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ABSTRACT

This paper demonstrates how Genetic Algorithms can
be used to discover the structure of a Bayesian Net-
work from a given database with cases. The results
presented, were obtained by applying four different
types of Genetic Algorithms — SSGA (Steady State
Genetic Algorithm), GAe) (Genetic Algorithm elis-
tist of degree A), hSSGA (hybrid Steady State Ge-
“netic Algorithm) and the hGAe) (hybrid Genetic Al-
gorithm elitist of degree A) — to simulations of the
ALARM Network. The behaviour of the mentioned
algorithms is studied with respect to their parame-
ters.

Keywords: Bayesian Network, Genetic Algorithms,
~ Structure Learning. ‘

1. INTRODUCTION

In recent years, the search for the structure of a Ba-
vesian Network able to reflect all existing relations
of interdependence in a database of cases has consti-
tuted a research topic of fundamental importance.
Although the first algorithms were related to tree
and polytree structures (see for instance Chow and
Liu (1968), Rebane and Pearl (1989)), research has
been concentrated upon multiple connected struc-
tures (Fung and Crawford (1990), Herskovits and
Cooper (1990), Cooper and Herskovits (1992), Bouck-
aert (1993), Wedelin (1993), Lauritzen et al. (1993),
Chickering et al. (1994), Bouckaert (1994)).

In this article we propose to obtain the Bayesian Net-
work structure with the help of an intelligent search
process, based on Genetic Algorithms.

2. GENETIC ALGORITHMS

Evolutionary Algorithms are probabilistic search al-
gorithms which simulate natural evolution. They
were proposed about 30 years ago. Their application
to combinatorial optimization problems has, however,
only recently become an actual research topic. Three
different types of Evolutionary Algorithms exist: Ge-
netic Algorithms (Holland (1975), