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Abstract

We describe a new method of regression closely related to the regression ideas CART
which has the following potential advantages over traditional methods: the method can

naturally be applied to very large data-sets in which only a small proportion of the pre-

dictors are useful, the resulting regression rules are more easily interpreted and applied,

and may be more accurate in application, since the rules are derived by means of a cross-

validation technique which maximizes their predictive accuracy. The system is evaluated

in an empirical study and compared to traditional regression and CART systems.

1 Introductron.

Broadly speaking, the problems of inducing rules from data are divided into two categories.

When the response or predicted variable is continuous the problem is ca^lled a regression

problem, while problems where the response is discrete (taking only one of a few possible,

usually non-ordered) vaiues are called classification problems.

There has been much work in building classifier systems that produce classification rules

that can be easiiy understood (for surveys, see [1,2] and [3]). The rules produced by these

systems take the form of simple logical predicates or if . . . then rules, rather than linear or

non-linear combinations of variables.

In regression, recent work has attempted to increase the power of available models by

taking advantage of cheaper computer horse-power, to fit more flexible models. to decrease

the influence of outliers, or to fit models which are insensitive to the distributions of the

variables but these methocls have concentrated little on improving interpretability of the

resultiug models. Interpretability is especially important in trvo settings:

o when the aim of the analysis is not only to produce rules but also to get insight into

the underiying process,

o when the rules are to be applied by people who need to understand ail aspects of its

operation. For example, when using rules for patient diagnosis, doctors must have rules

that they can understand and agree with-

In this paper w-e introduce an approach to regression that produces sets of rules which

can be easily interpreted aud are also flexible in the forms of function that they can fit. The
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rules are derived by maximizing their predictive ability and hence are robust and give good

results in practical use.

We begin with a broad description of the proposed system. Then more details of how

the system is implemented are given. The third section contains an experiment in which the

system is evaluated by comparing it to traditional regression methods on a real-world dataset.

The fourth section discusses a set of desiderata for an interpretable regression system and

the extent to which these are met by the system. The appendix discusses some of algorithms

used in organizing the computation efficiently.

2 Description of the TSIR (Tree Structured Interpretable
Regression) system

2.1 The tree building Process

The idea of the TSIR system is to build a model which is a tree, but some nodes in the tree

have only one child. At these nodes the data are not split, but residuals are taken from a
single variable regression.

At each stage, aII possible regression and split steps are considered and the one with
highest value is picked. The split or regressor is checked for signiJicance and if it is not the

execution terminates for the current branch and a leaf node is created.

If a regressor is chosen, then the residuals from the regressor are taken and the computa-

tion is continued recursively.

ff a split is chosen, the data are split accordingly and the computation continues recur-

sively on each split group.
At a leaf node the median of the response values of the observations that reached the leaf

is used as the predictor.
Figure 1 is a simplified example of the output of the system in a heart-disease domain.

At A the median of the response variable is given. B shows an example of a rule with a
continuous regressor, C shows and example of a split, and D is an example of a discrete

regressor. E is aleaf.

2.2 Comparison to CART

The system is a similar in concept to recursive partitioning systems such as CARI [+] and

uses predictive maximization techniques similar to those used in the PVM system[S]. The

main differences between the CART system and the TSIR system are that'in CART each case

which arrives at a leaf of the tree is given the same predicted value. This throws away a lot of
information about the case. In the TSIR system, all the relevant information is used to make

the prediction. CARI only has split steps, whereas the trees produced by the TSIR system

have split steps, which split the data as in regression trees and regression steps, where each

regression step adds one variabie and its coefrcient to an incrementally growing model. This

means that each leaf of the TSIR tree corresponds to a multivariate linear regression. The

final difference is that split and regression steps are chosen on the basis of their predictive

power by cross validation rather than by maximizing a local criterion-

2.3 The four types of steps

The four possible types of steps are:
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The basc risk is 507o

For each year over 20 dd 7l?Vo

Split on Gender

Ifr
For each exccrcise acrivitY

per week subtract 47o

Md29o

If Female

I
I

{
For every ten cigarettes smoked

per dzy add2%o

If:

No parents had hcart discase subtract 5%

One parent had heart disease add 57o

Both parens had heafl disease dd lO9o

Subtract 37o

Figure 1: Example of a TSIR tree for probability of heart disease

1. Numerical Sptit The data are split into two sets on the basis of a threshold value for

a numeric variable. The form of the split is z <= a.

2. Discrete Split The data are split into two sets using a discrete variable. The form of

the split rules is t e A where A is a subset of the possible values of c.

