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Abstract. Gaussian belief functions are represented in
both variable space and configuration space. Their
combinations are defined in terms of the Dempster's
rule, sweep operators, and restrictions in configuration
space. The equivalence of the alternative definitions is
proved. The computation of Gaussian belief functions
is shown to follow the Shafer-Shenoy axioms.

INTRODUCTION

Dempster (1990a, b) has shown how the Kalman filter
can be understood in terms of the theory of belief func-
tions. As Dempster shows, the equations and Gaussian
probability distributions that are combined in the
Kalman filter can be regarded as belief functions, and
the recursion involved in the filter can be regarded as a
special case of the recursion involved in the computa-
tion of belief-function marginals in join trees.

Dempster sketches how join-tree computation
works for belief functions in general. There is some
work yet to be done, however, in justifying this compu-
tation rigorously in the case of Gaussian belief func-
tions. The rigorous work in this area (Kong 1986;
Shafer et al. 1987; Shenoy and Shafer 1990) applies to
finite and to condensable belief functions, but not to
Gaussian belief functions, which are usually continuous
but not condensable. Presumably the justification for
the finite case can be extended to a justification for the
continuous case by a straightforward limiting argument,
but this has not been done to date. Dempster's descrip-
tion of Gaussian belief functions in geometric terms
suggests that we take a different tack. We should be
able to justify the join-tree computation by showing di-
rectly from this geometric description that the opera-
tions of combination of marginalization satisfy the ax-
ioms of Shenoy and Shafer (1990).

Dempster (1990b) defined the notion of Gaussian
belief functions and speculated the possibility of their
local computations. Shafer (1992) defined the concept
in more rigorous mathematical forms by elaborating on
Dempster's idea and left many “open” but important
questions about the equivalence of various definitions
and the possibility of local computations. The intent of
this article is to provide proofs for the Dempster’s
speculations that answer some of the Shafer’s “open”
questions. In particular, this article attempts to under-
stand the relationships among various concepts of
Gaussian belief functions and explore whether the local
computation scheme works for Gaussian belief func-
tions.

An outline of this paper is as follows. Gaussian be-
lief functions are represented respectively in variable

and configuration space in Sections 2 and 3.
Combination is defined in terms of the Dempster-Shafer
rule and equivalently represented in terms of sweep op-
erators and restrictions in configuration space respec-
tively in Sections 4 to 6. In Section 7 we prove the pos-
sibility of local computation by showing that the com-
putation of Gaussian belief functions follows the
Shafer-Shenoy axioms. We refer readers to Liu [1993]
for notations and formulas for computing the combina-
tion of Gaussian belief functions and Proofs of all re-
sults in the paper.

REPRESENTATION IN VARIABLE SPACE
Suppose U is a random variable space (Dempster 1969)
— a finite dimensional vector space whose elements are
random variables. A Gaussian belief function (Shafer
1992) on U is a quintuplet (C, B, L, &, E), where C, B,
and L are nested subspaces of U,

CcBcl b,
= is a wide sense inner product on B with C as its null
space, and E is a linear functional on B. We call C the
certainty space, B the belief space, L the label space, ©
the covariance, and E the expectation.

For ease of understanding above terms, we use the
coordinate representation of a Gaussian belief function.
Assume V7, ..., Vy, is a basis for U such that Vy, ..., V¢
is a basis for C, V1, ..., V¢, Vs, Vp is a basis for B,
and Vy, ..., V¢, Vet ts -oos Vb Vb1, -, V7 iS a basis for
L. Let p; denote the mean of Vj (i=1, 2, ..., b). For any
V = (v1,...,vp) €B, define the mean of V as E(V) = vij;
+ ... + VpHp. Let Z;; denote the covariance between
Vesi and Veaj G, j= 1,2, .., bc). For V1 = (v1,..,
vln), V2= (v21,...,v2n) in B, define their covariance as

2V, V2 = (vleit, o VI S Vst VE0)T
where X = (zij )(b—-c)X(b-—c) is a covariance matrix.
Then E(-) is a linear functional on B and n(-,-) is a wider
sense inner product on B with C as its null space:
mvL,v2)=0ifvlervZe C.

