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Abstract, A good strategy to saoe computational time in a model-search
problem consists in endouting the search procedure with a mechanism of
logical inference, which sometimes allows an interaction model to be
accepted or rejected without resorting to the numric test. In principle, the
best inferential mechanism should based on a sound and complete
axiomatization of interaction models. We present a sound (and, probably
incompletd axiomatization which can be translated into a graphical
inference procedure working with directed acyclic graphs.

1. InEoduction
Interaction models are widely employed in analysis of categorical data [1, 8]
and in design of probabilistic expert systems [13]. The model-search
problem consists in discovering what interaction models fit a given
probability distribution that describes a certain phenomenon of interest.
Now, the evaluation of a single interaction model requires the exectrtion
of a time-consuming numeric routine (test) and, since all possible
interaction models are in nr:nber exponential in the number of variables
(for example, the number of conditional independences involvirlg n
variables is itseU equal 1s (Jn-2n+7+1)/2), their evaluation is very expensive
even for a moderate number of variables.
A strategy to save computational time consists in divising an informed
search procedure that includes an inferential mechanism which at each
step, on the basis of the knowledge of decisions taken on previously
examined models, tries to infer on logical grounds the acceptance or the
rejection of models that are still to be examined. The efficiency of an
informed search procedure for a given probability distribution may be
measured by the quantity

1 - (no. of tests executed) /(size of the search space)

Examples of informed procedures can be found in 12, 3, 5, 7,91. Of course,
the efficiency of an informed search procedure depends on the extent that
the procedure is informed of the logical properties possessed by the dass of
interaction models the search space is composed of. In the best case, the
inferential routine of an informed search procedure manages to decide the
acceptance or the rejection of the model under examination if and only if
that decision is a logical consequence of the decisions taken on models
that have been previously examined. Unfortunately, an arbitrary class of
interaction models need not be such that all the consequences of a given
set of (accepted) models from the class are derivable by using inference
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rules or, in equivalent terms, an arbitrary class of interaction models need
not admit a sound and complete axiomatization; for example, it is not
likely that the whole class of interaction models be (completely)
axiomatizable. However, binary models (i.e., of indepenences and
conditional independences) admit a sound and complete axiomatization
14,5,91.

In this paper, we present a sound set of adoms for arbitrary interaction
models from which an informed search procedure can be easily obtained.
In spite of its (probable) incompleteness, our axiom set turns out to be
complete if it works with decomposable models only, which proves that
our axiomatization is quite powerful. Moreover, we provide a graphical
translation of the axiomatization proposed: each axiom is translated into a

graphical rule on directed acyclic graphs, here called dqioation DAGs, and
a model that has not yet been examined, will be accepted without being
tested if one manages to consEuct a derivation DAG whose leaves
represent the generators of the model.

The paper is organized as follows. Section 2 contains basic definitions. In
Section 3 we present a sound axiomatization of interaction models, which
in Section 4 is translated in a graphical inference mechanism. In Section 5
we state some results which show the power of the axiomatization
proposed. Section 6 closes with some open problems.

2. Tenninology
Let the universe of discourse be defined by a finite set V of variables with
associated finite (variation) domains; a V-tuple, denoted by o, is an
element of the Cartesian product of the domains associated with the
variables in V. Letp be a probability distribution of V and S = IVL ...,VnI
(n > 1) a set covering of V; if there exist real functions y1, ..., Vn
respectively of Vt, ..., Vl such that, for all o

p@) = Vr(or) x... xVn(on),

then we say that p satisfies the (z-ary) interaction model (model, for short)
genoated by S, denoted by l{Vu..., Vr,}] or by [S], and we call the sets Vt, ...,
Vr, the generators of the model. The set of all probability distributions
satisfying a model a will be denoted by P(a); if I is a set of models, by P(>)

we denote the set of all probability distributions satisfying all models in I,
that is, P(E) = AaeE P(cr).
The unary model [{y}] will be also called the trioinl model. As tobinary
models, observe that the assumption that p satisfies the binary model [tVr,
Vz)l can be paraphrased by saying that in p the two sets Vr\Vz and Vz\Vr
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are independent given V1aV2 (if 7rnV2 = @, then V1 and V2 are
independent).
unary and binary models are special cases of decomposable models.
A model is decomposable if there is an ordering of its generators, say <v1,
...,vn), sudt that if n > 1 then for each i,2<i1n, there exists a j;<i for
which