3. Numerical Residual An .tr line is found and the residuals of the response are taken

from the line. The new values of the response ate y'; = Y; - (a * bt;)' In this case there

is no split.

4. Discrete Residual The medians of the response are found for each possible value of the

predictor and these medians are subtracted from the response: yl = Ui - rned.ians(r;).

3 The split and regression statistics

Four new statistics are introduced to choose between regressions and splits, each correspond-

ing to one type of step. They are comparable, since all measure the reduction in cross-

validated predicted variance.

3.1 The predictive correlation for regression stePs

The data consists of a ncases, indexed from 1...n. Each case consists of a set of measured

variables and a continuous response variable. The measured variables may be discrete or

continuous.
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We will use capital letters, to indicate vectors of values, or all values of a particular

variable, and small letters to indicate scalars. To indicate subsets of vectors, we use the

notation Xqo to indicate all values in X that are less than a, and similarly for other relational
operators. If s is a set of indices, then X" refers to the values in X corresponding to those

indices. In either of the previous two cases, if we surround the subscript with 0's then we

mean all values of the vector except those that are referred to by the subscript. For example,

X<o = X17o).
Since the system uses an extensive search for good descriptors, it is important to guard

against the possibility of spurious fiiting of noise. The method used to do this to evaluate all
poteotial descriptors in terms of their predictive ability by cross validation.

We define a cross-validation partition V = {'q...ro},where each o; is a set of indices,

as a k partition of a random permutation of the indices L...n, such that lr;l = lnlk] tor
1 < i < lc and urc contains the remaining indices.

The predictive correlation z'(X. Y) is a measure of the ability of variable X to predict Y.
The variable X may be a continuous or discrete variable and Y is the continuous response

variable. For each set in the cross-validation partition a predictor is calculated, based only

on the cases not in the set, and the predictor is then used to predict the values, for the cases

in the set. As an analog of traditional correlation, predictive correlation is defined as follows.

n(x.Y) =, - D'ev-E;e' l8(xl'l'Il't':;) - v'l where- t?=rlY; - median(Y)l
R(X,Y,o) <+ The predicted value at c based on the predictor of Y on X

The value of. r(X,Y) is bounded above by one, but may be less than zero if -B performs

worse than the median as a predictor.
The form of the function .R depends on whether X is a numeric or discrete variable. If

X is numeric then Ris the prediction based on the.t1 regressionr of Y on X. Ha and 6 are

the coeffrcients of this regression then R(X,Y,t)= a*br. If X is discrete then let X(r') be

the set of indices of X whose value is c', then we define

R(X,Y, x') = m,edian(Yy 6,1).

3.2 The predictive correlation for split steps

W'e also define split correlation o(X, Y). The definition of o(X,Y) where the response variable

is Y again depends on the type of X.
If X is continuous, then let t/" be the set of values at midpoints between adjacent values

of X. We define the oalue of the split on the continuous variable X as

v(x,Y) = P,A D
L.E=, 

lv - media'((Yt'l)s')l * 
,.8,, 

lv - med'ia'ttvt'l)'")l]

If X is discrete, then let ^9x be the set of possible values that X can take on. Now for a
subset s C ^9x let X(s) be the set of indices of values of X in s. Then the split value is

o€V

v(x,Y)= ftl8 L.
E ly-mediaz((Yr,l).xt"t)l+ t ly -med,i,an((Y1,1)1x1"11)l
(Y,)xt"i u€(%)1261,.yy

l.t1 regression minimizes the sum of the absolute deviations of the points from the fitted line.
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Using the appropriate version of V(X,Y) we define

o(X,Y) = 1 -
v(x, y)

Di=rlU; - med.ian(Y)l

At each step. we pick the best of the four possible steps by picking the step that maximizes

the predictive correlation. The procedure terminates when no step yields a significant corre-

Iation. The various forms of the predictive correlation are nor amenable to analytic derivation

of their d.istributions so a large simulation study was run to determine the thresholds of the

predictive correlations under various scenarios.

3.3 Description of the exPeriment

Four experiments v/ere run to evaluate the distribution of the various forms of the predictive

correlation. In each experiment the predictive correlation was evaluated under a wide range of

parameters where there was in fact no relationship between the predictors and the response-

These values were then used to get a null distribution of the predictive correlation and the

9i,th percentile of this distribution is used in the system to determine whether a predictive

correlation value is significant or not.
To eyaluate the predictive correlation for numeric splits and numeric regression steps,

random datasets were generated with sizes from 100 to 10000 and at each size 1000 datasets

were generated. Also, three different distributions (normal, uniform and exponential) were

used at each size. There was no difference in the distributions of the predictive correlation

for the three distribution, but the value of the 95'th percentile does decrease as the size of

the dataset increases.