The expectation E and the covariance © define a
Gaussian distribution for the variables in B by giving
their means and covariances. This Gaussian distribution
is regarded as a full expression of our beliefs, based on
a given body of evidence, about the variables in L; this
item of evidence justifies no beliefs about variables in L
going beyond what is implied by the beliefs about the
variables in B. (The evidence might justify some further
beliefs about variables in U that are not in L, but these
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are outside the conversation so far as a belief function
with label L is concerned.) The Gaussian distribution
assigns zero variances to the variables in C; if V is in C,
we are certain that V takes the value E(V) with cer-
tainty. It assigns non-zero variances to variables in B
that are not in C. Actually, the covariance = is defined
over a subspace F in B, where F&C = B. We call F the
uncertainty space. Vc¢41, ...,Vp is a basis for F.
Equivalently, a Gaussian belief function can be repre-
sented by a quintuplet (C, F, L, &, E). In this paper we
will use (C, B, L, =, E) and (C, F, L, &, E) interchange-
ably to represent a Gaussian belief function.

We will sometimes choose a linear functional t on
U that agrees with E on C. (This means that t(V)=E(V)
for every variable V in C; t is allowed to disagree with
E on variables in B that are not in C, and t must also as-
sign values to variables in U that are not in C.) When
such a linear functional t has been chosen, we say that
the Gaussian belief function is marked, and we call t its
mark. We write (C, B, L, x, E,t)or (C,F, L, «, E, t) for
a marked Gaussian belief function.

REPRESENTATION

IN CONFIGURATION SPACE
Let S denote the dual space for U--the space of all lin-
ear functionals on U, and Sy, ..., Sy be its basis dual to
Vi, ..., Vp. A point X = (X1,...,Xp) in § can be consid-
ered both as a linear functional such that X(V;) =x; (i=
1, 2,..., n) and a vector value taken by random vector
(V1,...,Vp). In the latter sense, X is a point in the sample
space of random variables V7, ..., Vp, and therefore is
called a configuration. A probability distribution func-
tion is usually defined in space S.

Let S; be the dual kernel of C, i.e., the subspace of
§ consisting of all configurations which map all the
variables in C to the value zero. That is, S3 = {(x1,....Xp)
I X1 = ... = xc = 0}; let S1 be the dual kernel of B, i.e.,
S1= {(X1,....Xp) | X1 = ... = xp = 0}; let Sg be the dual
kemel of L, i.e., So = {(X1,....Xp) | X1 = ... =x7=0}. Let
E be a hyperplane in § consisting of all the linear func-
tionals on U that agrees with E on B, i.e., in terms of
coordinates,

E = {(X1,0.0Xp) | X1 = fy, oo Xp = P}
Obviously, we have the nested relationships S,2812
So, where Sl is parallel to E.

Let p be the dual of &, a wide sense inner product
on S with null space S1. For any

X =(0,0,-:0 0,58 1o X3 05 e X )
.G LY I L, C .

in Sy, its coordinate representation is as follows:
pxI XD =Gl 2l s xb) £
(x(2:+1,x§+2,...,x%)T

and 4 5
1v2, /20 X andX“€eS;
ek ){=o x! or X2es;

Recall that a mark t for (C, B, L, &, E) is any linear
functional on U that agrees with E on C, and so is a con-
figuration in space S. Let C*, B*, and L* denote the hy-
perplanes which contain t and are respectively parallel
to the space S,, S; and S,. Using coordinates, we repre-
sent these hyperplanes as follows: C* = {(x1,...,xp) | X1
=Ky e Xb = Be )y B* = {(X1,eeXp) | X1 =My, oy Xp =
,‘I'C’ Xc+l = t(vc+l), ey Xp = t(Vb)}, L* = {(XI, %59 xn) !
X1 =H1s wees Xp = Hey X4l = t(Ves1)s - xp= U(Vp}. It
follows that L*cB*cC*, ECC* and E and B* are paral-
lel in C*,

Notice that the probability distribution of a
Gaussian belief function is defined on C* while C* is
not a subspace. It is necessary to introduce operations
for an inner product on C*. For any h, h;, h, € C*, and
any real number a, define

h1$h2 = (hl -+ (h2 -+t (¢))

a®h=ach-t)+t )

It is easy to verify that ®, ® are closed operations on C*.

