Statistical Preprocessing for
Decision Tree Induction

Sreerama K. Murthy *

Abstract

Some apparently simple numeric data sets cause significant problems
for existing decision tree induction algorithms, in that no method is able
to find a small, accurate tree, even though one exists. One source of
this difficulty is the goodness measures used to decide whether a partic-
ular node represents a good way to split the data. This paper points
out that the commonly-used goodness measures are not equipped to take
into account some patterns in numeric attribute spaces, and presents a
framework for capturing some such patterns into decision tree induction.
As a case study, it is demonstrated empirically that supervised cluster-
ing, when used as a preprocessing step, can improve the quality of both
univariate and multivariate decision trees.

1 Introduction

Decision trees have been studied widely in the statistics, pattern recognition
and machine learning literature. A typical decision tree induction algorithm
can be (roughly) sketched as follows. The input is a set S of n instances, each
instance having d attributes and belonging to one of ¢ classes. To induce the
split at a node, the space of all possible splits of S is searched (exhaustively or
using suitable heuristics) to find the best split H, which divides the set into two
subsets, L and R. (No split is induced if all instances at the current node belong
to the same class.) The search is repeated recursively on L and R. Clearly, the
criterion used to measure the goodness of a split (known as the goodness measure
or impurity measure) is important in determining the quality of the resulting
tree [1, 4, 3].

It is worth noting that several commonly used goodness measures were orig-
inally proposed for symbolic domains. The “adoption” of these measures into
numeric domains may be less than ideal [2, 8, 9], as numeric domains have their
own peculiarities. This paper argues that existing goodness measures are indeed

*Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218.
murthy@cs.jhu.edu

403

83%
Bl
o S o os
. PBE & o o

o
S

2.8
2 I

& @

Figure 1: The CB, RCB and RGC data sets

inadequate for some numeric domains, and suggests statistical preprocessing as
an effective solution. Section 2 presents some apparently simple artificial do-
mains for which several common goodness measures fail to produce good trees.
Section 3 suggests a framework in which data is processed by statistical methods
prior to tree induction. Section 4 empirically demonstrates that using cluster-
ing as a preprocessing step helps both univariate and multivariate decision tree
methods produce better trees. Section 5 concludes the paper by discussing open
issues.

2 Three Data Sets

Fig. 1 displays three synthetic, no-noise 2-D data sets, each having 2000 objects
belonging to two classes, 0 or *. The CB (checker board) data set can be
described perfectly by an axis-parallel decision tree with 8 leaves. The RCB
(rotated checkerboard) data can be described exactly by an oblique decision
tree [5] of 16 leaves. The RGC (randomly generated clusters) data consists of 20
circular clusters, and need not necessarily have a clear decision tree partitioning.
But since the generation process produced clusters, trees that separate each
cluster into a distinct region are clearly preferable.

Each of these artificial data sets has well-separated, dense, homogeneous
regions of the attribute space that call out to be separated. Now consider typical
decision trees induced on these datasets by existing tree induction methods.
Figure 2 displays the decision trees generated for the CB data by C4.5 [7], for
the RCB data by OC1 [5] and for the RGC data by C4.5. C4.5 used gain ratio
as the goodness measure and OC1 used gini index [1].

This figure shows that some otherwise successful tree induction methods have
trouble in these apparently simple domains. The source of this difficulty is that
the only information available to the goodness measures used is the distribu-
tion of object classes across the splits. However, building the ideal tree requires
knowing that there are well-defined homogeneous clusters in the attribute space.
Existing decision tree methods cannot use any such “structure” information.

404

1133
ES)
< Qj
s
Rco
g S

o= ?".i}i
e‘g 2%
Qe
gg:t?o
Qo &,

Figure 2: Trees induced on CB, RCB and RGC data by C4.5 and OC1

Some thought should convince the reader that this problem is specific to nu-
meric attribute spaces. In nominal-valued domains, attribute similarity is used
for generating the partitions and class similarity follows due to instance space
proximity. But in numeric attribute spaces, this process is reversed. Class sim-
ilarity guides the generation of decision regions and the proximity of instances
is a side effect of the divide-and-conquer process.

