
STRUCTUR.E TEARNING OF BAYESIAN NETWORICS BY HYBRID
GENETIC ALGORITHMS

P. Larraff,aga, R.H. Murga, M. Poza, C.M.H. Kuijperc

Dept. of Computer Science and Artificial lnteliigence
University of the Basque Country

P.O. Box 649, 820080 Sau Sebasti6a, Spain
e-mail: ccpia.mup@si. ehu.es

ABSTRACT
This paper demonstrates how Genetic Algorithms caa
be used to discover the structure of a Bayesian Net-
work from a given database with cases. The results
presented, were obtained by applying four different
types of Genetic Algorithms - SSGA (Steady State
Genetic Algorithm), GAd (Genetic Algorith'n elis-
tist of degree l), hSSGA (hybrid Steady State Ge
netic Algorithm) a;od the hGAe) (hybrid Genetic AI-
gorithm eiitist of degree ,\) - to simulations of the
ALAR.I\,I Network. The behaviour of the mentioned
algorithms is studied with respect to their params
ters.

KeSrwords: Bayesian Network, Genetic Algorithms,
Structure [,sarning.

1. INTRODUCTION

In recent yea^rs, the search for the structure of a Ba-
yesian Network able to reflect all exisring relarions
of interdependence in a database of cases has consti-
tuted a research topic of fundamental importance.
Although the first algorithms were related uo tree
and polytree structures (see for instance Chow and
Liu (1968), Rebane and Pearl (1989)),'research has
been concentrated upon multiple connected struc-
tures (Fung and Crawford (1990), Eerskovits aad
Cooper (1990), Cooper and Eerskovits (1g92), Bouck-
aert (1993), Wedelin (1993), Lauritzen et al. (1g98),
Chichering et al. (1994), Bouckaert (1994)).

In this article we propose to obtain the Bayesian Net-
work structure with the help of an intelligent search
process, based on Genetic Algorithms.

2. GENETIC ALGORITHMS

Evolutionary Aigorithms are probabilistic search al-
gorithms which simulate natural evolution. They
were proposed about 30 years ago. Their application
to combinatorial optimization problems has, however,
only recently become an actual research topic. Three
different types of Evolutionary Algorithms exist: Ge
netic Algorithms (Holland (1975), Goldberg (1989),
Davis (1991)), Evolution Strategies (Schwefel (1967))
and Evolutionary Prograrnming (Fogel (1962)) . This
paper, however, focusses upon Genetic Algorithms
(GAs). GAs are search algorithms based on the me
chauics of uatural selection and genetics. They com-
bine "survival of the fittest" a^mong'string structures
with a structured yet randomized information ot-
chaage to form a search algorithm which, under cer-
tain conditions, evolves to the optimum with proba-
bility I (Eiben et al. (1990), Chalraborty and Dasti-
dar (1993), Rudolph (1994)).

In GAs the search space of a problem is represented
as a collection of individuals. The individuals are
represented by character strings, which are often re.
ferred to as chmmosornes. The purpose of a GA is
to find the individual from the search space with the
best "genetic material". The quality of an individual
is measured with an objective function. The pa^rt of
the search space to be examined in each iteration is
called the popalalion.

A Genetic Algorithm approximately works as follows.
First, the initial population is chosen at random, and
the quaiity of each of its individual is determiued.
Next, in every iteration pa^rents are selected from the
population. These pa"rents produce &ildren, which
are added to the population. For all newly created
individuals of the resulting population a probability
near zero exits that they can "mutate", i.e. that they
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change their hereditary distinctions. Later, some in-
dividuals are removed from the population according
to a selection criterion in order to reduce the popula-
tion to its iuitial size. One iteration of the algorithm
is referred to as a gcnentioa.

The operators which define the child production pro-
cess and the mutation process are called the crossooer
o perator alr,d. the mztolioa operal or, respectively. Mu-
tatiou aod crossover play different roles in the GA.
Mutatiou is ueeded to explore new states and helps
the algorithm to avoid being trapped on local optima.
Crossover should increase the average quaiity of the
population. By choosing adequate crossover and mu-
tation operators, as well as a reduction mecha,nism,
the probability that the GA results iu a near-optimal
solution in a reasonable number of iterations is en-
larged.

