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ABSTRACT

It is widely recognized that probabilistic graphical models provide a good framework
for both knowledge representation ud probabilistic inference (e.g., see [2],[4]).

The dynamic behaviour of a system which changes over the time needs an implicit or
explicit time representation. kr this paper, an implicit time representation wing dynamic
graphical models is proposed-

Our goal is to model the state of a system and its evolution over the time in a richer
and more nauml way than other approaches together with a more suitable treatment of the
inference on variables of interesr
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1 INTRODUCTION
It is widely recognized that probabilistic graphical models provide a good framework

for both knowledge representation and probabilistic inference (e.g., see [2],U41).

The dynamic behaviour of a certain system which changes over the time needs an
implicit or explicit time representation. To model such systems is a very important task the
initial structure of the model and its propagation over the time, the probabilities anached ro
the stmcture, the qualitative and quantitative interrelations among variables in different time
slices, etc., are several issues to take into account.

In this paper an implicit time representation using dynamic graphical models is focused.

The goal is to model the state of a system and its evolution over the time in a richer
and more naNral way than other approaches together with a more suitable treatment of the
inference on variables of interest, according to bayesian methodology.

The qualitative and quantitative issues in the construction of probabilistic dynamic
models are desctibed in detail in Section 2. In Section 3, a fonnulation of the sequential
procedure for making inference over variables is proposed. A briefly comment about related
work is shown in Section 4. Finally, in Section 5, conclusions and future work are discussed.
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2 GENERAL ISSUES IN TIIE CONSTRUCTION OF PROBABI.
LISTIC DYNAMIC MODELS
In the following, a probabilistic dynamic model is a sequence of graphs indexed by the

time, representing the temporal evolution of a system. Each graph symbolizes the system state
and the dependences among its components at a given time. The dynamic behaviour of the
system components is described by a set of temporal dependences among these components in
differenttime slices.

Furthermore, these dependences are quantified by conditional probability tables
associated with the system components.

In order to mal<e the management of such models easier a set of restrictions must be
considered, for both its qualiative and quantitative aspects.

2.1 QUALmATTVE TSSTIES

The components that describe any dynamic system to be modeled can be spllt up into
observables and non-observables and they will be depicted by discrete random variables (since

the discretization of a continuous variable is always possible, this is not a very restrictive
assumption). Observable components collect the evidence of the system measured in each
time slice and the main goal will be to make inferences about the present or future state of
non-observable componen6, given the accumulated information

For the purposes of ttris paper, the above classification is adequate. However, another
more qpecific types of observable variables could be considered, in order to exploit ttreir
feaures: rariables which are independent of time (e.9., sex, chromosomic deficiencies, etc.);
variables which tend to keep the sarne value (e.9., "smoker/non smoket'' status, economic
stafts, etc.).

Two types of relationships among variables must be considered: those restricted to the
sarne time slice and those benreen different time slices.

2.1.1 Relationships in the same timeslice

The relationships among variables in the same time slice will be explicited according to
the following criteria:

. relationships benveen observable and non-observable variables wiU be described by
directed edges from the former to the latter (see Figure l), meaning that the evidence
received in the current time slice modilies the beliefs about the states of the non-
observable components.

. relationships benreen non-observable variables wil be described by non-directed
edges. There is no reason in assuming either causality or sequentiality because these
feanres cannot be observed in such variables.

. reluionships betrveen observable variables won't be considered. A parsimonious
consuuction of the model and assuming that every observable variable will always be
observed, justify not to consider these relationships.

h Figure l, a graphic scheme of these criteria is represented. Shaded nodes represent
observable variables. The remainder are non-observable variables.
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In the first time slice, the special time where the system

begins to be observed, the graphical model represents a

summary of the behaviour of the system until that moment and

the structure in that time (together with the intertemporal
strucnre) will determine the evolution of the system.

2.1.2 Relationships between different time slices

The relationships among variables in different time slices
will tle explicited according to the following criteria:

. the relationships will be drawn using directed edges,

from the older time to the newer time, meaning the natural time sequence.

only relationships among non-observable variables will be considered (as depicted in
Figure 2). On the one hand, the influence of the past in the observable variables is

irrelevant, because they will be certainly known sooner or later. On the other hand, we
consider that the influence of the past in the the non-observable variables is well
described only through the non+bservable variables (for insunce, let us think in a
graph representing the evolution of a patient, who shows certain symptoms (observable

variables). These s),rnptoms lead to a set of possible diseases (non-observable

variables). It's clear that the information of the symptoms shown in a certain day, must
modify the beliefs about the possible diseases in posterior days but this information will
be irrelevant if the disease is known). Therefore, the relationships won't be direct but
indirecr

Figure 2

From our point of view, the arrows of
the directed edges don't mean cause-effect
relationships. They reflect either sequential
relationships, inherent to every system evolving
over the time, or a naurral way of reasoning
(first, to observe the evidence and after to
guess about the non-observable).

Combining dfuected and undirected
edges forces us to consider chain graphs and to
use their Markov properties, described in [7].