For discrete splits and regression steps, the number of categories is introduced as a fur-

ther parameter. Datasets were generated with two five and ten categories and r"arying the

proportion of cases in the dominant category from 0.1 to 0.9, and again taking sizes between

fOU and 10000. The number of datasets at each size was also 1000. The distributions of

the g5'th percentile were again remarkably similar and also similar to the distributions for

numeric splits and regression.
To simplify the system, it was decided to use a single distribution function which was

similar to all the distributions derived in the experiments. The 95'th percentiles of this

function are shown on a log-log scale in figure 2- 
___,

4 Empirical Evaluation ,'

Figure 3 shows an actual TSIR tree built from the Boston housing d.ataset [6]. This display

format allows for more interpretation and diagnosis than the simpler format used in Figure

1. The response rariable is the median cost of homes in areas around Boston- There are

thirteen predictors. This dataset does contain one categorical variable but is does not apPear

in the final tree. The tree contains nine nodes including four leaves. The root node is a linear

regression step in which a clear downward trend based on LSTAT (the percentage of lower

stitus of the population). The next node is a split on the number of room in the house.

Areas were the mean is fewer than seven rooms go left. The large majority of areas fit into

this category and no further steps were found to be significant. Of those that went right

another significant split is found at about 7.5 rooms. The areas with the larger houses then

have no further steps. Those in the intermediate category have another numeric regression

step (on property tax) followed by a final split on pupil-teacher ratio.
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Figure 2: The function used to check the signiflcance of steps

The TSIR method was also evaluated in a small test where 415 of the observation were

used in a training set and 91 were held back as a test set. These data were also used to build

a linear model and a CARI model. In the linear model ten of the predictors were significant

and the total sum of absolute residuals on the hold-back set of 278.643 The CARI model

contained 43 nodes but achieved a sum of absolute deviation of. 277.2L. The TSIR model

with only nine node achieved a sum of absolute residuals of 276.13, marginally beating the

other two, in terms of absolute residual, with a more interpretable model'

5 Desiderata for an interpretable regression system

In this section, we give a set of desirable attributes for an interpretable regression system

and discuss to what extent eagh one is met by TSIR.

An interpretable regression system should: l

o maximize performance in terms of predictive ability. We attempt to do this by choosing

each step to maximize performance in terms of prediction rather than explanation.

o give all rules on untransformed variables. This aids users of systems to interpret the

results.

o give indication of variable importance. The TSIR system can output the best pre-

di.tirr" correlation for each variable at each step, giving an indication of the variables

importance.

o give rules that can be interpreted piecewise (or locally). The power of tree models, like

all hierarchies, is that they allow the mind to concentrate on small parts of the model

$lm
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NoE:318 L.d

lSbs:7 Leal

Nob$ 387 Vat: LSTAT Fcorr 0297

I
Nobs: 387 Van BM Rcorr:0.0835

tttoE lE Van TAX Rcor: 02809

N6s: 18 Van PTRATIO Rco]r: 02196

!t;

l.lobs: 3{, Vat: BM Rcort:0.3522

Nobs:21 Laal

Nobs:11 Leat

".1

'1

J

Figure 3: Output for the Boston dataset
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without too much though for what happens in other parts of the tree. This allows them
to be interpreted more easily.

. cope with large datasets. Since each step takes O(mnlogn) time, where n is the number
of cases and rn the number of variables, the TSIR system is quite efrcient and can be
used on large datasets.

. cope with missing values. The fact that each variable is dealt with individually me:Lns

that only those cases which are missing on a the variable need be omitted.

. cope with redundant variables. Since each variable is dealt with individually redundant
variables are no problem except for in the increased computational cost.

. cope with variables that are linearly related. The numeric regression steps add power
to the original CART formulation.

6 f\rrther Directions

There is a need for more empirical evaluation. The current method of using a stopping rule
rather than building a large tree and then pruning back as is done in CART needs to be
r+.evaluated.

7 Acknowledgements

The boston dataset was copied from the Statlib archive. The reimplimentation of the regres-

sion part of CART is by Terry Therneau and is also available from lib.stat.cmu.ed.u.