In Figure I we show the basic structure of a Genetic
Algorithm (GA).

BEGIN GA
Obein thc initial populaticr ar random.

WHn ENOTslop DO

BEGIN
Sclcct partats ft,om thc poprdadon.
Producc drildren from thc sclcctcd parents. Muterc rhe chrildrcn
Add thc chil&ea o thc population-
Reducc the pogrlatio,n o is criginal sizc.

END

END GA

Fipre 1 : Basic Smrcore of &e Genetic Algorittrm ( GA ).

3. PROPOSED APPROACH

We represent a Bayesian Network structure by a con-
neclioilg mdkix C = (cii);,j=r,..,n, lvhere

^.. _ I I if U is a pareirt of i) and (i > r),
"'r-\ 0 otherrvise.

The inequality i > j originates in the assumed an-
cestral order between the variables. Because of the
inequality the crossover and muration operators to
be used are closed operators.

We consider four different Genetic Algorithms to u'hich
we refer as the SSGA ( Steady Srate Genetic Algo-
rithm), the GAe) ( Geneuic Algorirhnr elitist of de-
gree )), the hSSGA (hybrid Sreadl'Siate Genetic Al-
gorithm) and the hGAe) (hybrid Genetic Algorithm

elitist of degree )).

In an iteration of the SSGA and the hSSGA only
one uew individual is created, while in the GAe) and
the hGAd the generation replacement has a global
cha"racter. lo all algorithms, the reduction criterion
is elitist. In the SSGA and the hSSGA, the created
individual is compared with the worst existing indi-
vidual at the time of creation. In the GAe), and
the hGAd, however, the population at time t * 1

consists of the A best individuals of the set of the I
individuals which constitute the population at time
t and their ) created children.

The behaviour of all algorithms is studied with the
help of three differett populotion sizes ) () = 10,

l=50,)=100).
The objectioe fimction to be used to evaluate the
quality of a structure, is based on the formula pro
posed by Cooper and Herskovits (1992), for a joint
probability P(Bs,D) of a Bayesiau Network struc-
ture .B, and a database D, expressed in terms of the
natural logarithm. Therefore, our aim is to find the
structure with the highest joint probability.

The selcclioa furctior is based on the rank of the
objective function. If we denote by Ij the j-th indi-
vidual of the population at time t, and by '"*t(g(fi ))
the rauk of its objective function, the probability pi,r
that individual If is selected to be a parent is equal
to

Pi,t =
,""t (e(Ij ))
)() + 1)/2

Tbe reproduclion fuoction to be used is the socalled
l-point crossover operator. Following the selection
of two parents, the probability that these parents a"re

crossed is 1. This probability makes it feasible to
compare the algorithms.

The malation operolor consists of the probabilistic al-
teration of the bits, which represent the connectivity
matrix. This alteration is performed with a probabil-
ity near to zero. \4t consider two different mutation
probabilities p-, namelSr p- = 0.001 and p- = 0.01.

The algorithms slop when either, 10,000 structures
have been evaluated or when in 1000 successive eval-
uations, the value ofthe objective function ofthe best
structure corresponds with the average value of the
objeciive function.

The initial population is generated at random, suL
ject to the restriction [hat a node never has more
than nl parent nodes (in our case, m = 4).
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After applying the crossover and mutation operators,
the created structures do not irecessarily fulfil the re
striction that the nodes all have at most ,n parents.

To maintain this restriction, in a first approach (the

aigorithms SSGA and GAel), we select ,r parenrc

at raodom, (0 < , 3 *), for every node from the
parent nodes resulting from crossover and mutation.
This approach will give quite poor results. Therefore,
we try a second approach iu which the fundamental
characteristic is the hybridization of the previously
mentioned Geuetic Algorithms, with the help of a Io-
cal optimizer. This optimizer selects for every node
in a child structure, the best subset of at most rn ele
ments from the set of its parents nodes. The process

of generating child structirres and the application of
the local optimizer, is repeated in every iteration of
the algorithm.

