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1 Introduction

The Bayesian classifier (Duda & Hart, 1973)
is a probabilistic method for classification. It
can be used to determine the probability that
an example j belongs to class C; given values
of attributes of the example:

P(ClA1=Vy, & ... A=V,

If the attributes are independent, this
probability can be calculated by Equation 1.

P(CilA=Vy)
P L1 55— [1]
In this form, it is well suited for learning from
data, since the probabilities P(C,) and
P(CilAx=Vy) may be estimated from the
training data. A classifier created in this
manner is sometimes called a simple
(Langley, 1993) or naive (Kononenko, 1990)
Bayesian classifier.

On many problems, the accuracy of the naive
Bayesian classifier is equal to or greater than
that of more sophisticated machine learning
algorithms. For example, Pazzani, Merz,
Murphy, Ali, Hume and Brunk (1994) found
that the accuracy of the Bayesian classifier
was 55.8% at predicting the severity of heart
disease from training sets of 200 examples,
and 75.2% at diagnosing diabetes from
training sets of 440 examples, while the
accuracy of ID3, a simple decision tree

algorithm (Quinlan, 1986), was 50.0% and
70.2% on the same problems. However, on
other problems, the reverse pattern was
observed. The naive Bayesian classifier was
95.1% accurate at identifying poisonous
mushrooms (from training sets of 500
examples), while the decision tree was 99.5%
accurate.! When learning from 600 examples
of telephone network troubleshooting
(Danyluk and Provost, 1993), the naive
Bayesian classifier was 30.1% accurate while
the decision tree was 37.3% accurate.

One possible explanation for the poor
performance of the Bayesian classifier on
these last two problems is that the major
assumption of the classifier, that the attributes
are independent does not hold. In this paper,
we address this issue by searching for
dependencies among pairs of attributes. For
example, if there are three independent
attributes, the numerator of Equation 1 would

be as follows:
P(CilA1=V1pP(CilA2=V2)P(CilA3=V3) [2]

However, if it is known that A1 and A, are not
independent, then Equation 3 should be used
instead:

P(CilA1=Vy; & A3=V3)P(CilA=Vy)  [3]

1. All of the differences in accuracy reported here at
significant at least at the .05 level using a paired t-
test. The databases are available from the UCI
Repository of Machine Learning Databases
(Murphy & Aha, 1994).
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We will say that that the two attributes A,
and A; are joined if Equation 3 is used
instead of Equation 2. A more accurate
classifier can result from joining the right
groups of attributes. For example, if the
concept to be learned was an exclusive-or
(A1®A3), then P(TruelA;=0), P(TruelA;=1),
P(TruelA3=0), and P(TruelAs=1) would all
equal 0.5. However, P(TruelA1=0 &A3=0)
and P(TruelA;=1 &As=1) would equal O,
while P(TruelA;=0 &A3z=1) and
P(TruelA;=1 &A3=0) would equal 1. This
simple example demonstrates that there can be
a major advantage in joining attributes.
However, if independent attributes are joined,
and the probabilities of joined attributes are
estimated from training data, a less accurate
classifier may result because the estimates of
the joined attributes are less reliable than the
estimates of individual attributes.

Kononenko (1991) uses the term ‘“semi-naive
Bayesian classifier” for systems that use
equations such as Equation 3. However , in
order to deal with the fact that the estimates of
P(CiA1=V1) and P(CiA3=V3) are more
reliable than the estimate of
P(CilA1=Vy; & A3=V3) it is not sufficient to
simply assume that two attributes are
independent if P(CilA1=Vy, & A3=V3) does
not equal P(CilA1=V1)P(CilA3=V3)
Kononenko proposes a method for identifying
that features are not independent based upon
a statistical test that determines the probability
that two attributes are not independent. The
algorithm joins two attributes if there is a
greater than 0.5 probability that the attributes
are not independent. Experimentation results
with this method were disappointing. On two
domains the semi-naive Bayesian classifier
had the same accuracy as the naive Bayesian
classifier, and on two domains the semi-naive
Bayesian classifier was one percent more
accurate, but it is not clear whether this
difference is statistically significant.

In this paper, we explore an alternate approach
to determining whether it is useful to join two
attributes when constructing a Bayesian
classifier. We also give experimental results
on parity functions, an artificial set of
functions that are particularly difficult for
naive Bayesian classifiers, and results on three
naturally occurring data sets.

2 Searching for Attribute Dependencies

In our work, we empirically determine when it
is beneficial for a Bayesian classifier to join
two attributes. First, the accuracy of the naive
Bayesian classifier is found by using
cross-validation on the training data. Next, for
each pair of attributes, we use cross-validation
to measure the accuracy of a Bayesian
classifier that joins this pair of attributes. If
joining two attributes results in an improved
accuracy, we join the pair of attributes that
results in the highest accuracy as measured by
cross-validation. The process of selecting the
two best attributes to join repeats until no such
joining results in an improvement in accuracy.
Note that it is possible that two joined
attributes are later joined with additional
attributes.

The complexity of joining attributes is at
O(EA3 ) where E is the number of examples
and A is the number of attributes. We have
exploited several opportunities for making the
process of measuring the accuracy by
cross-validation more efficient. In particular,
we use leave-one-out testing on the training
data. This allows a single Bayesian classifier
to be constructed on the entire training set. To
classify each example, the contribution of that
example to the probability estimates is
subtracted out (Langley, 1993). In addition, it
1S not necessary to re-estimate the
probabilities of attributes that are not joined
when evaluating the impact of joining two
attributes.
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We have also experimented with removing
attributes from the classifier. Such removal
may improve accuracy if the attributes are
irrelevant or, as in Langley and Sage (1994), if
one attribute is correlated with another. We
use the selective backward elimination (SBE)
method (Kittler, 1986) for removing irrelevant
attributes after first joining attributes. This
process deletes the attribute whose deletion
most increases accuracy (as measured by
cross-validation) and terminates when no such
deletion increases accuracy.