(V1u ... u %-r) f:.Vi=VnnVi

Such an ordering of generators of [S], to be called a running-intersection
ordering, allows us to graphically represent [S] by a forest whose vertices
rePresent the generators of [S] and whose edges link the pairs of vertices
representing the pairs of sets (Vi,Vir).

Example 1. Consider the decomposable model [S] with S = IABC, ABD,
AcE, BcEl.By making use of any running-intersection ordering we can
represent tSI by the tree shown in Figure 1.

Figure t. A tree rcpresenting a decomposable model

Let S be a set covering of a nonempty subset of the universe of discourse,
which we may denote by Iz(S). Apath in S is a sequence 1Vt, ...,Vk)
(k > 1) of generators of [s] such that, if k > 1, then v1 fivi+r * @ for i = l, ...,
k-1. Let X be a subset of V. A path 1Vt,...,Vy>passes throughXrtk > 1 and
there exists an i (1 <i <k-1) such that V1 nVi+t EX; moreover, two
generators Y and Z of lSl are sryarated by X rt Y * Z andevery path <V1, ...,
V1> from Y to Z _(that is, with V1= Y and VU= Z) passes through X. Two
generators of [S] are x-nonseparable if they are not separated by X. The
relation of X-nonseparability is an equivalence relatlon on g and the
equivalence classes are called the X-components of S. The boundary of an
X-component c of s is the set V(c)nX; the set class formed by the
boundaries of the X-components of S is denoted by ?xS and called the
derioatioe of S with respect to X.

Example 2.Let s = {ADF, BcE, DE} and x = ABCDG. The X-components of
s are C1 = {ADF} and C2 = {BCE , DEI and the derivative of s with respect to
X is ExS = {AD,BCDI.
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Remark 1. Let [S] be a decomposable model and F a forest that represents
[S] according to some running-intersection ordering. If. X and X'are fwo
generators of [S] that are adjacent in F, and C is the X-component of S

containin9 X', then X n V(C) = X n X'. It follows that each set in Ex(S)\{X}
is a subset of some generator of [S] (distinct from X).

Models can be thought of logical sentences so that the relations of
implication and equivalence between models can be stated. Given a

(possibly empty) set I of models and a single model o, we say that I
(logically) implies a or, equivalently, cr is a (logical) consequence of Z,
denoted by E a oL, if P(>) is a subset of P(a). Note that a trivial model is a
consequence of any (possibly empty) set of models. Moreover, E and o are
(logically) equioalent if P(>) = P(a). Finally, the (logical) closure of L is the
set

E+ ={c:E=a};

of course, E is a subset of E+ and we say that Z is (logically) closed if E = I+ .

3. An Axiomatization of Interaction Models
Given a class of models (e.g., the class of binary models), there may exist
inference rules that describe the structure of any dosed set of models from
the class. A tlpical inference rule is one that asserts that if certain models
hold, then so must others. Such rules are called the axioms for that class of
models.
Let E be a set of models, and let a be a model. Given a set of axioms, we say

that a is derioable from E, denoted by 2 + o., if it is possible to use the
adoms on the models in I to generate o. A set of axioms is sound if E =+ cr

whenever E + o, and is complefurtL + q, whenever E + a. Since the
purpose of axioms is to describe the logical structure of a dass of models
and to correcfly infer other models implied by a given set, it is assumed
that any axiom set at least should be sound; furthermore, if it is also
complete, then we are able to infer eoery model implied by a given set. In
this paper, we are interested in sound axioms for the whole class of
interaction models since it is not very likely that they have a sound and
complete axiomatization.
Now, consider the following set of axioms A:

A1: [S] = [S u {X}],
A2 [S u {& Y}] + IS u tx}41.
A3: {[S u tX]1, tRl] = [S u Rx u ]xSl

for X E Y(S).

if each variable that belongs to
two or more generators of [R]
also belongs to X,
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where Rx denotes the dass formed by the intersections of X with
the generators of [R].