4. RESULTS

We describe the results of an experiment in which
a database of cases generated by simulation of the
ALARM lietwork is used to search for the struc-
ture whicir has a ma-ximal joint probability. This
joint probabilic_,* is compared w'ith the corresponding
value of the structure of the ALARi\,I Network. AIso
the Hamming discance betrveen both structures, and
the number of evaluations needed to obtain conver-
gence are considered. All results were obtained with
a SPARCserver 1000 under operating system Solaris
AA2.6.

We applied the algorithms to a database of 10,000
cases generated with the ALARM Network, which
r,eas constucted by Beilinch et aI. (1989) as a pro
totype to model potential anesthesia problems in the
operating room. The simulation of the 1.0,000 cases

of this network has been achieved with the help of a
Monte Carlo technique developed for Bayesian Net-
works by Henrion (1988). It corresponds with the
first 10,000 c.rses generated by Herskovits (1991). We
have considered different subsers consisring of the
first 100,200, 500, 1000, 2000, 3000, and 10,000 cases

from the original database. The evaluations of tlie
initial structures for the diferent databases can be
seen in Table 1.

All algorithins are evaluated u'ith respect to the pop-
ulation size and the muiatiou rate. For ever.r' pos-
sible combination of paratlleters 10 executions were

carried out. Therefore, tire toral number of per-
formed evaluations for every dauabase of cases has
been2x2x3x2x10=240.

Namber of coses

ALARM Network
logP(Bs, D)

100
200
500

1000
2000
3000

10,000

-6.3860e02
-1.1413e03
-2.6461e03
-5.0345e03
-9.7291e03

-1.4412e04
-4.7086e04

Table 1: Evaluation of the ALARM Bayesian Net-
work structure with diflerent simulation sizes.

In Table 2 and Table 3 the results are preseDted. The
legend BOF means the best value found of the ob.
jective function and AOF is the average value of the
objective function. The legend ED refers to.the Eam-
ming distance between the ALARM Network struc-
ture and the one with the best objective function,
while the number between parenthesis is the average
Ea,rrming distance.

By comparing Table 2 with Table 3, we see the im-
portance of the local optimizer. While in Table 2 only
for small population sizes (l=10) the corresponding
evaluation function of the ALARM Network was im-
proved, all results of the hybrid algorithms hSSGA
and hGAeI (see Table 3) were better than the ones
presented in Table 1.

Another rema,rkable point is the small variabiiity in
the results found by the hybrid algorithms (see Ta-
ble 3) with respect to the ones obtained by the SSGA
aad the GAel (see Table 2).

Because of the meutioned considerations, we decided
to analyze the algorithms SSGA and GAel sepa-

rately from the hybrid algorithms.

The analysis ofthe 1680 (240 x 7) runs has been car-
ried out using the Kruskal-Wallis test, which looks
for diferences statistically signifi cants.

1.- Analysis of the results of the SSGA and
the GAel

Objeclioe Fanction
The average behaviour of the SSGA is similar to the
GAe). There are no statistically significant differ-
ences in any of the 7 databases. However, statisti-
cally significant differences exist with respect to the
population size, obtaining the best performance with
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)=10. The results found with the mutation rate
p-=0.001 are significantly better than the ones found
with p-=0.01.

Namber of eoalaotions needed, unlil conoergence

For the population sizes I-50 and )=100, none of the
algorithms was able to converge under the stop cri-
teriou earlier described. For )=lQ, the convergence

velocity, both of the SSGA as well as of the GAe),
is siguificantly larger for p-=g.ggl thaa for p-=0.01
for all databases considered.

The poor results found with this first approach we at-
tribute to the "blind" parent selection process used

for maintaining the restriction on the ma:rimum num-
ber of parents.

2.- Analysis of the results of the hSSGA and
the hGAe)

Objeclioe Fanclion

For the small databases (100, 200 and 500 cases)
we found statistically significant differences for the
mutation rate, obtaining the best performance for
p-=0.01. The population size only resulted to be
significant for the 500-case database, where the per-
formance improved as the popuiatiou size became
Iarger. The large databases (1000, 2000, 3000 y 10,000
cases) did give statistically significant differences with
respect to none of the three parameters considered
(the type of the GA, the populatiou s .& umber of eool-
aations need,ed antil conaergence

The stop criterion was sufficient for guarauteeiug the
convergence of the hybrid algorithms. We fouud,
for all databases, that the hSSGA couverges signifi-
cantly faster than the hGAe). Moreover, the algo
rithms converged faster as the population size be'
came smaller. Finally a mutation rate equal to 0.01
resulted in a faster convergence than a mutation rate
of 0.001.

