
Propagation of Gaussian Belief Functions

Liping LIU

Sclnol of Busituss, University of Kusas, Lawrence, tr6 66A45 Binet UU@UI{ANWo{

Abstract. Gaussim belid frmctims re represented in
both variable space and configuation space. Their
combinatims are defined in terms of tbe Dempstet's
mle, sweep operators, ad restrictions in configuration
sprce. The equivalence of the alternatiw definitions is
proved. The compuafion of Gaussian belief firnctons
is shoum to follow tbe Shafer-Shenoy axiorrs.

INTR,ODUCTION
Dempster (19904 b) tas shown how the lGtman filter
canbemderstoodin termsof ee t[€ry of belief fimc-
tions. As De,mpster $ows, the equations and Gaussian
probability distributions that are combined in the
Iktman fiIter can be regarded as betef ftnctims, and
the rccursion involved in the filEr ca beregarded as a
pecial case of the rpcursio involved in the compua-
tion of belief-frrnction narglnals in join tr€es.

Dempster sketches how join-ree computation
worts for belief functions in general. Tbere is some
work yet to be done however, in justifying this mpu-
tation rigorously in the case of Crausian belief func-
tions. The rigorous work in this area (Kong 1986;
Shafer et al. lg8ili Shenoy and Shafer 1990) applies o
finite and to condensable belief fimctions, but not to
Gaussian belief ftmctions, which are ustrally continuos
but not condensable. Presmably tbe justification for
the fmite case can be extended to a justification for the
cmtinuous case by a sfaighdorward limiting arguEl€nt,
but this has not been done to date. Dempster's descrip
tion of Gaussian belief fimctions in geomefic rcrms
suggests that we talce a different tack. we should be
able to justify 6e join-tee ompuation by sbowing di-
rectly from this geometic description that the opera-
tions of combination of marginalizalim satisfy the ax-
ims of Shenoy and Shafer (1990).

Dempster (1990b) defined the notim of Garssian
belief fimctions and speorlated the possibility of their
local compuations. Sbafer (1992) deJind the concept
in more rigaous math€matical forms by elaborating on
Dempster's idea and lsfl many *o1t€,n" but important
questions about the equivalence of various definitious
and the possibi[ty of local cmputaions. The intent of
this article is to provide proofs for the Dempster's
speculations lhat answer some of the Shafer's *open"

questions. In particular, this article afiempts to under-
stand tbe reluionships among various concepts of
Craussian belief functions md explore whelter the local
cCInputation scheine wor*s for Crausian belief frmc-
tions.

An outline of this p4er is as follows. Gaussian be-
lief functions are reprcsented respeoively in variable

and configuration space in Sections 2 arid 3.
Cmbinatim is defined in terms of the Dempster-shafer
rule md equiwlen0y representod in terms of sweep op
erabn and resfiqims in configuration space respec-
tively in Sections 4 a 6.In Section 7 we prove the pos-
sibility of local cmpuatim by showing rhar rhe com-
putation of Gaussian belief functions follows the
S[afer-Shenoy axioms. We refer readers o Liu [1993]
fornoatims and formulas fa computing the combina-
tion of Cassian belief functions and Proofs of all re-
sults in thepaper.

REPNESENTATION IN VARIABIIE SPACE
Suppce U is arandom variable ryace (Dempster 1969)

-a finie dimensional vectof space whose elements are
randm variables. A Garssian belief function (Shafer
1992) m U is a quinurplet (C, B, L,4 E), where C, B,
ad L aenesed subspaces of U,

CsBsLsU,
t is a wide sense inner product on B with C as its null
ryace, and E is a liner frmctional on B. We call C the
cenainty ryace, B the belief space, L the label spa@, ,c
tbcovrime, and Ethe exp€ctation.

For ease of understanding above terurs, we use the
oordinate repesenatim of a Gaussian belief function.
Assume Vl, -- Ve is abasis for U such that V1, ..., Vs
is abasis for C, V1, .-, Vs, Vc+1,..., V6 is abasis for B,
ad V1, .-, Vc, V6sl, .-, Vb, Vb+1, ..., V; is a basis for
L. Ltt tai denote tbe mean of Vi G = 1,2,..., b). For any
V = (v1,.-,vb) e B, defme the mean of V as E(V) = v1p1
+ ... + v6p5. Let E6 denote the covariance betq,een

Vgli and Vc+i G, i= 1,2,..., b{). For Vl = (v11,...,

,lo;, v2= <*r1..-*Sin B, defire their covariance as

r(vl, v2) = (vlc+l, ..., vlb) I (v2"*1,..., v2b)T

where E = (Eri )1u-c1x1u-cy is a covariance matrix.