Remark Z In [10] it is proved that [S] =+ [R] if and only if each generator of
[S] is a subset of some generator of [R]. It follows thai the set c6*posed of
axioms A1 and A2 is sound and complete for determining the doJure of a
set E that is a singleton, that is, E = {a}, as well for detennining the set of
models that imply o.

On the basis of the axiomatization A, it is not difficult in principle to work
out an infermtial routine.
Suppose that we are given a probability distribution p and we want to
determine the set of all interaction models satisfied by p. We make use of
two set variables Y and N that will contain the sets of models evaluated
as they are accePted and rejected, respectively. Initially, both of them are
emPty and the test is executed on a model; so, after the first test either Y
or N is nonempty. During the execution of the searclt procedure, Y and N
will change their contents on consequence of the results of test or of the
inferential . routine. After each run of the test, we will execute the
inferential routine according to the following procedure scheme.

Case 7.: the test resulted in the accEtance of model a.
STEP 1. By applying axioms A1 and A2, deternrine {a}* (Remark 2).

srEP 2. Detennine the set E of models that can be inferred by applyrng
axiom A3 to cr, and to some model in Y (if any), that is,

E := {o: I F e Y A3(a, F} = o}.

STEP3. Set Yr= LJoex {o}* u {a}* u Y.

Case 2: the numdric routine resulted in the rejection of model a.
srEP 1. By applying axioms A1. and A2, determine the set r of models that
imply a.

STEP 2. Set N := I u N.

Now, to prove that this inference procedure works well, we have to show
the soundnesss of the axiom set A. Indeed, A can be derived from another
(mo19 general) axiom set which involves both models and "partial"
models. A partial model differs from a model in involving a subset of the
universe of discourse.
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Consider the following set of axioms A':

A0: @ +l{Xl),
A1: [S] + [S u {X}],
A2; [s u {& Y}] + [S v {)rYl].
A3': tS u {XA}l =+ [S u {X}]
A4': {[Su {x}], [R]] + [SuRu]xSl

for X E V.

for X E Y(S).

if A e Y(S).
if X = Y(R).

Notice that afom A3 of A is easily derivable from A3' and A4'. Since A'
has been proved to be sotrnd [11], also the axiom set A is sound.
After checking the soundness of A, we have to ascertain the pratical
usefulness of A, which takes much more than soundness since, for
example, an axiom set capable of inferring trivial models only, is certainly
sor.rnd but useless. As noted above (see Remark 2), the axioms A1 and A2
of A are sound and complete for inferring all the models that are implied
by a single interaction model (an informed search procedure essentially
based on A1. and A2, which may attain an efficiency also greater than 99.0
Vo, appeued in 12,3D.br Section 5, we shall prove that the axiom set A is
complete if ib use is restricted to decomposable models.

4. Derivation DAGs
In the previous section we introduced the axiom set A'. The graphical
structure we make use of to infer new models is a directed acyclic graph,
called dcrioation DAG, and show that for a given set E of (possibly partial)
models, I + a via A' if and only if there exists a derivation DAG such

that the leaves of the DAG are exactly the generators of a; thus, the task of
inferring a model reduces to that of finding a suitable DAG with leaves
the generators of the model.
Let I be a set of models. Assume without loss of generality that for each

subset X of V, the trivial model t{X}l e E. Then the derioation DAGs for 2
are defined as follows.