The best structure obtained by the hybrid algorithms
coincided for both the algortihms and was found with
both the 3000-case database as w'ell as the 10,000-
case database. If we compare this structure (see

Figure 2(b)) w'ith the ALAR\{ Netrvork (see Figure
2(a)), we see that the oniy diference betrveen the trvo
structures is the arc from node 12 to node 32, which
is missing iu the best structure found by the hybrid
algorithms. The best struc[ure found by rhe h1'brid
algorithms u'ith the 2000-case daca.base is shos'n in
Figure 2(c). This structul'e iras, in comparison rvith
the ALARIvI Netu'ork, trvo additioual arcs (the arc
from node 24 to node 10, and the arc from node 30
to node 3) and one missing arc (the arc from node 12

to node 32).

The obtained improvements using the local optimizer,
we interpret as an empirical demonstration of the va-

lidity of our hybrid approach. The local search re
lated to every node involves that unimportant paJts
of the search space are not examined.

5. CONCLUSIONS AND FUTUR^E
RESEARCH

We have illustrated how the genetic approach can be
used in the Structurs lgarning of Bayesian Networks
from a database of cases.

First, we have tried an approach in which a "blind"
selection process was used to "repair" created struc-
tures with nodes which have too many parents. Sec-

ond, we have followed a hybrid approach.The results

of the latter approaci a^re far better than the results
of the former approach. In this case the results are

independent of the generatiou gap and, in outline,
also of the mutation rate a^ud the population size.

In the future we pian to tackle the more general proL
lem in which the assumption of the ancesrral ordering
between the variables is not assumed. Other poten-
tial research is reiated to the use of different evalu-
ation functions, some of which appear in Boucliaert
(1993, 1994) and Chickering et al. (199a).

We expect that our approach can also be applied to
dynamical Bayesian Networks. Also, it would be in-
teresting to investigate the use of other heuristical
sea,rch methods, like i.e. Tabu Search.
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)=10
sSGe
)=50 l=100 l=10

GAel
)=50 l: 100

BOF
100 AOP

TD

-6.20L4e02
-6.3952e02

31(48.2)

:6.2363e02

-6.468M2
32(51.7)

-6.3223fo2
-6.5899e02

34(56.5)

-6.2650e02
-6.5037e02

38(s5)

-6.4073e02
-6.6497e02

51(6s.7)

-6.2090e02
-6.3993e02

37(4e.4)
BOF

200 AOF
frD

-1.1256c03
-1.1556e03

1s(38.5)

-1.1307e03
-1.16?3e03

re(42.4)

-1.1432e03
-1.1911e03

34(s2.e)

-1.134Ee03
-1.175ffi3

22(45.s)

-1.15E7e03
-1.2038e03

37(57.e)

-1.1253e03
-1.1543e03

17(3E.r)
bo!'

500 AoF
ED

-2.6350e03
-2.6918e03

11(34.8)

-2.643Ee03
-2.7186c03

1E(41.2)

-2.6741e03
-2.7740c03

2e(s2.e)

-2.6492eO3
-2.726?*,03

22(45.1)

-2.7069e03
-2.7946e03

41(s8.8)

-2.6354e03
-2.6908c03

12(33.2)
BOf

1000 AOF
ED

-5.0279c03
-5.1117e03

4(30.2)

-5.0404e03
-5.1741e03

1s(40.8)

-5.0799c03
-5.2491e03

28(53.7)

-5.0611e03
-5.2026e03

20(45.3)

-5.1533e03
-5.3185e03

38(60.5)

-5.0286c03
-5.1137e03

2(30.2)
BOF

2000 AoF
ED

-9.7200c03
-9.8504e03

3(30.7)

-9.7440e03
-9.8890e03

11(41.4)

-9.8r59c03
-9.9481e03

2E(5{.s)

'9.7538e03
-9.9188e03

16(4?.6)

-9.E769e03
-10.0068e03

43(66.1)