Tbm F{) is a linear frmctional on B and n(.,.) is a wider
se,nse inner product on B with C as its null space:

r(v1,v21 = 0 if vl or V2 e C.
The expocAtion E and the covariance n define a

Cranssian disribution for the variables in B by giving
their means and covriane. This Craussian distribution
is rcgarded as a full expression of our beliefs, based on
a given body ofevidence, about the variables in L; this
it€m of evideoe justifies no beliefs about variables in I
going beyond what is implied by the beliefs about the
variables in B. (Ihe evidenoe might justify some further
beliefs about mriables in U that are not in L, but these
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arc ouBide the cmversatim so far as a belief frmction
with label L is cmcerned-) The Gaussian distribution
assigns zero variarces o the vriables in C; if V is in C,
we ar€ certain rhat V takes the vdue E(V) with cer-
tainty. It assigns nm-zero variances o rariablqs in B
that are not in C. Acurally, the covariance r is defined
over a subspace tr'h B, where FOC = B. We catl F the
uncertainty space. Vc+I, ...,V6 is a basis fc F.
Equivalently, a Gaussian belief fimctim cen be repre-
sented by a quinorplet (C, F, L, n, E). In this paper we
will use (C, B, L, r, E) md (C, F, L, fi, E) intorchaDge-
ably to represent a Gaussian belief fimctim"

V/e will sometimes cloose a linear frmctional t on
U that agrees with E on C. Cfhis means that I(VFE(V)
for every vaiable V in C; t is allowed o disagree with
E m variabbs in B that are not h C, and t must also as-

sign values to variables in U that are not in C.) lVhen
such a linear functimal t has been chosen, we say that
the Gaussian belief frmction ismateG and we call t its
mark. We cdte (C, B, L, ru, E t) or (C, F, L, n, E, t) for
a marked Craussian belief frmction.

REPNESEtr\ITATION
IN CONflGIJRATION SPACE

Irt S denote the dud space for U-6e space of all lin-
ear functionals on U, ad 51, -- So b its basis dud to
V1, ..- Vo. A point )( = (11,...,xJ in S can be consid-
ered both as a liner frmoional such tbat X(V) - xi G -
1,2,..., n) and a vector value taken by randm vector
(V1,..-VJ. In th lafier serue, X is a point in the sample

sprce of randm variables V1, .-, Vn, aDd therefore is
called a cmfiguratim. A probability disribution func-
tion is usually defined in space S.

Let Sz be the dual kernel of C, i.e., th subsprce of
S consisting of dl cmfigurations whic,h map all the
variables in C to the value zero. That is, 52 = [(x1,...,x)
I x1 = ... = xc = 0); let 51 be the dual kernel of B, i.e.,
51 = {(x1,...,xe) I x1 - ... - xb = 0}; bt SO be the dual
kemel of L, i.e., Sg = {(xt,-.,xJ I x1 = ... = x, = 0}. Irt
E be ahyperplane in S cmsisting of all the liner frmc-
tionals on U tbat agree.s with E on B, i.e., in terms of
coordinateg

E = {(xt,...,xs) I x1 = F1, .-, x6 = }16}.
Obviously, we have tbe nested relationships Sz=St=
Sg' where 51 is parallel o E.

Let p be the dual of ,8, a wide sense inner product
on 52 with null space 51. For any

1l = (0, 0,..., 0, xf*r, xl*2,..., *l ),
12= 10, 0,..., 0, xl*r, xf* 2,...,*?),

in 52, its coordinate representation is as follows:

p(xlx2) = (xl+r, xl+2,..., *[ ) E l
GLr,*?*2""'*3)'

Recall tb4t a mat t for (C, B, L, ,s, E) is any linear
fimctional m U that agrces with E on C, and so is a con-

figura,tim in ryrce S. Let C*, B*, and L* denote the hy-
perplares which cotain t and are respectively parallel
to tbe spe 52 51 md Sg. Using coordinates, we repre-

s€nt th€se hyperplanes as follows: C* = {(xl,...,x) I x1

= F1, -. xb = Fc), B+ = {(xt,...,x) I x1 = Ft, ... xf =
pe, xc+t = t(Vs+t), -., xb = (Vt)], L* = {(x1, .., xn) I

xl = P1, -.' xb = ps, xc+l = t(Vc+l), -., xI = flr). It
follows that ;-*qB*gC*, EgC* and E and B* are paral-
bl in C*.

Notice that the probability distribution of a

Craussian belief frrnction is defined on C* while C* is
not a su@ce. It is necessary to introduce operations
fc an inner product on C*. For any h, h1, h2 e C*, and

anyrealnumberc, defire
h1Oh2=Gr-t)+@2-t)+t (1)

o@h=o(h-0+t Q)
It is easy to verify 6at O, 6 are closed operations on C*.

For h1, h2 € C*, hl- t, h2- t e 52, p is a wide sense

inn€r troduct m 52. Thus, it is reasonable to define
,s*(hl, h, = p(hr - t, hz - t) (3)

Lemm 1. r*(hr, h2) is a wide sense inner product

m C* withoperations e, E, and thenull hyperplaneB*.
Lemm2. The frnctioal g(.) is linear on C* with

operations O and E and takes the zero-value on B* iff
there exiSs amatrix A such that

g(hFA(xc+r - t(Vc+l), ..- x5 - t(V6)) (4)

where h = (Pl, ..- [re, xc+1, ..., xo) e C*.

For any given bge C*, n*(ho h) is a linear frmc-

timal m C* with null hyperplaneB*. Define
H(rr(.,.; = {ho € C* tru+(ho, h) is an invariant

lirer frmctional of h m C*) (5)
The,n, Lemra 2 implies tbat H(n*(.,')) contains those
omfiguratims \ of C* such tbat (x"*1, ..., x5) is a con-

stlmt if ho = (p1, ..- ps, xg11, ..- *o). Hence, H(r*(',';;
is a hyperplane in C*, which is parallel to B* and
whose location is specified by the constant vector
(x"*r,...,x5). In general, for any linear functional g(') in

the form (4),
HGC)) = th= ([t1, -. Fc, xc+l, ..., xJ I

(:t+t - t(Vc+l), -., xb - t(Vu)) = AE) (6)

is a hlperplane prallel to B* in C*. Therefore, we have
Lemme 3. Any linear functional on C* with null

hyperplane D* specifies a hlperplane parallel o B* in
Ct, whose location is detemrinedby (6).

On the otber hand, for any hperplane H parallel to
B* in C*, (x"*1,...,x6) is a constant vector for any h =
(p1, ..., Pc, &+1, ..., xn)€ E. Thus, for hg e H,

and

ecxlx2rffi
Xl and X2 eS2

Xl orX2e51
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6*(h9,h) is a linear frmctional on Ct wifr the null B*
and is denotedby H*(h).Since the covariane matrix E
has a full rank, a hyperplare parallel o B* and a linear
functional in the form (4) are in a one-to-me oore-
spondence. As a cuollary, noticing that E is a hlper-
plane parallel to f,t in C+, we have

Theorem 1. Hperplane E and the liner frmctioal
E*(h)=r*(ho,h) (ho€8, he C+) are munnlly and

miquely determired.
So we arrive at the represenation (C*, t, B*, L*,

fi*,E*) for a marted Gaussian belief function. lVe
c/rite t befue B*, L*, fit, and E* because all these ob'
jects dep€nd on the choie of t Inuritively, (Ct, t, B*,
L*, rE*, E*) expresses beliefs about whic[ element of S

is the true oonfiguration of our variables. We are cer-
tain tbat tbe true onfigurAion is in the hyperplane C*
(tbe cenainty hyperplare). Wi6in C*, our belief is dis-
tributed over ellipsoidal cylinders around a smaller di-
mensional hlperplane E (tUe expecation hperplane)
parallel to B*. The wide sense inner podnct r* (tbe
concentration inner product) specifies the sh4e, scalg
and diresion of tbe ellipsoidal cylinders, and the linear
functional E* (tbe location frmctional) specifies E by
giving its inner product with every other hlperplane
parallel o B* within C*. We call B+ tbe no-opinion-
expressed qprcq since tbe Gaussian belief frnction does
not express any opinions about where the true cmfigu-
ration is dong its oordinab.s. Similarln we call L* the
no-opinion-allowed spaoe, since the Gaussian belief
function, so long as it has the label L, is mt allowed to
express any opinios about wh€re the true conftguraion
is along its coo,rdinaEs.
Figure 1. The Carsim Belief Function in Example 1

X3

t(Vrts Pt

Xr frra(xz)

Bxample 1. If el, b = I = 2, then the hlperplanes in S
are respectively Q* = {(x1,x2,x3) I xt = Fl}, B* = {(xl,
x2, x3) I x1 = p1, xZ = t(Vd), L* = 0, E = {(xt, x2, x3)

lx1 = p1, x2= l\1. The marked Cyaussian belief fimc-
tion can be shown by Fig. 1, where fyr(x2) is a
Gamsian probabitity distribution function for V2.

COMBINATION BY DEIVIPSIER'S RUI,E
Assrme any two Gaussian belief functions Bell and
Bel2 whce rcercs€xxtations in variable space are

Bell =(C1, F1, L1,rut, El) (7)

u,hefe, Ct = {EO€t,Xt},F1= (X2,X3, X4},

EIG{) = h, El(€,I) = Ir, El(xr) = pr, E1(X2, X3, Xf =

cb', h', [rnl), rt{.,.F Er .1

Er = (Xijl), rd' = *r(*i Xj) (t" j = 2, 3, 4).

BeI2= 1Cr,l),Uyt?,*1 (8)

wlrere C2 = l%, 1z X2l,F2= {X1, X3, X5},

E2(€0) = la, E2(2) = ?y,82(xz)= 15, E2(X1, X3, X5) =

Qrr', |\', *\ t G->. 2z .T,

Ez = Q1, Zr2= cov(Xi, Xj) (i, j = 1, 3, 5).

ngurc2. Cmbinatim of Bell andBel2

BrBe
Without loss of generality, we assnme that BeU and
Bel2 share a cornmon certainty subspace Eo and a
common mcertainty subspace X3. Bell is cerain but
Bel2 is un@rtain about X1; Bel2 is certain but Bell is
uncertain about X2. Bell is certain about f1 and is un-
certain about X4, but Bel2 hrq no opinion about (1 and

&. Similarly, Bel2 is certain about (2 and is uncertain
about X5 but Bell has no opinion about (2 and X5. The
variables involved in these two belief functions is
shoqm in Fig. 2. Notioe that in (7), (8) and Fig. 2, we do
not r€prcsent L1 and L2 explicitly. We also assume

Bell and Bel2 have the same belief about the mean

value of C1n C2, i.e., h. The notations 4pearing in
Fig. 2 represen[ either variable spac€s or the basis vec-
tors of 60 vriable spaces.

Aooording to the hpster's nrle (Shafer 1976), the
cmbinatkm of the two belief functions is to pool dl in-
formation of Bell and Bel2 ogether through the follow-
ing procedures to obtain a combined belief function Bel
= (C, B, L, rg, E):

(l)Bel accepts dl cerain information from both
Bell and'Bel2: H1@ C1

(2)Calculale cmditimal probabilities given C;

X2

c.r
p2

B* E

//
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(3)Cdculate combined probabilities for cmmon
uncertain focal ele,mens F1nF2 using t[e Dempsrcr-

Shafer rule;
(4)Pool all above informuion including tbat ac-

ceped as certainty, changed conditionally, and com-
bined by the Dempste.ds rule.

Pr,ocedure (4) inplies thatthebelief qpaceB of the
cmbimtion is B1OB2, and that the label space L is L1
O L2. The mcertainty space of BellOBel2 isF, wbere
FOC = B. Notice tt at Fr@Fz * F. In tbe following, we

foos on the problem of how to get the pooled n and E
for Bel.

For any positive defmite nxn marix I and n{i-
mensimal v@tors x and y, let

f(x, x,
@aPAz)

-lo-r,tto-r9,.
Observe that f(x, E, y) is actually a multivariate
Gaussian disribution frmction with variable x, mean y
and covariancenalrix L

In Craussian belief fimction Bel1, the belief on the

uncertainty space F1 is represented by rhe Gaussian

probability function of (Xz, Xs, Xd with mean (prl,

lra', t o') and covariance E1, i.e.,

Prxzxr,&(*2'x3'x)

= f[(x2, x3, x4), El, 0b1, th', [rnl)]
Similarly, Bel2 expresses the belief about F2 by the

Gaussian disribution of (X1, X3, X5), whicb has tbe

mean (pr2, t\', t\\and the covariarce marrix l-2, i.e.,

P2Xt,Xr5s(x1, x3, x5)

= f[(xl, x3, x5), 4,Qrt2,tk',W\l
Sinoe X2 and X1 arc bo& in the combined certainty

space C, we are certain about both X2 and X1. Accord-
ing to procedure (1), it follows that

P(X1 = tr1) = PQ(2 = lh) = t.
Given X1 = p1 md X2= lL2, we can cCInpute condi-
tional beliefs P 1,x3 lx2=p2(xg) and P2,x3 tx 1 =p 1 

(x3)

about X3 respectively in Bell and Bel2. Since X3 is the

cornmon uncertain focal element for BeIl and Bel2, we

tben use the Deopster-Shafer rule to olnbine
Prx3rx2=p2(*3) and P2,13xr+.r(*r)

to get the pooled belief about X3:
P1r(x3)=P1,13rx242(x3)aP11rx 1nr1 

(x3)

P (*r)

to denote a distribution in the combined belief function
Bel.

Lenrma 4. The pooled belief about X3 is a multi-
Eriate Caussian disribution. Assume its meatr vector is
a3 and covriance marix is o3. Then,

Pyr(x3) = f(x3, 03, a3).

Given X2 = p2 and X3 = x3, the conditional disui-
butim of fu is Garsian. Assume its covariance matrix
is o4 and its regrassion coefficients against x3 are a4

odb4. Then we have

Pt)<axyqrvX3=x3(xy' = f(x4, 04, a4+x3b4f). (10)

$imilat, t[e conditimal disribution of X5 given X1 =
[rt md X3 = x3 is Gaussian. Assume its covariance

Datrix is o5 and iB regression coefficients against x3

aea5 andb5. The

Paxsxr+rr;343(x5) = f(x5, o5, a5+x3b5T). (11)

Now we come to the pooling of all pieces of belief.
Since X4 ud X5 are onditioodly independent given

X3, thepooledbelief aboutX3, X4 andX5 can be

shown as follows:
Pxr,xoxs(r3,x4,x5) = Py, (x3)

P tplxz=r z,X3=13(xp 
PZxsxt+,t;3=x3(x5)'

Let O denote the covariance matrix of X3, X4 and

X5. Tben

03 olb+T osbsT

b4o3 o4+b4o3boT baorb5T

U5o, U5orUoT or+b5orbrT

Lcmme 5. PXt,&,XS(x3, x4, x5) = f[(x3, x4, x5),
TT

O, (a3, a4 + a3!4', a5 + a3b5 ^)1.

Note tbat the famulas for computing4,4, b4, a5,

b5, o3,o4, and o5 in Immas 4 and 5 and the equations
(10) and (11) can be found in Liu t19931.

So we arrive at the conclusion about the combina-
tim of Bell and Bel2: Bel = BelrOBelz:

Theorem 2. The courbination of the two Gaussian
belief frmctions (7) and (8) is as follows:

Bel = Belt@Belz{c"Blt"E) (12)

whre, C=C1@C2, B=81(E82, F={X3,X4,X5}, L = L1

OLz, E(fo) = lo E(Er) = Ir, E(62) = X,2, E(X1) = P1,

f(Xd = 1g, EQ(3) = q, E(Xf = a4*%boT, E(Xs) =

a, + a3u5T, n(.,.) = .o.T

COMBINATION INTERMS
OF SWEEP OPERATORS

Therepresenadon of Bel in Theorem 2 is very compli-
cated. The reluionships among E, tE, tct ,El , r?,and E2
bave no closed forms. However, Theorem 2 will serve
as a rcference for more refined definitions. In this sec-

tim, we will use swoep operators to represent combina-

(e)

Je, 
*r,*ror(x3)P2.xr1;K1+rr(xg)dxs

Tbe rule A in (9) is the extension of the Dempster-
Sbafer rule (Sbafer 1976) for continuous belief frmc-
tims. Note that in this sectim we use P1 and P2 to de-
note a disribution raspectively in Bell and Bel2 md P
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tim in vaiable space. Swee,p opemfims were initially
defmed forpositive defmite matrices (Dempst€r 1969).
Dempster (190b) used the sane operations to obain
tfrte, ptential form (Laur;pm and Spiegelhalter 1988) of
the representation matrix for a Gaussian distribution,
whhh is an extended marix cmsisting of amean vecttr
and a covariance mafiix. Dempster (199fr) suggested a
combination rule for Canrssian belief functions using
sweep operattrs. Unfqnmanely, I m not able o verig
his combination nrle. The snoep operatims arp sligbtty
extended in this paper. Wewill see shatly thar tte cm-
cept of sweeping and rcverse sweeping in Dempster
t1990b] is a special case of the cmccpt herc when the
sweeping or reverse sweeping occurs at the origin of a
cmligurationprc.

IetX1, Xb...,Xnbe Carssian random vectom such
that EO(i) = [ri, Covft, Xj) = lj, i, j = 1,2,...,1.
Setmarix

where g.i = {[,*,?Gd'1Ei;

&i.i=
&;(EiiIl
cnrl&,

€ii-1

iA

,=j

k=j=i

j=i and k*i
k=iand j*i
otherwise

F'n.i
E lr,.i
E 2rr.i
I'nn.i

r*1

l=j

'ti
It is easy !o see tbat

(snp(Xi[,=r,)Qf{xr xz'...&}\{xi}
is the rcpresentatim matrix of oonditional probability
fimction given Xi = q;

(4)X,cvcrse swccp qreration: Areverse sweep op-
eratim at tbe cmfiguraion point Xr=1u denoted by
nutp(ftftr=ar)Q, is an operation on Q such that

Q=

Q is called the represenation natrix of the probability
function of X1, X2,..., Xo, otr is said to &scribe X1, X2,
..., Xo. We inhoduce the following for operatims on
representation matrices:

(1)Marginalization: The mrginalization of Q m
Z, &notdby QJZ, is the submatrix podrrced by rc-
taining the mean vector row, @variance rows and
columns corresponding to Z while delaing tbe rest For

examnle. oJxlJfr 1wruPrv'v -1>ff 
J

(2)Dircct sum: Forany two r€prcs€ntatim matrices
Q1 and Q2, assuming their commonly described
variables are X rearrange Q1 and Q2 sucn that

Px

I-P'''t P'

Rup(X;ry,="n=l ii;; ii
LErrr., !'

Pr
xrr
zzt

h "'un
Etz '- Et'
\z '' zt,-
hz'- %"

2.1

L2.i -.

22.i '"
n2.i "'

I lryl I
En' l,Qr=
8,,, J

[-u*' t z2

I -ry*: ' ryr'
Lrr*' ,u'

8ki.i =

k=j=i

j=i and k#
k=iand j+i

otherwise'Ei
De,mpster (1990b) defines the sweeping and re-

yeme sweeping operations at the configuration point
Xi=0. lccomding to his defmition, the reprasentations of
t5.i -0 Pi.i arbove are the same in both sweeping and
revense sweeping when i;cj. Shortly, in Lemma 10, we
will see t[u the above generalized definitions of
sweeping and revene sweeping are necessary in repre-
senting the cmbination of Gaussian belief functions in
wriablespae.

Lemma 6.ltz= X. then

swp(Xtx=x)eJ, = (s*(*tx=*)e)Jz,
Ru/p(r(x=x)eJZ = 6n*p6xlx=*)e)Jz.

Lemmr 7. For any two matrices A ard B.
(les)Jz = slzgglz,llJzyJv = sl7-,tY .

kmm 8. Sup(XitXi=xi)Rcrp(XilX.-xi)Q =
R"ry6ilXioi)SoffiilXi=*i)Q = Q.

As we lnow, Sury(Xilxi=xi)Q represents tbe con-

ditionat probability function given Xi = xi. Lemma 8
implies that Rup6ilxi=1i)Swp(XitXpxl)Q represents

tbe joint \t(xilPx t Xz..,X6tXi=q(x 1, x2, ..., xo). Cur-

rently, we do not lnow what Rwp(XilX1=xi)Q repre-

where pi.i = {[H,:l')@s)-1];
'Gu)-1

-Eg(lii)-1

-qiirt>u

Qr= slax

Then Q10Q2=
Elrx

>fi
2

1

>va'
0

>n'
(3)Sweep operation: The matrix Q will be said to

be swept at oonfiguration point xi if Q is rephed by

l-Pr-i tb: -. &r.i I
swp(Xi 1,=1. = 

Lil _.{:,,,*i l

I

lrz'Fx tyl
Eff
Er
0

+Lf
*4af1 I

1
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senB. But it is intqesting to note the mmuativity of
both sweep and rcverse sweep operations at tbe same
cmfiguration point

Lcmms9.
(i)(scDcxilx=x)supcx;rxj=*j)Q)J{x1,",x1}\{xiJ(5}

=(svffi; rxj=1.)sury(xillFxi)Q)J{x 1,";o1\ {x;x; }

=(s wp(xi, Xj lxi=*rXj=rj ;q1t{X t - -Xn }\ {Xi Jj }

(ii) Sc/p(xilxF6) ScDGjlx.i=O) Q = Scte0(jlxj4)
Surp(Xilxi=d Q = ScDGiXjlX;+X;O) O.

Now we urtr to the re,presenanion of Bel = Bell (E

BeI2 = (C, B, L, G E), wherc Bell ild Bel2 re defined

as in Section 4.I-et Q, Qr d Q2 respectively denote
the repre.sentation matries of Bel, Bel1, ad Bel2.

Lemma 10.

Q = Ru4{(glX3=13) { [Swp(X3lyr=13)

svp(x2f6r=pr) QrlJ{xrxa} o tSwpQ(311r=a3)

Sury(X1 f6r=p1) Q2l 
J{x3xs} 

}.
In cordinate ftee Erms, X3=FlnF2, XpF1nC2,

Xt=FznCt. In Theqem 3, we use Su/pGlnf,'r,
Rc/p@t^fr, Svry@1nGi), and Swp(Ctnf,'2) torc-
place Surp(X3lX3=x3), RwpQ(31;r=a3),

Surp(X2l1r=p2), and Sup(X1l1ra1r) respectively.

Tbeorem 3. For any nro Gaussian belief func-
tions Bell = (C1,81, L1, Qf) and Bel2 = (C2,82,L2,

Qr, their cmbination is Bel = Belt O Bel2= (C, B, L,

Q), where, C = C1OC2, B = B1OB2, L = L1OI,Z, Q =
Rurp(Fl^F 2) { tsurp6rnr2) Suffi 1nc2)Qr1$FrnF
otsuryG I nF, Swp(Cl^FdQI Jrzd 

),
where F, F1, and F2 ae respectirrcIy tbe ucertainty
spaces for Bel, Bell and Bel2.

In Theorem 3, we notice t[at the mns ad covari-
ances in Camsian belief funcrions ae replaredby t[eir
corresponding represe,ntation matrices. Theorem 3
gives an equivdent definition of combinaion in vari-
able space. However, the relationship between Q md
Qt md Q2 in Theorem 3 is independent of oordinates.
The closed form of conb,imion in rruiable sprce will
be very useful in proving the distibutivity law of the
Shafer-Shenoy axioms in Section 7.

COMBINATION AS RESTRICTIONS
In this s€ctioq we r€pres€nt the cmbinatio in the on-
figurarion space. The represenation of cmbination in
configuratim space is useful for proving the mmuta-
tivity and associativeliry law of combination in tbe
Shafer-Sbenoy axioms. Using the same notions as in
Section 3, we denote t[e drnl ryace of U by S. The dual
representations for marked Bell and Bel2are rcspec-

tively

Bell = (C*1, t, 3*1, 1*1,6*1, B*11 ,

Bel2 = (C*2, t, g*2,1*2,n*2,7*\ ,

wbere t is a ounmon mart for both Bell and Bel2; C*i,

B*i, and Lri re tbe hyperplanes cotaining t and paral-

lel respoctively p the dual kenrel of Cr, Br, and Lr 1i =
l, 2), frtr and Ef r are defined by Theoreur I (i =1, 21.

Theqcm 4. Tbe combination of Bell and Bel2 is
Bel = BelrOBelz

- {Ct2nCrt, q 8*26S*1, L*2n!-*1,
a1

r*'lg126g* 1 + n*^16+269+t,

E*2lg*zr-.,g+1 + E*119*269*l ),

where n*il g r26e r 1 and E*1 g *z6 g * l are resPectively

fu resriction of r*i andE*i 1i = 1, 2) on the int€rsection

C*2nCrl.

LOCAL COMPT]TATION
OF GAUSSIAN BELIE,F FI'NCTIONS

In this sectim, we will verify that &e computation of
Canrssian belief fimctions follows the Shafer-Shenoy
axims (Shenoy and Shafer 1990).First we briefly de-
scribe the operation of margfuulization of Gaussian be-
lief fimctims.

Uargtntizanon of Crarssian belief frmctions can be
most nanrally described in variable space. Suppose (C,
B, L, ,E, E) is a Craussian belief function, and M is a
subspace of L. Then the margipal of (C, B, L, n, E) on

M, denoted by (c, B, L, ri, D+M, is a Gaussian belief
fimctim with label M. We obtain this marginal by in-
tersecting the certainty and belief spaces with M and
msricting t[e ovariance and the expectation to the new
belief space. In other words, the marginal is (CnM,
B^tr|I, M, apnlll, EBnM). Notice that dBnM and
Ets^Il{ can be desoibed as the marginalization of the
representation mafix of Bel defmed in Section 5.

The Sbafer-Shenoy axioms are conditions under
which exact local compuurion of marginals is possible
(Shenoy and Shafer 1990). Therefore, Th@rem 5 justi-
fies that tbe join-ree courputetion works for Gaussian
belief ftmctions.

Theorem 5. Combination and marginalization of
Canrssian belief functions satisfy the following condi-
tims:

(lXCmmutativity and associativity of combina-
tion): Suprpose Bel1, Bel2, and Bel3 are three Gaussian

belief ftnctimS. Them Bell (E Bel2= Bel2 (E Bel1,

Bell O @el2 CI Bel3) = @el1 O Bel2) Bel3;
(2)(Consmanoe of mrginalization): Suppose Bel =

(C, B, L, rq E), and L 
= 

M.= K. Then

{nepMlJx - setJK;
(3XDisuibutivity of marginalization over combina-

tim): Suppose Bell = (C1, B1, L1,tlt,g1) anO Bel2 =
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(C2, 8 2, L2, t?, *) 
"n 

tn o Gassian belief frmctions.

Then @ellOBet2JL t=3"11o(BelrJLl^L2.
hoof: Since interactim and additim re cornmuuF

tive and associativg Theue,m 4 implies tbat the courbi-
nation of Gaussianbelief frmctions is cmmuatlve and
associative. Margonalization is obviously transitive ac-
cording to the definition. Thus we only need to ver$
the disributivity of marginalization over combination.
Let Bel = Bell O Bel2 = (C, B, L, lr, E) with tbe rmer-
tainty space F. Tben we $,ant to show eat (C n L1, B

n L1, L1, nlB n L1, EtB n L1) = (C1,81, L1, rtl, El)
g (CZ n L1, 82 n Lr,L2nL1,t?ts,2n L1, E2tB2 n
L1), where C = Cl (E C2, B = Bt O B2,L = L1 @ L2,
ard B = COF. The identity of components in the above
equation is verified as follows: CnLl = (Cl O C2) n
L1 = (C1 n L1) CI (Czn L1)= Cl (E (C2n L1).
Similarly we can examine that B n Lt = Bt g (Bz n
L1), L1 = Lr (E 62n L1)' B n L1 = (C n L1) tE (Fn
L1). Tbe last equation above represents tbat F n L1 is
the unertainty space of (C1,81, L1, fil, El) O (C2 n
LyB2n L1, L2r. Lp*2lB2aL1, E2ll2nt,1).
Suppose the representation matrices of Bel, Bel1, and
Bel2 arc r€spectively Q, Qt, and Q2. According to
Leuunas 6,'1, arrd 9 and Thouem 4, the represenation
maEix of (C n L1, B n LyLl, rupnLl, EtsnL1) is

eJLt = {RuDGr^f, {NcDGtnf2)
Swp(F1nc2)Qrl JFrdetsvffi 

1nF2)
surp(cr 

^f i)Q2l 
Jr2nr 

1 1 
Jr'r

= Ruffi1nF2) {tswp@lnfrl
Surp(F1 nC/Qr I 

fFr deISc/p(F 
ln6. ,

su/p(cl 
^F2)el 

Jr2nr 
1 
Jr 1

= Ruffi1nF2) (.tsuffirnfrl
surp(F1nQ)Q, rL11 JFlnFnLl g

tsu/p(Fl n['rsurp(cl^['rQ2Jr'1/r2nrnr'1 1

=Ruffi 1n(Fznt r) t tsuryG1 n(F2nL 1))

Surp(Fl^crQrt Jrr^$^1r)e tSup6rn(F2nL1))
Svp((F2nL1)"c I)QJLtlJ(F2nL1)nGnL r) )
= RUD(Frn(Fz^L1) t tsu/pGrn(F2nL1))
swp(Fl^(cbnr1))Qr J 

Jrln(FnL1)6

ISnffi 1n@2nL 1 ))Swn((F2nL1) nC 1)

qrJt 1/{f2nf,1)n(FnL| ;.
The last term is just the reeres€ntadon matrix of combi-
nation (Cr, 81, L1, fll, El) O (Q n LpB2n L1r L2 n
L y tP B 2aL1, f'n2nl-1).

ACK\OWLEDGMEIIT
I am indebted to Professor Shafer, rmder whom it has
been my privilege to sody Dempster-Shafer tbeory of

belief ftrctios. This paper benefited ftom many dis-
cussions with hofessor Shafer and the foundational
work done by Professors Dempster (Dempster 1990)
and Shafer (Shafer 1992). The research was supported
by aresearch assistantship ftm the Harper Fund.

REf,ERET{CES

DEMPSTER, A. P. (1990a) Construction and local
compuadm aspects of nenro* belief functions. In
Oliver R. M. and Smith J. Q. (eds.) Influence
Diagrams, Belief NeB, and Decision Analysis,
Chich€st€f lohn Wiley md Sons.

DEMPSTER, A. P. (1996) Norrral Belief Functions
and thelhlmm Filter. Research ReporL Department
of Staigics, Hevdd University.

DEMPSTER, A. P. (1969) Elemcnts of Continuous
Multivariate Analysis. Massachusetts: Addison-
lilesley.

KONG, A" (1986) Muhtvariate Belief Functions and
Graphical Models. Ph.D. Thesis, Deparurent of
Sani$ics, Ilarvad University.

SHAFER, G. (1976)A MatlurraticalTluory of Evidcnce.
hincetm: Princeon University Press.

SHAFER" G. (192) A Note on Demp*er's Gaussiaa
Belief Ftnctions. Worting paper, University of
Iftnsas.

SHAFE& G., SHENOY, P. P. AND MELLOULI, K.
(1987) Propagating belief functions in qualitative
tdartov Trers,. Irten aliorul Journal of Approxirute
Reasoniag,3, 383-411.

SHENOY, P. P. AI.ID SHAFE& G. (1990) Axioms for
Probability and Belief-Function Propagation.
Wrcertainty k Artifl,cial luelligence, 4, 169 -198.

LAI.ruTZEN, S. L. AT.ID SPIEGELHALTER, D. J.
(1988) Local computation with probabilities on
grryhical structres and their application to expert
systems (with discussion). Journal of the Royal
Statistical Society, Series B, 50,757-nA.

Lru, L. P. (1993) Local Cmpution of Gaussian Belief
Functions. \\rorking Paper No. 255, School of
Businesq University of Kansas.

330


