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Abstract

Many probabilistic approaches to part-of-speech (POS) taggiug compile statistics from mas-
sive corpora such as the LOB. Using the hidden Markov model method on a 900,000 token
training corpus, it is not difficult achieve a success rate of 95 per cent on a 100,000 token test
corpus.

However, even such large training corpora contain few relatively few words. For example,
the LOB contains about 45,000 words, most of which occur only once or twice. As a result, 3-4
per cent of tokens in the test corpus are unseen and cause a significant proportion of errors. A
corpus large enough to accurately represent all possible tag sequences seems implausible enough,
let alone a corpus that also represents, even in small numbers, enough of English to make the
problem of unseen words insignificant.

This work argues this may not be necessary, describing variations on HMM-based tagging
that facilitate learning from relatively little data, including ending-based approaches, incremen-
tal learning strategies, and the use of approximate distributions.

1 Introduction
Although probabilistic approaches to linguistic problems were attempted earlier in the century[2ipf,1932],
they were hampered by real diffculties of collecting and managing statistics, not to mention chal-

lenges to probabilistic methods in principle. New technology and the availability of tagged elec-

tronic corpora such as the million-word Lancaster-Oslo'Bergen (tOB) Corpus [Johansson,1980,
Johansson et a1.,L986) changed this situation dramatically, and a variety of probabilistic approaches
to a variety of natural language processing problems have become popular for some years.

One success of the probabilistic approach has been using hidden Markov models (HMMs) to
attach POS tags to unrestricted text. Given an actual stream of text, a sequence of tokens (instances
of words) @1. . .tor, the HMM method computes the word-tag sequence (or simply tag sequence)

\ . . .tn that most probably generated the sequence, that is, that ma>cimizes

P(t, . ..tnlwr...w,.). (1)

Such probabilities would be extremely difficult to collect in practice; furthermore their number is

exponential in n. However, assuming that 1) the probability of a tag t; directly depends only on
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the tag immediately preceding it, and that 2) the probability of any word u; depends only upon

the tag t; that produced it, the preceding reduces to

n4l

f[ r(u.';lt;) P(t;lt;-), (2)
i=1

where to,tn-t are dummy word-tags marking the beginning and the end of a sequence. P(to; lt;) is
a lexical prcbability; P(t;lt;-) is a contestual prcfubility. Eqtation 2 defines a bi-tagge4 in a k + 1-

tagger, the probability of a tag depends on the k preceding tags, but this only improves performance

marginally[Foster,1991]. See [Charniak et al.,Lgg})for a good overview of this approach to part-of-

speech tagging.
Typically, a POS tagger trains by collecting lexical and contextual probabilities from a large

subset of a tagged electronic corpus such as the LOB corpus [Johansson,1980] and is tested on

a smaller disjoint subset. In earlier work [Adams & Neufeld, 1993], a training corpus of 900,000

tokens and a test corpus of 100,000 tokens was used.

Clearly a difficulty arises when attempting to attach part-of-speech tags to unseen tag sequences

and words [Adams & Neufeld, 1993, Church,1989, Foster,1991, Merialdo,1990, Meteer et al.,l99l,
Kupiec,L992], that is, tag sequences or tokens not occurring in the training corpus, since no lexica.l

probabilities are known for them. About ha.lf of the words in the LOB only appear once, so many

words (about 3-4 per cent [Adams & Neufeld, 1993] are encountered for the first time in the test

corpus. Most of these (for example, outjumped and galacy) are neither exotic nor highly specialized

but simply reflect the vastness of human experience. A tagged training corpus of astronomical size

would be required to solve this problem.
Managing this problem seems to create the greatest overhead when constructing such taggers.

A variety of solutions to the problem of unseen tag sequences have been studied by other authors;

our work has addressed the problem of unseen words. The ideal solution would be to collect

probabilities from a tagged corpus sufrciently large to represent all tag sequences and ali word/tag
pairs, but the value of manually tagging such a corpus must be addressed. In previous work, we

estimated probabilities for unseen word/tag combinations using word endings. In subsequent work,

it occurred to us that the performance cost of using ending-based probabilities for relatively rare

words might well be marginal. This would be valuable when it is difrcult to store all the parameters.

The results below show this may not be necessary. A variety of techniques show that per-

formance can be maintained in the presence of infrequent and unseen words, without necessarily

increasing the size of the training corpus, and possibly even reducing it-

2 Ending-based strategies

In [Meteer et a/.,1991], it is reported that the success rate for tagging unseen words is significantly
improved by compiling word/tag statistics for about 35 preselected word-endings, such as -ologE

and. -tion. Of course, selecting such a set of word-endings requires expert language knowledge. In

[Adams & Neufeld, 1993], it is asked whether one could compile statistics on all word endings of
some fixed length. This language-independent approach was attempted for all .L-letter endings,

L = !,...,4.It is possible to look at the problem in another way. That is, initially collect statistics
on all .t-letter endings, but then collect statistics for the z most frequently occuring words in
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the corpus, and use the whole-word statistic whenever possible in the tagging process. The first
approach gives a measure of value of the ending statistics; the second approach gives a sense of
the value of whole-word information, and perhaps more clearly expresses the tradeoff between
additional knowledge and improved performance as rare words are added to the model.