2.2 QUANTTTATTVE ISSUES

Irt us denote

E - { observable variables at time t}

H, = { non-observable variables at time t}

Sr = { E, H, } (it describes the whole system at time t} (see Figure 1)

In order to simplify the model and to malce it manageable, a markovian behaviour is
auached to {S,}pe, i.e.,
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where P is a probability disribution
properly defined in some product space.
This property allows to observe all the
past history completely summarized in the
more r@ent pilst

Taking into account the markovian
condition, arrows from two previous time
slices to a posterior time slice won't
simultaneously exist in the graphical
representation. Furthermore, dl the
iurows from the past adse from the
inmediately preceding time slice (see

Figure 3).

The meaning of the likelihood P[ElH,,Dnr]
is clear: gnen all the past information and
assuming a certain state in the non-observable
variables, which behaviour would the observable
variables have? This likelihood allows the next
decomposition:

e[E,1H,,o,.,] * e[s,lo,-,] =

= I n[s,1n,.,] r[H,., 1o,.,]
Ht_t

Finally, all ttrc probabilities and structures discussed in Section 2 musr be property
elicitated (using, if possible, a database and/or an expert). In his paper, we don't focus this
elicitation.

3 INFERENCE OVER THE NON-OBSERVABLE VARIABLES
\Me describe the sequential procedure which allows inference urd forecasting about the

present or future states of the non-obsenable variables. Let us represent the accumulared
evidence up time t by D1={ln, Du1}(with Do={Eo}). Four steps are considered:

. Step.I: Measure the observable variables in the time t and, thercfore, consider D r.

. Step 2: Infer the beliefs of the states of the non-observable variables in the time slice t
(see Figure 4). By Bayes:

e[H,lo,] * p[H,1p,.,] r[e,[H,,o,.,]

and that means a modification of the forecasted beliefs in the previous iteration. We
defend to modify the beliefs after receiving new evidence instead of building it again.

In order to exploit the new supplied information, a graph in time t must be
considered. While there aren't evidence against the structure used in previous time
slices, we propose to keep it (this is defensible in systems not abruptly changing).
Therefore, D, implicitly carries to inherit the strucure of the pasr
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where P[SJH"r] can be factorized according to the chain graphs way:

p[s, 
1H,., ] = fl p[rt ]fI e[c; loo(c: )]jk

where EJe EVj; C,kstands for a chain component in H, and bd( C,k ) stands for the

boundary of that component, as defined in t7].

Step 3: Forecast the states of the non-obsenrable variables in the time slice t+1,
assigning beliefs to them. Using the markovian property in {S,},:o, it turns out that

p[H,.,|o,] = IP[H,.,1H,] r[H,lo,]
Ht

that is, a weighted mean of ransition probabilities associated to the non-observable
varia"bles from a period of time to other. The weightings are the actual beliefs in the
state of such variables, grven all the collected information.

In ttris forecasting srcp, the independence of non-observable variables in time
t+1, given D, , must be supposed (ttre relationships mustn't appear we are forecasting

the state of the variables in the future but we don't achrdly know (in time t) if the
relationships among non-observable variables remain in the future) (see Figure 5).
Accordingly, we can factorize the previous formula" using the local markovian
property in a chain graph:

p[H,.,1o,] = 
](f|r[Hi.,lr,(ui.,)]) 

e[H,;o,1

with Hj., € H,*1, vj and r,(H1.,)= {rll= iurow (nl,nl.,)}

4 RELATED LITERATURE
Cooper, Honriu and Heckerman t3l

propose a severe set of restrictions to be

considered in temporal probabilistic reasoning
but they do not consider stochastic processes for
modeling the temporal evolution.

Kjaerultr t8l proposes a schema for
reasoning in dynamic probabilistic nenvorks and

he consideres Markov chains for modeling the evolution of the system.

Dagum and Galper [4], Dagum, Galper and Horviu [5] and Dagum, Galper, Horviu
and Seiver t6l simplify the assessment of conditional probabilities in dynamic nenvorks by
employrng simple parametric decompositions. Whenever ceftain dependence conditions don't
hold such assumptions are noteasily justifiable.

Beradni [1], Provan [11] and Provan and Clarke [12] propose to use semi-markovian
processes. Furthermore, in [l] y Uz} they assume that each variable satisfies the Markov
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property and they infer the markovianity of the whole system (this is only supported under
restictive independence assumptions, from our point of view).

5 CONCLUSIONS AND FUTURE WORK

In this paper, a procedure for modeling dynamic systenu has been proposed. We have
jnstified the use of chain graphs instead of directed graphs. The elicitation of the structure of
dynamic models using arrows can be very dificult from an expert and almost impossible from a
database. Our model only consider iurows for temporal or sequential relationships.

The sequential betiefs updating in our dynamic model is closer to the naural way of
thinking of the experts than other approaches that generalize classical time-series analysis or
collapse the evidence ofthe past and presenl.

Obviously, there are many topics to be focused in the future. The most important are
to use databases for acquiring probabilities and learning structures as much as possible; and
relaxing certain resrictions (fixed structures; only relationships benveen two consecutive
times; erc.).
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