A Algorithmic speedups

A.1 Updating medians

For each categorical variable X, we need to maintain the set of medians of the response
rrariable for each element of .9x, the set of possible values for X. If the values associated with
each element of ^9y are stored in a balanced binary tree then the median can be obtained in
O(logz) time and each insert and delete can also be achieved in O(logz) time. This means

that if we consider a k-way cross-validation, the initial trees can be set up'in O(zlogn) time
and each subsequent partition cost O((nlogn)lk) giving a total cost of O(nlogn), compared
with O(krllogz) for a naive implementation.

A.2 Saving sorting information

When evaluating potential splits on numeric variabies, it is necessary that the variable be

sorted first. This need oniy be done once in the beginning, and the sorting information can
be saved across splits as follows. Assume the sort order for variable X is Oy, i.e. the i'th
element in sorted order of X is X[O;r[f]]. Now assume we are splitting on another variable
Z, and. the set of indeces which go left is .I1, and the indeces which go right is Ip, then we

have two new subsets of the X's Xp - Xlldand Xp - Xllal. To get sort order of Xs,, we

need a function that for each element c of X1, returns its position in Xy,. This function can
be computed in linear time. Let this function which returns the index of o in X p be lilr),
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seQ=Q
forf -- lton

if oxli) e L
seQ=seq+1
OTlseq) = Iilr;)

Figure 4: Finding the sort order after a sPlit

then we apply the following algorithm: After this aigorithm has completed, O; will contain

the correct sort order for Xy. The algorithm clearly runs in O(z) time so the sort orders can

be maintained with minimal cost.

A.3 Calculating the optimal LAD splits

To calculate the optimal LAD split we must find the index such the following is minimized:

gl\

*irI ly; - med,ian(w...g,)l + I lrt - median\v.,+r "'9,)ls?

W-e would ,-": avoid taking the ,o *"*Jl;[citly, since the naive method of doing

this would cost o(n2loga) or even using the linear median algorithm, o("').
We need to be able to update the running median as each new point is added. The basic

idea is to maintain two sets of points, those above the current median and those below, then

there is a little bit of book keeping when points migrate from one set to the other- This

can be achieved by keeping the two sets in balanced binary trees, then the inserts, deletions

of smallest or largest can all be done in O(logz) time leading to a total time of O(zlogn).
The following algorithm implements this idea and makes sure that all book keeping is done

correctly. The main idea of the algorithm is to make sure that the sizes of the aboae arrd belout

sets never differ by more than one. The values of ra and rb maintain the sum of residuals

above and below the current median. These are aLso updated as each point is inserted in

constant time, so that the total cost of finding the running medians as well as the sum of

absolute residuals is still O(alogz). The details of the algorithm are given in Figure 5.

This function gives the running medians in the forward direction. The medians in the

backward direction can be obtained simply by reversing the data.

The function current-rned,(abooe,below)returns the current median as either the smallest

of the above group, the largest of the belou- group, or the midpoint between them depending

on the relative sizes of the two grouPs.

L.4 Updating LAD line fits

We use LAD line-fitting algorithm presented on page 543 of [7]. This method starts by finding

a least squares fit to use as an initial guess then iteratively improves on these estimates to

find the LAD line. This process can be improved by using the fit from the previous dataset.

Since each consecutive pair of datasets shares 8/9'ths of their data, the initial guess will be

a more useful starting point than the least-squares fit-
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below.i,nsert(y[0]) assuming V[0] < "t[t]
aboae.i,nsert(y[1])
m - (y[1]-y[0])/2
rb=m
forf :2ton

old, = curttnt
switched = 0
n-aboxe = abt:e.si:e()
n-belou = belou.si:e( )
u = y[i]
min-above = mint;al( afuitte)

mar-below - manal( klow)
if u ) min-abote

abue .insert(u)
if n-aboue > n-belou

abore.del-min( )
belo w. i,ns ert ( mi n -abot; e )
switched = I

cunt nt = e.urrt nt -med ( aboue. belou )
rfl = m + (n-aborc-.*a'itche.d) * (old - currtnt)
7$ = rb + n-belou' * (current - old)
m=ro,*v-cuntnt
if suitched

ra = na - (min-abtte - okl)
7S = rb * (cumnt - min-abot:e)

elseif cl mar-belou'
Do the same as above reversing all and inserting in below

else nerv value is betrveen.

if n-abote < n-belour insert !n aborc
ab"*e.insert(r)
eurrent = currt nt -rnerl ( abooe. belott )
ta = tn + n-abote * lohl - cunent)
7$ = rb + n-belou'* (ew're:nl.- okl)
rfl=m*r-cunent

else
Do the same as above reversin3 all and inserting in belou,

Figure 5: Finding the running median and sums of absolute deviations
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