3. Experimental Results

In the first experiment, we consider learning
exclusive-or of two attributes, a function that
is very difficult for a naive Bayesian classifier.
We tested exclusive-or functions with 2, 4, 6,
and 8 irrelevant features included in the
example description. For each function we
ran 35 trials in which 50% of the examples
were randomly selected for training and the
remaining 50% were used to test the accuracy.
On each training set, we tested a naive
Bayesian classifier (called Independent in the
legend), a naive Bayesian classifier using
selective backward elimination to remove
attributes (SBE), a Bayesian classifier that
joins attributes (Dependency), and a Bayesian
classifier that joins attributes and then
removes irrelevant attributes
(Dependency+SBE).  Figure 1 shows the
mean accuracy of the four algorithms, plotted
as a function of the number of irrelevant
features. Paired t-tests at the .001 level
indicate that the algorithms that search for
feature dependencies are significantly more
accurate at each point than the corresponding
algorithms that assume features are
independent.

A potential weakness of the algorithm for
joining attributes is that in order to join more
than two features, it must first join two of the
attributes and later join other attributes with
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Figure 1. Learning the exclusive-or function
with irrelevant attributes.
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Figure 2. Learning parity functions.

the original two. This will not occur unless
forming the first pair results in an increase in
accuracy. In the second experiment, we
evaluate the ability of the four algorithms to
learn various parity function. A parity
function is true iff an odd number of the
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attributes have a value of true. We varied the
number of relevant attributes from 1 to 7 and
included irrelevant attributes so that each
example had a total of 10 attributes. We ran
35 trials of each function, choosing 512
examples for training and 512 examples for
testing. The results displayed in Figure 2
show that the advantage of using the
dependency detection algorithm does decrease
when the parity function has more than two
elements. However, dependency detection
combined with selective backward elimination
is still significantly more accurate than the
naive Bayesian classifier for parity of 2, 3, 4
and 5 variables at least at the .01 level.

Next, we turn our attention to three naturally
occurring databases: telephone network
troubleshooting?, identifying mushrooms, and
identifying the party of a member of congress
from their voting record.  Figure 3 plots the
the mean accuracy (N = 20) of several sized
training sets of each database. To avoid
clutter, we compare only the standard naive
Bayesian classifier to the Bayesian classifier
with dependency detection followed by
selective backward elimination. In all three
databases, at the maximum number of training
examples tested, detecting  attribute
dependencies and  selective  backward
elimination significantly improves accuracy at
the .001 level. On each of these three
problem, the naive Bayesian classifier was
substantially less accurate than a decision tree
learner. The Bayesian classifier with
dependency detection followed by selective
backward elimination is as accurate or more
accurate than a decision tree learner.

2. The telephone troubleshooting domain contains
numeric data, and the dependency detection
algorithm requires nominally valued attributes. We
converted the numeric data to nominal data by
partitioning each numeric value into 5 partitions.
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Figure 3. Accuracy on the NYNEX

telephone troubleshooting problem (top),
classifying mushrooms (middle) and
Congressional voting (bottom).
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On some problems, one would expect
attempting to detect dependencies would make
little or no difference. Indeed, the first point
plotted in Figure 2 (parity of a single variable)
shows that this is the case. We have observed
this behavior on some naturally occurring data
sets.  Figure 4 compares the Bayesian
classifier with dependency detection to the
naive Bayesian classifier on the lymphography
problem (each point is averaged over 20
trials). None of the differences between the
algorithms are statistically significant.
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Figure 4. Accuracy on the lymphography
problem

It would be gratifying if we could guarantee
that detecting dependencies will never hurt the
accuracy of the learner. However, we cannot
offer such guarantees in general (Schaffer,
1994). In practice we have observed two
domains in which finding dependencies
decreases the accuracy of the classifier.
Figure 5 compares the Bayesian classifier with
dependency detection to the naive Bayesian
classifier on the promoter problem and a
foreign trade negotiation problem (averaged
over 20 trials). On both of these problems,
there are many attributes (57 for promoters, 43
for trade negotiations) and few examples.
Under these circumstances, the chances that

cross-validation  detects a  “spurious”
dependency may be high, since it considers
1596 and 903 two feature dependencies,
respectively.
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Figure 5. Accuracy on the promoters (top)
and trade negotiations problems (lower).

4. Related Work

Although Kononenko (1991) has advocated
detecting dependencies in Bayesian classifiers,
his published results do not indicate
significant or substantial increases in
accuracy. Langley & Sage (1994) have used a
forward selection method for eliminating
attributes from Bayesian classifiers. Although
they advocate using the method for correlated
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attributes, we feel that joining a pair of
correlated attributes is more useful than
deleting one of a pair of correlated attributes.
The algorithm they propose would not be able
to improve the accuracy on exclusive-or or
parity functions.

Bayesian networks (Pearl, 1988) offer a more
complex way of representing attribute
dependencies. Although algorithms exist for
learning Bayesian networks from data (Cooper
& Herskovits, 1992) it has not yet been
demonstrated that inducing Bayesian networks
results in more accurate classifiers than naive
Bayesian classifiers.

6. Conclusion

We have shown that when learning Bayesian
classifiers from data searching for
dependencies among attributes results in
significant increases in accuracy. This
suggests that the attributes used in some
common databases are not independent and
that the violations of the independence
assumption that affect the accuracy of the
classifier can be detected from training data.
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