Number of Most Prequent Words Put Back In LOB
5000 10000 15000 20000 25000 30000 35000 40000 450000

2-letter endings
AC - Full ETL
GT - Full ETt
AC - Unit ETL
GT - Unit ETL

83.4
83.4
88.6
88.7

95.0
95.0
96.0
96.0

95.9
95.9
96.3
96.3

96.2
96.2
96.4
96.4

96.3
96.3
96.4
96.4

96.4
96.4
96.4
96.4

95.6
95.6
96.2
96.3

96.1
96.1
96.3
96.4

96.3
96.3
96.4
96.4

96.3

96.3
96.4
96.4

3-letter endings
AC - Full ETt
GT - Full ETL
AC - Unit ETL
GT - Unit ETL

95.9
95.9
96.3
96.3

96.2
96.2
96.4
96.4

96.3
96.3
96.4
96.4

90.8
90.8
93.4
93.4

95.5
95.5
96.2
96.2

96.1
96.1
96.4

96.4

96.4
96.4
96.4
96.4

96.4
96.4
96.4
96.4

96.3
96.3
96.4
96.4

96.4
96.4
96.4
96.4

4-letter endings
AC - Full ETL
GT - FuIl ETL
AC - Unit ETL
GT - Unit ETL

94.3
94.4
95.2
95.3

96.1
96.1
96.2

96.2

96.1
96.2
96.2
96.2

95.7
95.7
96.0
96.1

95.9
95.9
96.1

96.1

96.0
96.0
96.2
96.2

96.1
96.1
96.2

96.2

96.2
96.2
96.2

96.2

96.2
96.2
96.2
96.2

96.2
96.2
96.2
96.2

Pigure 1: Tokens Correctly Tagged

In the above table, AC means augmented, corpus and refers to the technique of adding one to
all tag-sequence counts and all seen word counts before computing probabilities. GT means Good-
Turing method and is a more sophisticated way of adjusting unseen tag sequences and unseen
word/tag pairs. Full ETL means considering for each token the full set of tag possibilities for
the ending; Uni,t ETL means attaching only whole-word possibilities when there only is a single
possibility.

The table illustrates that the marginal value of an increased lexicon is low. In fact, about half of
the vocabulary occurs only once, so that last 20,000 words added back are based on small samples.

Another variation was to consider mixing sets of ending statistics. There is a tradeoff be-
tween specifici,ty (ending length) an.d accumcy (sample size) generally. The tradeoff can be re-

solved [Kyburg,1983] by using the narrowest reference class for which there are adequate statistics.
Roughly, this means using the narrower statistic unless the difference between it and a more general
statistic can be explained by chance error. Statistics were collected for whole words and word-ending
lengths from unity to four. (A tagger using just one letter endings can achieve a success rate of 70

per cent.) A 1 - o confidence interval was computed for each statistic (although point values were

used in the actual tagging process) and the narrowest reference term for which we had adequate
statistics was used during testing. The intuition here is to find points at which specificity is more
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valuable than accuracy, as defined by sample size. Several va^lues of o were tried; the best success

rates were obtained by always using the narrowest statistic available.

3 Studying Tag Distance

The tagged LOB corpus has 151 different tags; other taggers have between 18 and 179 different
tags, and choosing the number of tags involves a variety of linguistic and computational factors.
Maoy of the tags in the LOB corpus are similar. For example, difierent tags a,re assigned to each

form of the verb to be, each form of which occurs in similar places. The distance between two tags
t;,ti may be defined in terms of the context c6 about them:

d(t;,, t) = !1r(r;1" i - puilc*))z .

k

There are many applications of such a distance measure, including evaluating the performance of
existing taggers or providing evidence to guide the formation of tag hierarchies. This measure
was computed for all tags appearing in a 30,000 word corpus and seemed to be reasonable. The
exclamation mark was closest to a question mark, the colon closest to a semi-colon, singular article
closest to a plural article, plural noun closest to a singular noun and so on. However a few dozen

tags were closest to the adverb tag, perhaps due to the relatively little context required by general

adverbs. Increasing the training corpus to 900,000 words eliminated this to some extent.

4 Incremental Learning

The LOB corpus attaches one of 151 different possible tags to each of about one million tokens.