(0) If [S] e E and S = {Vu ...,VnL then the DAG root l/(S) and children Vl,
...,Vn is a derivation DAG for I.

(1) If a derivation DAG for I has leaves V't, ..., l/1 and X is a subset of the

variable set U1I/i, then the DAG formed by making X the child of any non-
leaf vertex, is a derivation DAG for I.

(2) If X and Y are leaves of a derivation DAG for Z, then the DAG formed
by adding XY as a child of both X and Y is a derivation DAG for E.
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(3) If a derivation DAG for E has leaves VL ...,Vn XA,and A e Vifor i =1,
..., fl, then the DAG formed by adding a vertex X as a child of XA is a
derivation DAG for X.

(4)U G, G'and G" are derivation DAGs for E such that

the leaves of G are Vt, ...,Vn,X,
the leaves of G'are the boundaries of the X-components of the set
class {Vt, ...,Vn X}, and
the leaves of G" form a set covering of X,

then the DAG formed by putting each leaf of G'distinct from X and each
leaf of G" as a child of both the leaves of G and G'representative of X, is a
derivation DAG for E.

Example 3. Let 5 = {CE, DEl, X = ABCD,R = {AC, BDI,Z= {S u {X}, R} and
q = lAC,BD,CD,CE,DEl. We prove that E + tQl by constructing a
derivation DAG for E whose leaves are the generators of [Q], that is, AC,
BD, CD, CE and DE.

STEP 1. {A DAG with lmoes the generators of tS u {X}l is constructdl
By applying rule (0) to [S u {X}], we construct the DAG G (see Figure 2)
with root ABCDE and dtildren ABC, CE and DE.

STEP 2. {A DAG with leaoes the sets composing }x(S u {X}) is constructedl
Starting from a copy of G, we consEuct the DAG G'(see Figure 2) with root
ABCDE and children ABCD and CD, obtained by applying rule (2) to the
children CE and DE of ABCDE and, hence, rule (3) to the resulting vertex
CDE.

STEP 3. {A DAG with leaoes the generators of [R] is constructedl
By applying rule (0) to [R], construct the DAG G" (see Figure 2) with root
ABCD and drildren AC and BD.

STEP 4. {A DAG with leaoes the genrators of [Q] ,s constructedl
The DAGs G, G' and G " are merged into one DAG (see Figure 3) by
applying rule (4). The resulting DAG has leaves AC,BD,CD, CE and DE,
that is, the generators of Q.
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It is important to note that parts (0)-(4) of the above definition correspond
exactly to the axioms of A'. In fact, derivation DAGs and the axioms are
equivalent, which can be proved by structural induction by distinguishing
five cases, corresponding to the five parts of the definition.

5. Decomposable models
To show the power of the axiom set A intsoduced in Section 3, we prove
that A is complete for decomposable models.

We begin by showing that A can be simplified when only decomposable
models are involved. Let us consider axiom A3. Since [S u {X}] is a
decomposable model, by Remark 1. each set in )xS is a subset of some set in
S; therefore, axiom A3 reduces to:

A3*: {[S u tE], tR]] =+ [S uRx] if eadt variable that belongs to two or
more generators of [R] also belongs to X.

We shall prove that the set of axioms A* = lA7, A2, A3*l is complete for
decomposable models.

First of all, we show that A* is complete for binary models. These models
have a sound and complete axiomatization [9] which consists of axioms
A7, A2 and the following adom:

(branching axiam) 111U, Xll, llY,Zlll + ttU,X^ y)l if Un X=2.

Now, we prove that the branching axiom is derivable from A3*. The
setYnZ is a subset of Z and, since U n X = Z,it is also a subset of X.
Therefore/ we can apply axiom A3* with R = {Y, Zl, and infer the model
with generators U, XnY and XnZ. Finally, the set XnZ is a subset of, Z and,
since UnX =2, it is also a subset of U; hence, the generator XnZ is
redundant and can be eliminated.