For hy, hy € C*, h;-t, hy- t€ Sy, p is a wide sense
inner product on S,. Thus, it is reasonable to define

N*(hl, h2) = p(hl -t h2 -t 3)

Lemma 1. w*(hj, hy) is a wide sense inner product
on C* with operations ®, ®, and the null hyperplane B*.

Lemma 2. The functional g(-) is linear on C* with
operations ® and ® and takes the zero-value on B* iff
there exists a matrix A such that

gh)=A(xc+1 - t(Ves)s - Xp- (VD) @)
where h = (i1, . Mo Xels < Xn) € E%

For any given hye C*, *(ho, h) is a linear func-
tional on C* with null hyperplane B*. Define

H(r*(-,-)) = {hg € C* I mw*(hy, h) is an invariant

linear functional of h on C*} 5)
Then, Lemma 2 implies that H(w*(:,-)) contains those
configurations h,, of C* such that (x__ ,, ..., X;,) is a con-

stant if hy = (U, ..., W, Xy q» - Xp)- Hence, H(mx(:,-))
is a hyperplane in C*, which is parallel to B* and
whose location is specified by the constant vector
(X 415++-Xp)- In general, for any linear functional g(-) in
the form (4),

H(EO) = (Bg= (41, - Mo Xesls - Xn) |

(Xc+1 - tVes1), - Xb-UVp)) = AZ} (6)
is a hyperplane parallel to B* in C*. Therefore, we have

Lemma 3. Any linear functional on C* with null
hyperplane B* specifies a hyperplane parallel to B* in
C*, whose location is determined by (6).

On the other hand, for any hyperplane H parallel to
B* in C*, (x_,,---Xp,) is a constant vector for any hy =

(11, . Hes Xc41s - Xn)€ H. Thus, for hy e H,
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n*(hg,h) is a linear functional on C* with the null B*
and is denoted by H*(h). Since the covariance matrix Y,
has a full rank, a hyperplane parallel to B* and a linear
functional in the form (4) are in a one-to-one corre-
spondence. As a corollary, noticing that E is a hyper-
plane parallel to B* in C*, we have

Theorem 1. Hyperplane E and the linear functional
E*(h)=1c*(h0,h) (hoe E, he C¥*) are mutually and
uniquely determined.

So we arrive at the representation (C*, t, B*, L*,
n*, E¥) for a marked Gaussian belief function. We
write t before B*, L*, n*, and E* because all these ob-
jects depend on the choice of t. Intuitively, (C*, t, B*,
L*, n*, E¥) expresses beliefs about which element of $
is the true configuration of our variables. We are cer-
tain that the true configuration is in the hyperplane C*
(the certainty hyperplane). Within C*, our belief is dis-
tributed over ellipsoidal cylinders around a smaller di-
mensional hyperplane E (the expectation hyperplane)
parallel to B*. The wide sense inner product n* (the
concentration inner product) specifies the shape, scale,
and direction of the ellipsoidal cylinders, and the linear
functional E* (the location functional) specifies E by
giving its inner product with every other hyperplane
parallel to B* within C*. We call B* the no-opinion-
expressed space, since the Gaussian belief function does
not express any opinions about where the true configu-
ration is along its coordinates. Similarly, we call L* the
no-opinion-allowed space, since the Gaussian belief
function, so long as it has the label L, is not allowed to
express any opinions about where the true configuration
is along its coordinates.
Figure 1. The Gaussian Belief Function in Example 1

E c*
t@_ —u;— > X2
/ /
Y
N

X1 fva(x2)
Example 1. If c=1, b = [ = 2, then the hyperplanes in S
are respectively C* = {(x1,x,x3) | x1 = i }, B* = {(x1,
x2, X3) | X1 = Wy, X2 = (V2)}, L* = ¢, E = {(x1, X, X3)
I x1 = Wy, X2 = Hy}. The marked Gaussian belief func-
tion can be shown by Fig. 1, where fV2(x2) isa
Gaussian probability distribution function for V.