One solution to this problem is to augment the definition of the goodness
measures, to somehow take into account the “structure” of the examples in
addition to the class distribution. Van de Merckt [9] used this approach to define
a selection criterion that combines the proximity with class entropy. Though
this certainly is a step towards using structure, it leaves open some potential
problems.

e [9] considers only one kind of structure information, namely clusters. It is
not clear how to deal with other important kinds of structure information,
for eg. empty regions in attribute space.

e [9] uses unsupervised clustering. This approach fails when each class is
clearly multimodal, but the entire set of examples is not. (Consider, for
example, variations of fig. 1 datasets with no “space” between clusters.)

e As [9] incorporates structure information into the definition of the good-
ness measure, this information needs to be calculated once for every split
considered. This can be very expensive, especially for multivariate tree
methods [5] that consider large numbers of candidate splits.

An alternative way of incorporating structure, that overcomes the the above
problems, is presented in the next section.

3 A Framework

Given that structure information is important for constructing good decision
trees in some numeric domains, an effective strategy is to find the structure using

405

l Training Data

l

Modify Attribute/Class
istribution

Extract “Structure”

Data+Structure

Induce Decision Tree

Decision Tree 1

\
Undo Attribute/Class

Modifications

Decision Tree 2

Figure 3: Statistical Preprocessing for Decision Tree Induction

well-known statistical methods and to incorporate it into the information that
the tree induction methods can use — namely, attributes or classes. This suggests
the two-layered architecture in Fig. 3, in which tree induction is preceded by
statistical preprocessing.

The training data is first fed into the statistical “structure extraction” mod-
ule, which outputs information about patterns in the data. Patterns can in-
clude clusters, attributes ineffective in classifying objects, large empty regions
in attribute space, sudden variations in instance distribution etc. The struc-
ture information is incorporated into the training data, by adding/modifying
attributes and/or class labels. For example, if we know which subsets of in-
stances form well-separated clusters, we can change the training set by marking
each homogeneous cluster as a distinct class, to ensure that the decision tree
separates out the clusters. If it is known that there exist large “voids” or empty
spaces in the attribute space, we can generate “null” instances in these voids,
so that the decision tree is forced not to overgeneralize. Once a decision tree is
produced with the modified training data, it may be necessary to postprocess
the tree.

An advantage of the above framework is the clear separation between the
structure extraction and tree induction stages. Structure extraction methods
of varying complexity can be used in conjunction with univariate, multivariate
and/or incremental decision tree methods in this model. The complexity of the
resulting system is only a sum of the complexities of the preprocessing and tree
building stages, as opposed to a product as in [9].

The next section gives a concrete example of the framework in fig. 3.

406

4 A Concrete Example

This section illustrates that five decision tree methods (three axis-parallel and
two oblique) benefit by using Euclidean minimum spanning tree (EMST) clus-
tering as a preprocessing step, on the CB, RCB and RGC domains. Due to
space restrictions, the user is referred to [6] for a description of our clustering
method. We perform supervised clustering — all clusters are constrained to be
homogeneous.

I ran two experiments, each using three artificial data sets CB, RCB and
RGC (fig. 1). The first experiment induced decision trees in the conventional
way, i.e., with no preprocessing. In the second experiment, the data was prepro-
cessed as follows before inducing the trees. Data was clustered using supervised
EMST clustering, and each cluster was assigned to a distinct class. Trees in-
duced in the second experiment were postprocessed by restoring the class labels
of examples and, in a bottom-up traversal, removing the nodes that were split-
ting examples from the same category.

The decision tree induction programs used are C4.5 [7], CART [1], and
OC1 [5]. Both the univariate and multivariate versions of CART and OC1
were used, unless the correct bias for a data set was known. C4.5 used gain
ratio as the goodness measure, and CART and OC1 used the twoing rule. I
implemented a version of multivariate CART based on [1], with no backward
feature elimination.

Table 1 summarizes the results of both the experiments, giving classification
accuracies and tree sizes (#leaves) with and without the use of pre-processing.
Each entry lists the mean and standard deviation of ten 5-fold cross-validation
experiments. A k-fold cross validation consists of dividing the training set into
k disjoint partitions of equal size, and, for each partitions p, building a tree on
data outside p, and testing it on p. The classification accuracy on the entire
data is reported and the tree size is averaged over the & folds.

