ing random orderings. In addition, of the networks
nodes which are not always selected, there was a
subset that was selected in most runs using ran-
dom orderiugs; we call these weakly relevant nodes.
This approach thus provides an empirical method
for determining relevance of nodes in a Bayesian
network.

6 Related Work

Feature selection has been widely used in statistics
and pattern recognition, and its use within the com-
putational learning community has become quite
widespread within the last few years. In statistics,
research on feature selection has focused primarily
on selecting a subset of features within linear re-
gression. Techniques developed include sequential
backward selection [20], branch&bound [22], and
search algorithms 123, 251. A 1993 meeting of the
Society ofAI and Statistics was dedicated to papers
on "Selecting Models from Data"[7], and contains
a large number of papers on feature selection. This
statistical approach to subset selection shares many
principles with other statistical notions of informa-
tion minimality,like MDL. For example, Dawid dis-
cusses the close relation between subset selection
and the MDL principle in [9].

The computer vision communityhas studied feature
selection for over 20 years [10], and has formed a

Nodes Nodes
Chosen

Nodes Always
Chosen

Gene-splrce o1 1U 7

Soybean 36 L2 t

5Chess 'J',t 6
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,

t,l

Predictivc Aeurcy (%)
Soybean Database (Random Orderings) Irvine database) have a relatively small number of

features, namely the features have been pre-selected
for their relevance. It is expected that in such do'
mains feature selection may not make a significant
impact. One exception is the study of cloud clas-
sification by Aha and Bankert [1], in which a set
of 204 attributes were significantly pruned, leading
the greatly improved performance.l0 Better under-
standing of data sets and of domains may lead to
a deeper understanding of the role of feature selec-
tion, and improved performance from feature selec-
tion algorithms.

This paper does not attempt to achieve the ac-

curacy found on the four databases studied using
other approaches, such as decision trees. Instead,
the purpose of this paper is not to identify the
Bayesian network with the highest predictive ac-
curacy, but to identify a parsimonious model with
good predictive accuracy. It is possible to com-
pute multiple models and average over them (e.g.
as proposed in [19, 4]) to obtain the best predic-
tive accuracy, and we hope to take this approach
in future work. In addition, we restrict our at-
tention to Bayesian networks. To fairly compare
the best possible predictive accuracy of other ap-
proaches to the predictive accuracy obtained using
reduced-attribute Bayesian networks is not useful;
rather, the averaged-model approach should pro.
vide a predictive accuracy for such comparison.

7 Conclusion

This paper introduces a feature-selection approach
for learning Bayesian networks using a greedy
search (i.e. K2-based) algorithm called CB. Select-
ing a subset of features prior to learning the net-
works significantly improves the inference efficiency
of the resulting networks, and achieves a predictive
accuracy comparable to networks learned using the
full set of attributes.

We believe that the benefits of having a simpler
network (which greatly reduces the inference time)
outweigh the slight reduction in predictive accuracy
and the one-time cost incurred during network con-
struction, especially in cases where the network gen-
erated using the entire set of features may be too
large to even allow inference.

In addition, we have showed that the predictive ac-

curacy of the learned Bayesian network is relatively
insensitive to node ordering, and that this approach
can identify the most relevant subsets of nodes in a
Bayesian network.

10In this domain it is likely that the features were
not pre-selected for relevance, as there was no a priori
knowledge of relevance and irrelevance.
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Figure 5: Learning curves for Soybean database
testing the effect of node orderings

sub-community within computational vision called
pattern recognition. The mainstream vision com-
munity typically does not use statistical feature
selection to identify relevant features, but makes
assumptions about what the features should be
present to represent, for example, a class ofobjects.

Feature selection has received considerable atten-
tion in the last few years within the computational
learning community, using both filter-based and
wrapper-based approaches [13]. A filter model fil-
ters out less relevant features using an algorithm
different from the induction algorithm used for the
Iearning, and a wrapper model uses induction algo.
rithm itself for feature selection. Three filter-model
approaches that have been taken are: the FOCUS
algorithm [2] the Relief algorithm [14, 15] (which
Kononenko has extended in [16]), and an extended
nearest-neighbor algorithm [5]. Wrapper-based ap-
proaches have been studied in [13, 6, 18], among
others.e

A growing consensus in this research is that the
success of feature selection is strongly correlated
to the data itself, as well as to the algorithm em-
ployed. Many domains studied (for example, the
domains described in the University of California,

elangley 
[17] presents a thorough review of feature

selection approaches studied within the Machine Learn-
ing literature.
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