COMBINATION BY DEMPSTER'S RULE
Assume any two Gaussian belief functions Bel] and
Belp whose representations in variable space are
Bel, =(C;, Fy, Ly, nl, ED) )
where, Cl = {§0, §1, Xl}’ Fl = {Xz, X3, X4},

El€g) =4, E1&) = Ay, E1Xy) = pj, E1(X, X3, X) =
(TRATRTIL R 2 OH S R

21 =) ' = covX;, X)) (,§=2,3,4).

Bel, = (Cy, Fy, Ly, n%, E?) ®)

where C2= {&o, &2, X2}, Fy= {Xl, X3, X5},

E2(¢g) = Ag. EX€p) = Ay, EX(Xp) = I, EX(X 1, X3, X5) =
mlzv uszs u52)v n2("')=' 22 'T,

32 =), 557 = cov(X;, X)) G,j=1,3,5).

Figure 2. Combination of Bel; and Bely

(o

X

B1 B2

Without loss of generality, we assume that Bel] and
Bely share a common certainty subspace &g and a
common uncertainty subspace X3. Bel; is certain but
Belj is uncertain about Xj; Bel is certain but Belj is
uncertain about X3. Bel; is certain about &1 and is un-
certain about X4, but Bel has no opinion about £; and
X4. Similarly, Bely is certain about & and is uncertain
about X5, but Bel; has no opinion about &3 and Xs. The
variables involved in these two belief functions is
shown in Fig. 2. Notice that in (7), (8) and Fig. 2, we do
not represent L and L, explicitly. We also assume
Bel; and Bel, have the same belief about the mean
value of C;n C,, i.e,, &o. The notations appearing in
Fig. 2 represent either variable spaces or the basis vec-
tors of the variable spaces.

According to the Dempster's rule (Shafer 1976), the
combination of the two belief functions is to pool all in-
formation of Bel; and Bel, together through the follow-
ing procedures to obtain a combined belief function Bel
=(C,B,L,m,E):

(1)Bel accepts all certain information from both
Bel; and Bely: C=C® Cy;

(2)Calculate conditional probabilities given C;
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(3)Calculate combined probabilities for common
uncertain focal elements F{NF, using the Dempster-
Shafer rule;

(4)Pool all above information including that ac-
cepted as certainty, changed conditionally, and com-
bined by the Dempster’s rule.

Procedure (4) implies that the belief space B of the
combination is B;®B,, and that the label space L is L
@ L,. The uncertainty space of Bel; ®Bel, is F, where
F®C = B. Notice that F;®F, # F. In the following, we
focus on the problem of how to get the pooled © and E
for Bel.

For any positive definite nxn matrix ¥ and n-di-
mensional vectors x and y, let

S 1 1 2
f(x, Z, YF(21I: )n/2|2| 1 lzcxp{-i(x-y)z‘, l(x-y)T}.

Observe that f(x, X, y) is actually a multivariate
Gaussian distribution function with variable x, mean y
and covariance matrix Y.

In Gaussian belief function Bel;, the belief on the
uncertainty space F; is represented by the Gaussian
probability function of (Xp, X3, X,) with mean (1,
u31, p.41) and covariance X1, i.e.,

P} X X3,X4(X2> X3, X4)

= f1(xg, X3, X0, T, (s 1s ', g )

Similarly, Bel, expresses the belief about F3 by the
Gaussian distribution of (X;, X3, Xs), which has the
mean (plz, u32, u52) and the covariance matrix X, i.e.,

P2.X1,X3,X5(1> X3, X5)

= fl(xy X3, %5), 2, (% 12, 1))

Since X, and X are both in the combined certainty
space C, we are certain about both X, and X;. Accord-
ing to procedure (1), it follows that

PX;=u)=PXy=y)=1.
Given X; = H; and X, = l15, we can compute condi-
tional beliefs Pl,X3|X2=|.12(x3) and P2,X3IX1=|,11("3)
about X3 respectively in Bel; and Bely. Since X3 is the
common uncertain focal element for Bel; and Bel,, we
then use the Dempster-Shafer rule to combine

Py X31Xp=pp(%3) and Py x5xt;—; (x3)
to get the pooled belief about X5:

Px3(x3)=P1 X31X,=17(*3)®P2 X1 =1 (3)

P1.X31X2=u2(x3)P2.X3D(1=p1(x3) ©

ﬂ[ﬁx3|x2=u2(x3)P2.x3lx1=u1(X3)dX3

The rule ® in (9) is the extension of the Dempster-
Shafer rule (Shafer 1976) for continuous belief func-
tions. Note that in this section we use P1 and P; to de-
note a distribution respectively in Bel; and Belj and P

to denote a distribution in the combined belief function
Bel.

Lemma 4. The pooled belief about X3 is a multi-
variate Gaussian distribution. Assume its mean vector is
a3 and covariance matrix is 63. Then,

PX3(X3) = f(X3, O3, 8.3).

Given X, = [, and X3 = X3, the conditional distri-
bution of X4 is Gaussian. Assume its covariance matrix
is 64 and its regression coefficients against x3 are a4
and bg. Then we have

Pl’x4|x2=p’2’x3=x3(X4) = f(X4, Oy, a4+x3b4T). (10)
Similarly, the conditional distribution of X5 given X =
K; and X3 = x3 is Gaussian. Assume its covariance

matrix is 05 and its regression coefficients against x3
are a5 and bs. The

P2 XsIX; =1y Xa=xa(Xs) = fXs, Os, as+x3bs)). (1)

Now we come to the pooling of all pieces of belief.
Since X4 and X are conditionally independent given
X3, the pooled belief about X3, X4 and X5 can be
shown as follows:

PX3,X4,X5(X3’X4’X5) = PX3(x3)
P1XgX=p. X3=x3*4) P2 Xs1X =1 X3=x3(X5)

Let Q denote the covariance matrix of X3, X4 and
Xs. Then

O3 O3b," o35

Lemma 5. Py, %, x5(X3, X4, X5) = fl(x3, X4, X5),

Q, (33, a4 + a3b4T, 35 + a3b5T)].

Note that the formulas for computing a3, a4, b4, as,
bs, 03,04, and 05 in Lemmas 4 and 5 and the equations
(10) and (11) can be found in Liu [1993].

So we arrive at the conclusion about the combina-
tion of Bel; and Bely: Bel = Bel; ©Bely:

Theorem 2. The combination of the two Gaussian
belief functions (7) and (8) is as follows:

Bel = Bel;®Bel,=(C,B,L,t.E) 12)
where, C=C;®C,, B=B{®B,, F={X3,X4,X5},L =L,
®L,, E€g) = A, E(€1) =2y, E€p) = Ay, EX ) =1y,

E(Xp) = iy, E(X3) = a5, E(X;) = 3, + a0, |, E(Xs) =
ag+ a3b5T, n()= L1

COMBINATION IN TERMS
OF SWEEP OPERATORS
The representation of Bel in Theorem 2 is very compli-
cated. The relationships among E, , =!, El, n2, and E2
have no closed forms. However, Theorem 2 will serve
as a reference for more refined definitions. In this sec-
tion, we will use sweep operators to represent combina-
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tion in variable space. Sweep operations were initially
defined for positive definite matrices (Dempster 1969).
Dempster (1990b) used the same operations to obtain
the potential form (Lauritzen and Spiegelhalter 1988) of
the representation matrix for a Gaussian distribution,
which is an extended matrix consisting of a mean vector
and a covariance matrix. Dempster (1990b) suggested a
combination rule for Gaussian belief functions using
sweep operators. Unfortunately, I am not able to verify
his combination rule. The sweep operations are slightly
extended in this paper. We will see shortly that the con-
cept of sweeping and reverse sweeping in Dempster
[1990b] is a special case of the concept here when the
sweeping or reverse sweeping occurs at the origin of a
configuration space.