Orthner [Orthner, 1994] hypothesizes the the fine grain size of the tag set impairs training. He

therefore constructs a coarser set of 23 tags which is used to generate a simplifed corpus. Using
backpropagation as well as neural nets, a tagger is first trained on the coarse tags, then on the
large set. Orthner finds the tagger learns best when about equal numbers of training epochs with
both tag sets are used, resulting in the so-called U-shaped learning curve. This is being ported to
the HMM approach as follows. A battery of known techniques wiII be used to achieve the highest
possible success rate on the coarse-grained tag set. (There are two reasons to believe this. First,
in a related set of experiments, pattern recognition techniques were used to construct equivalence

classes of "similar" tags based on occurences in similar contexts. Second, similar patterns have

also been observed in the error output.) Then, tokens will be suffixed with their coarse-grained
tag, and the process will recommence with the 151 tags, effectively giving the HMM a hierarchical
strategy. Orthner used a representative training set of 34,721tokens, a neural net with a hidden
layer composed of 70 neurons. Each test involved 100 epochs, or presentations, of the corpus to the
tagger for training, and a single epoch of tagging. The 100 epochs were then divided between the
simplied and the unsimplified corpus. Preliminary results seem to suggest that the best strategy is

to spend a considerable number of epochs training on the simplified corpus before training on the
complex corpus. It appears to impair the tagger's efrciency to spend a short time on the simplified
corpus. The next phase is to use the technique on the HMM method, because the neural net models

have a narrow window of context.
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5 Sensitivity analysis

Is the success rate sensitive to the actual numerical values or is it sensitive to their rank orderings? If
the latter, it may be possible to construct qualitative tagging algorithms that avoid the calculations.

To test this, lexical probabilities were rounded off to the nearest value within small fixed subset

of probabilities. The following quantization sets were used:

.R1 = {0.125,0.25,0.375, 0.5,0.625, 0.75, 0.875, 1}
R2 = {0.0001, 0.0 1, 0.125, 0.25, 0.37 5,0.5, 0.625, 0. 75, 0.875, 1 }
.E7 = {0.00000001, 0.000001, 0.001,0.1, 0.2,0.3,0.4, 0.5, 0.6, 0.7,0.8,0.9, 1}
.Ers = {0.00001,0.001,0.5, 1}

The results appeax below.

Number of Most Frequent Words Put Back In LOB
0 3000 5000 10000 20000 30000 45000

Rt 84.0 87.4 88.8 90.1 91.1 91.5 91.8
Rz 90.8 92.9 93.6 94.4 94.9 95.1 95.3
Rz 89.7 92.t 93.0 93.9 94.6 94.8 95.0
.Ers 88.3 91.1 92.L 93.1 93.8 94.1 94.3

Figure 2: Tokens Correctly Tagged

This lets us measure the value of exact probabilistic information. On one hand, in the best
cases, it only gives up 1.2 per cent success rate. (On the other hand, it is very diffcult to get this
much accuracy using other techniques.) The quantization sets were contructed with several issues

in mind. One is expressiveness, the number of ralues in the set. As expressiveness increases, so

does accuracy. The other issue is the distribution of values near zero. An earlier set of experiments
suggested that success rate improves with the number of values close to zero.

The table above gives results of a fina.l carefully monitored set of experiments. It is surprising
how well the tagger performs given such a small set of numbers. It is interesting that adding some

very small values to R1 (giving .82) gives a dramatic improvement; in fact, .B2 consistently gives

the best performance of the four quantization sets. It makes sense that performance will increase
with expressiveness, but the role of the distribution is important. It is remarkable that .Ers, with
only four values results in as little as 1 per cent worse performance.

This suggests that the accuracy of the statistics is not as important as the rank ordering, and
opens important possibilities. For example, in [Adams & Neufeld, 1993], unseen words were tagged
by first consulting an external dictionary that gave legal tag types but contained no statistics. Some
performance improvement could be obtained by attaching numbers from one of these fixed subsets

to the list of legal tag types thus obtained.
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6 Conclusions

The hidden Markov model works well up to a certain point (say, 95 per cent) but it seems difficult
to push performance beyond that point. The ma,rginal increase in performance given extra training
corpus or vocabulary is very small. The techniques here suggest that it may be possible to achieve
success rates of close to 95 per cent without having to train on massive corpora or carry about a

massive lexicon. Not only do ending-based approaches work well, they learn quickly. To give an

exa^rnple, it was shown that using ending-based strategies on a very smali (100,000 token) training
corpus resulted in a decline in the success rate of only 3 per cent.

This work shows that there are many other techniques to exploit. For example, ma><imizing
specificity helps if many kinds of ending statistics are available and furthermore, the range of
numerical values is relatively unimportant. The work on incremental learning and tag similarities
hints at a hierarchical approach that may improve overall performance.
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