The results strongly suggest that preprocessing enables all the five methods
to get smaller, more accurate trees on these domains. For the CB data, all three
methods found the perfect tree every time, where without clustering they never
found the right tree. For the RCB data, only the oblique methods were used.
These showed a similarly dramatic improvement with clustering: in many cases
they found the minimal tree with 16 nodes. OC1 only had one non-essential
leaf node on average. For the RGC data the results were improved but not
as dramatic. This is to be expected because clusters are not the only kind of
structure present in the RGC data. In order to obtain the perfect trees for this
data, we need to use the descriptions of the “empty” regions in the attribute
space, so that each cluster is forced to belong to a distinct decision region.

It should be noted that accuracy and tree size alone may not completely
capture the quality of a decision tree in a continuous attribute space. For
example, the C4.5 tree for CB data displayed in Figures 2 is quite small and
accurate, but imposes an incorrect structure on the data. In our experiments,

407

0OC1 C4.5 CART

Data | Univariate | Multivariate Univariate | Multivariate
With No Preprocessing
CB 99.7+1.08 99.74+0.27 | 99.940.13
13.6+3.63 23.6+2.70 | 16.0+3.50
RCB 97.1+£0.76 97.0+0.46
25,7175 33.7+2.9

RGC | 98.5+0.34 | 97.4%1.55 98.8+0.21 | 98.3+1.21 | 96.6+1.64
18.1+2.87 | 17.3+2.65 26+3.54 18+1.22 17.8+2.77
With Clustering as a preprocessing step
CB 100=+0.0 100+£0.0 100+0.0
8+0.0 8+0.0 8+0.0
RCB 99.6+£0.44 99.5+0.7
17.2+1.2 21.012.53
RGC | 99.4+0.2 99.6+0.29 99.6+0.16 | 99.5+£0.21 | 99.4+0.22
17.7£1.39 | 17.2+0.45 17.1+1.89 | 17.6+1.33 | 17.3+1.2

Table 1: Effect of Preprocessing on Decision Tree Induction

after clustering information was given by preprocessing, the trees induced were
consistently identical to the original concept descriptions.

5 Conclusions

In this paper I presented a problem that many existing decision tree algorithms
seem to have with numeric data, and proposed a statistical preprocessing frame-
work as a solution. The effectiveness of this approach was illustrated using
Euclidean minimum spanning tree clustering as a preprocessing step for three
univariate and two multivariate decision tree induction methods.

Two natural next steps are the following. Firstly, all the data used in these
experiments is synthetic. The effectiveness of this approach needs to be eval-
uated on real-world data. ([9] includes some such evaluations.) Secondly, my
experiments only explored incorporating structure information into class distri-
butions. It will be interesting to incorporate structure into attributes instead.
By doing this in conjunction with feature selection, it may be possible to identify
what kinds of structure information are most useful for specific problems.

It is not yet known what other kinds of structure information besides clusters
might be beneficial for tree induction, or to what extent. One direction for future
work is to identify and quantify the kinds of useful structure information, and
then attempt to take advantage of this structure in building classifiers.

408

Acknowledgements

I thank Steven Salzberg for numerous helpful suggestions and comments.

References

[1] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Re-
gression Trees. Wadsworth International Group, 1984.

[2] U. M. Fayyad and K. B. Irani. On the handling of continuous-valued at-
tributes in decision tree generation. Machine Learning, 8(2):87-102, 1992.

[3] W. Z. Liu and A. P. White. The importance of attribute selection measures
in decision tree induction. Machine Learning, 15:25-41, 1994.

[4] J. Mingers. An empirical comparison of selection measures for decision tree
induction. Machine Learning, 3:319-342, 1989.

[5] Sreerama K. Murthy, Simon Kasif, and Steven Salzberg. A system for in-
duction of oblique decision trees. Journal of Artificial Intelligence Research,
2:1-33, August 1994.

[6] Sreerama K. Murthy and Steven Salzberg. Clustering astronomical objects
using minimum spanning trees. Technical report, Dept. of Computer Science,
Johns Hopkins University, July 1992.

[7] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, CA, 1992.

[8] Thierry Van de Merckt. NFDT: A system that learns flexible concepts
based on decision trees for numerical attributes. In Proceedings of the Ninth
International Workshop on Machine Learning, pages 322-331, 1992.

[9] Thierry Van de Merckt. Decision trees in numerical attribute spaces. In Pro-
ceedings of the 13th International Joint Conference on Artificial Intelligence,
pages 1016-1021, 1993.

409