Let Xy, X3,..., X, be Gaussian random vectors such
that E(Xl) = p'l, COV(Xi, XJ) = zi_]’ i?j = 1? 2v~-1 n.
Set matrix

B K b
s Zii She i Big
Zy1 Zpp - Zop
Bory By o B

Q is called the representation matrix of the probability
function of X, Xj,..., Xp,, or is said to describe X;, X,,
...» X,- We introduce the following four operations on
representation matrices:

(1)Marginalization: The marginalization of Q on
Z, denoted by QYZ, is the submatrix produced by re-

taining the mean vector row, covariance rows and
columns corresponding to Z while deleting the rest. For

example, Q’Lxl{;il }

(2)Direct sum: For any two representation matrices
Q; and Q,, assuming their commonly described
variables are X, rearrange Q; and Q, such that

1 2
Kx "‘Yl "xz Hz
1 1 2 2
Q=| Zxx Zxy }Q=| Xxx ’3x22 :
1 1 2
Zyx Zyy I7x" Z77
p’XI +p'X2 uyl uZZ
1 2 1 2
i | Exx Exx Zxy Xz
en Q;9Q; = ZYXI sl 0
> 2 0 2
7X 77

(3)Sweep operation: The matrix Q will be said to
be swept at configuration point x; if Q is replaced by

Hii Hoj - MPni
T Womie o S
111 “121 = ~1ni
S (X'I = -) = >
WPXifXi=xQ i i - Ionij
an.i znz.i 2nn.i

iy = (U
M5 =
! k=j=i
) ! j=iand kei
2 @) 12y k=iand j#i
zkj-zki(zii)'lzij otherwise
It is easy to see that

(SWPKjlymy JQ) 1K1K Xn NG
is the representation matrix of conditional probability
function given X; = x;;

(4)Reverse sweep operation: A reverse sweep op-
eration at the configuration point X;=x;, denoted by
RWP(Xi'Xin)Qv is an operation on Q such that

Wi Wai - Wni

Zi 225 - Zini

RWP(X'l s ')Q= 1 ' v 2
- Zo1i T = Toni
i Zhoj - Zhni
| —
o (TP Y o o
where |1 ; = {p’) @y " &) Ly “‘3
17 layey i=j
@t kej=i
e Ty j=i and ke
kji = @) 15y k=iand jei
| ;
ij-zki():ii) Zij otherwise

Dempster (1990b) defines the sweeping and re-
verse sweeping operations at the configuration point
X;=0. According to his definition, the representations of
My and p.')-.i above are the same in both sweeping and
reverse sweeping when i # j. Shortly, in Lemma 10, we
will see that the above generalized definitions of
sweeping and reverse sweeping are necessary in repre-
senting the combination of Gaussian belief functions in
variable space.

Lemma 6. It‘Z:i(, then .

SWp(Xix=y)Q"~ = (Swp(XIx—x)Q"Z,

RWp(XIx—)QVZ = Rwp(Xix—)Q'Z.
Lemma 7. For any two matrices A and B,
ABBWZ = AVZgplZ A1Z)1Y _ plznY

Lemma 8. SWP(xi|Xi=xi)RWP(XilXi=xi)Q =
RWPCX;f¢,=x)SWPXifx=x)Q = Q.

As we know, SWP(Xi|Xi=xi)Q represents the con-
ditional probability function given X; = x;. Lemma 8
implies that Rwp(Xjlx;=x;)SWP(Xilx;=x,)Q represents
the joint PXi(xi)le,Xz,...,XnIXi=xi(x1’ X9s wses Xgp). Cuir-
rently, we do not know what RWP(Xi'Xi=xi)Q repre-
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sents. But it is interesting to note the commutativity of
both sweep and reverse sweep operations at the same
configuration point.

Lemma 9.

XSWPCKil;=x;) SWPKjix;mx) QX - Xa X3}
=(Swp(Xjlx;=x ) SWPCXilX; x)Q)“Xb KXo \X;Xj}
=(SWp(X;. XjlKmxy Xi=x; )Q)i{XL XXX}

(i) Swp(Xilx;=0) SWP(Kjlx;=0) Q = SWP(Xjlx;=0)
SwpXjlx;=0) Q = SWPX;Xjlx;=0X;=0) Q-

Now we turn to the representation of Bel = Bel; ©
Bel, = (C, B, L, w, E), where Bel; and Bel, are defined
as in Section 4. Let Q, Q; and Q, respectively denote
the representation matrices of Bel, Bel;, and Bel,.

Lemma 10.
Q = RWp(X3lx;=x;) ([SWPK3lx3=x5)

Swp(Xalx p=p1p) Quit¥sXit g [SWp(X3lx3=x3)

Swp(X 11X ;=) Qz]l{Xs,Xs}}.

In coordinate free terms, X3=F;F,, Xo=F;NC,,
X1=F,NC,. In Theorem 3, we use Swp(F;NF,),
Rwp(F|NFy), SWp(F1NC,), and Swp(CNF) to re-
place SWp(X3lx5—x5), RWP(X3lx1—x5):

Swp(X2hx y=p15)> and Swp(X1lx,=y1,) respectively.
Theorem 3. For any two Gaussian belief func-
tions Bely = (C, By, Ly, Q1) and Bely = (C,, By, Ly,
Qy), their combination is Bel = Bel; @ Bel, = (C, B, L,
Q), where, C=C®C,,B=B;®B,,L = L1$L2, Q=

Rwp(F;NF,) {[Swp(F;"F5) Swp(F;nC»)Q1] {F1nF
BISWp(F 1) Swp(C1F Q1 F20F),

where F, Fy, and F, are respectively the uncertainty
spaces for Bel, Bel; and Bel,.

In Theorem 3, we notice that the means and covari-
ances in Gaussian belief functions are replaced by their
corresponding representation matrices. Theorem 3
gives an equivalent definition of combination in vari-
able space. However, the relationship between Q and
Q1 and Q; in Theorem 3 is independent of coordinates.
The closed form of combination in variable space will
be very useful in proving the distributivity law of the
Shafer-Shenoy axioms in Section 7.

COMBINATION AS RESTRICTIONS
In this section, we represent the combination in the con-
figuration space. The representation of combination in
configuration space is useful for proving the commuta-
tivity and associativelity law of combination in the
Shafer-Shenoy axioms. Using the same notions as in
Section 3, we denote the dual space of U by S. The dual
representations for marked Belj and Bel) are respec-

tively

Bely = (C+!, , B*!, L+!, o] BTy,

Belp = (C*, ¢, B*Z, L*%, m+%, B+,
where t is a common mark for both Bel; and Bely; C*,
B*!, and L*! are the hyperplanes containing t and paral-
lel respectively to the dual kernel of C.B.andL! (i=
1,2), x* and ¥ are defined by Theorem 1 (i =1, 2).

Theorem 4. The combination of Belj and Belj is

Bel = BelleBelz

= {C*2AC*L, ¢, B*2AB*!, L*¥?AL*],

1':*2'(:*2,-\(::1 ¥ ﬂ*llctznc*l,

E*zlctznc:tl 2 E*IIC*ZQC*I b
where ”*1|C‘2n(:*‘1 and E"“‘Ic +2~C+1 are respectively
the restriction of 7+ and E*' (i = 1, 2) on the intersection
cs2ncel.

LOCAL COMPUTATION
OF GAUSSIAN BELIEF FUNCTIONS
In this section, we will verify that the computation of
Gaussian belief functions follows the Shafer-Shenoy
axioms (Shenoy and Shafer 1990). First we briefly de-
scribe the operation of marginalization of Gaussian be-
lief functions.

Marginalization of Gaussian belief functions can be
most naturally described in variable space. Suppose (C,
B, L, &, E) is a Gaussian belief function, and M is a
subspace of L. Then the marginal of (C, B, L, «, E) on
M, denoted by (C, B, L, %, E)*M, is a Gaussian belief
function with label M. We obtain this marginal by in-
tersecting the certainty and belief spaces with M and
restricting the covariance and the expectation to the new
belief space. In other words, the marginal is (CNM,
BNM, M, n[BnM, EBBNM). Notice that ©|BNM and
EBNM can be described as the marginalization of the
representation matrix of Bel defined in Section 5.