-9.720()c03
-9.8r136e03

3(30.1)
bot'

3000 AOF
frD

-1.4404e04
-1.4578c04

1(2e)

-1.4425e04
-1.4722e04

12(41.4)

-1.4485e04
-1.495?e04

2e(56.2)

-1.4450e04
-1.4E10e04

22(50.5)

-1.4649e04
-1.5173e04

48(6E.8)

-1.4405e04
-1.45t0e04

2(30.3)
BOF

10,000 AoF
ED

-4.7079e04
4.7462e04

2(31:1)

-4.7118e04
-4.8019e04

15(46.4)

4.7279,€0.4
-4.E506e04

34(61.2)

-4.7163e04
-4.8264e04

26(55.6)

4.7362e04
-4.9083e04

42ft2.3\

4.?079e04
-4.7531e04

2(32.s)

Table 2: Results obtaiued with the SSGA and the GAel.

Table 3: Results obtained with the hSSGA a^nd the hGAe).

I ='10
hSSGA

l:50 )=100 l=10
hGAc^

)'=50 )=100
BOF

100 AoF
ED

-6.1901e02
-6.1928€02

3{(35.6)

-6.I901e02
-6.1932e02

34(35.6)

-6.1901e02
-6.1921e02

33(3s.6)

-6.1901e02
-6.t927&2

34(3s.6)

-6.1901e02
-6.1920e02

32(3s.3)

-6.1901e02
-6.1945€02

34(3s.7)
BOF

200 AoP
ED

-I.1249c03
-1.1249e03

1e(1s.e)

-1.1249€03
-1.1253e03

1e(20)

-1.1249e03
-1.1249e03

20(20)

-1.1249e03
-1.1249e03

18(1s.6)

-1.12{9e03
-1.1250e03

17(1e-4)

-1.1249e03
-1.1249e03

rs(1e.e)
BOF

500 AoF
TTD

-2.6350e03

'2.6360e03
12(13)

-2.6350e03
-2.6353e03

r1(12.5)

-2.6350e03
-2.6350,e03

12(r2.3)

-2.6350e03
-2.6350e03

12(12.1)

-2.6350e03
-2.6350e03

11(12.1)

-2.6350e03
-2.6350e03

t2(t2.6)
BOF

1000 AoF
HD

-5.0279e03
-5.0279e03

4(4)

-5.0279e03
-5.0279e03

4(4)

-5.0279e03
-5.0279e03

. 4(4)

-5.0279e03
-5.0303e03

3(4.1)

-5.0279e03
-5.0279e03

4(4.1)

-5.0279e03
-5.0281e03

4(4.1)
BOf

2000 AoF
TTD

-9.7200e03
-9.7206e03

3(3.1)

-9.7200e03
-9.720M3

3(3)

-9.7200e03
-9.7200e03

3(3)

-9.7200e03
-9.7200e03

3(3)

-9.7200e03
-9.7200e03

3(3)

-9.7200e03
-9.7205e03

3(3.1)
BOF

s000 AoF
HD

-1.4404€04
-1.4404e04

1( 1)

-1.4404c04
-1.4404e04

1( 1)

-1.4404e04
-1.4404e04

t(1)

-1.4404e04
-1.4404e04

r(1)

-1.4404e04
-L.4407e04

r(1.2)

-I.4404e04
-1.4404e04

1( 1)
BOF

10,000 AoF
HD

-4.7078e04
-4.7078e04

1( 1)

-4.7078e04
-4.7082e04

1( 1.1)

-4.7078e04
-4.7078e04

1( 1)

-4.7078e04
-4.7083e04

1(1.1)

-4.7078e04
-4.7078c04

l(1)

-4.7078e04
-4.7078e04

l(1)
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(a)

(b)

(c)

Figure 2: (a) The ALARM network structure. (b) The network structure lea^rned by the hSSGA and the hGAe)
algorithms from a 1000Gcase and 300Gcase database generated from the ALARM network. (c) The network
structure lea,rned by the hSSGA and the hGAd algorithrns from a 200Gcase database generated from the
ALARM network. Arcs that a,re added or deleted with respect to the ALARM network are indicated with A
and D respectively

A
t
I
t
I
I
t

-a

I
I
I
I
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