The next step consists in finding an expression of a decomposable model in
terms of binary models in the sense that the decomposable model be
equivalent to the set binary models appearing in the expression. At this
end, we resort to the graphical representation of decomposable models
introduced in Section 2. Without loss of generality, we limit our
considerations to decomposable models that can be represented by a tree.
Given a tree T for a decomposable model a., for each edge e of T, consider
the two subtrees T'and T" of T resulting from the deletion of the edge e

from T;Iet V'and V" be the sets of variables appearingin f'and T" (that
is,V'is the union of the generators represented in T'and analogously for

362



V"). Denote by Fr the binary model llv',V"ll, which will be referred to as

the binary model associated to edge e of T. The set B(a) = {Fe : e e E(T)} turns
out to be equivalent to c (see, for example, [12]). Notice that, by Remark 2,

each binary model in B(c) is inferable from cr using the axiomatization A
and, henc€, A*i furthermore,by recursively applying the axiom A3* we can

infer cr from B(a), as specified by the following procedure.

Input: B(cr) and a tree T representitg a

Initialization. Set ALPHA := [{V}].

Procedure.If. T contains exactly one vertex, then exi$ otherwise, choose a

Leaf o of T, set ALPHA :- A3*(ALPHA, Fe), where a is the edge incident to a,
and delete a and e from T. Repeat.

Output: ALPHA

Example 4. Consider the decomposable model cr, of Example 1 with
generators ABC, ABD, ACE and BCF, and the tree T shown in Figure 1.

The set B(cr) consists of the following three binary models

LIABD, ABCEFII IIACE, ABCDFII IIACE, ABCDFIL

Now, we prove that the equivalence of B(a) and c can be proved by using
adoms of A*. By Remark 2, A1 and A2 are sufficient to prove that a
implies each binary model in B(a); to prove that B(cr) implies c we run
the procedure above.

rNrTrALrzATrON. Set ALpFTR := [{ABCDEF}].

STEP 1. Choose the leaf ABD of T; its incident edge is e = (ABD, ABC) and
g, = I{ABD, ABCEFII. Set ALPHA := A3*(ALPHA, pe) = [{AB D, ABCEFI).
Delete the vertex ABD and the edge (ABD, ABC) from T.

STEP 2. Choose the leaf ACE of T; its incident edge is e = (ABC,ACE) and
g, = I{ACE, ABCDFII. Set ALPHA := A3*(ALPHA, Br; = [{ABD, ACE, ABCFll.
Delete the vertex ACE and the edge (ABC, ACE) from T.

STEP 3. Choose the leaf BCF of T; its incident edge is e =(ABC, BCF) and
pr=\\ABCDE, BCF)ll. Set RtpH.l := A3*(ALPHA, Fr) = I{ABD, ACE, ABC,
BCF)1.
Delete the vertex BCF and the edge (ABC, BCF) from T.
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At this point T contains one vertex, that is, ABC; the procedure terrdnates
and the final value of the variable ALpHA coincides with a.

Finally, we are able to prove that the axiom set A* is complete for
decomposable models.
Let Xu{cr} be a set of decomposable models. Let us assume that X + cr,; we
shall Prove that cr is inferable from E using the axioms A1-A3+. Consider
the set of binary models B = \Joex B(o). Since E is equivalent to B and c is
equivalent to B(cr), from E =+ a it follows that B implies each binary model
in B(a). Now, by Remark 2, B is inferable from E using axioms A1 and A2;
furthermore, since A* is complete for binary models, each binary model in
B(g) is inferable from B via A*. Finally, since cr is inferable from B(cr) using
axiom A3*, we can conclude that c is inferable from X using the axioms A1-
A3*.

6. Open Problems
After dosing, we wish to mention some open questions.

- Is A* sound for interaction models?

- Is there an algorithm that, gtven a set Eu{a} of interaction models,
allows us to decide whether c, is or is not implied by Z?

- Is the axiom set A sound for statistical hypotheses (with a given measure
of the goodness of fit)?
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