The Shafer-Shenoy axioms are conditions under
which exact local computation of marginals is possible
(Shenoy and Shafer 1990). Therefore, Theorem 5 justi-
fies that the join-tree computation works for Gaussian
belief functions.

Theorem 5. Combination and marginalization of
Gaussian belief functions satisfy the following condi-
tions:

(1)(Commutativity and associativity of combina-
tion): Suppose Bel;, Bel,, and Bel; are three Gaussian
belief functions. Then Bel; @ Bel, = Bel, ® Bel,

Bell & (Be12 (7] Bel3) = (Be]l ® Belz) Bel3;

(2)(Consonance of marginalization): Suppose Bel =
(C,B,L, n, E),and L M > K. Then

BelMIK _ g K,

(3)(Distributivity of marginalization over combina-

tion): Suppose Bel; = (C;, B, Ly, ', E!) and Bel, =
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(Cy, By, Ly, 2, E2) are two Gaussian belief functions.
Then (Bel; ®Bel,)*L1=Bel, (Bel,) YL1L2,

Proof: Since interaction and addition are commuta-
tive and associative, Theorem 4 implies that the combi-
nation of Gaussian belief functions is commutative and
associative. Margonalization is obviously transitive ac-
cording to the definition. Thus we only need to verify
the distributivity of marginalization over combination.
Let Bel = Bely @ Bel, = (C, B, L, &, E) with the uncer-
tainty space F. Then we want to show that (CNL;, B
ALy, Ly, 7B ALy, EB N L) =(Cy, By, Ly, o, ED
®(C;NLy,B,n Ly, Lyn Ly, 72By ALy, E?By N
Ll)’ whereC:Cl ®C2,B=B1$B2,L=L1 ®L2,
and B = C®F. The identity of components in the above
equation is verified as follows: CNL; = (C; & Cy) N
Ll = (Cl N Ll) & (C2 N Ll) = Cl (53] (Czﬁ Ll)'
Similarly we can examine that BN L;=B; ® (B, N
L),L;=L;®@L,NL),BAL;=(CAL)®EFN
L,). The last equation above represents that F N Ly is
the uncertainty space of (C;, By, Ly, =!, E) @ (C, n
L;,B;Nn Ly, Ly n Ly, 72B,nLy, E2B,nLy).
Suppose the representation matrices of Bel, Belj, and
Bely are respectively Q, Qj, and Qy. According to
Lemmas 6, 7, and 9 and Theorem 4, the representation
matrix of (C =) Ll’ Bn L]_, Ll, N[BﬁLl, EIBnLl) is
QYL = (Rwp(F,F) {[Swp(F;F)
Swp(F,C QU F1I F@[Swp(F|F,)
SWp(C,Fp)QI F2F) L1
= Rwp(FNFy) {[Swp(F1NF7)
Swp(F, Qi Y F1 F@[Swp(F|F,)
SWP(C1 Qa1 2 F UL
= Rwp(F;F) {[SWp(F;F,)
Swp(Flncz)QlJrL‘l]JrFlf\FﬁLl @

[SWDCF; \F)Swp(CyF,)Q; L F2nFnLay
=Rwp(F 1 N(FNL){[SwpFN(FNL1)
SWP(Flﬁcy)QI]lFlniF “‘ll)e [SWp(Fy(F,nLy))
Swp((F,nLNC)Q2 Ll] E2NL)FNLy) }

= Rwp(F;N(FynLy) {[Swp®FN(FynLy))
Swp(F,N(CorL QI FINFLDg
[Swp(F;N(FyNL1))Swp((FynL;) NCy)
Q,HpHF2ALDNEALY),

The last term is just the representation matrix of combi-
nation (C;, By, Ly, TLED © (C; ALy, BynLy Lyn
Ly, I2IByNLy, E2BynLy).
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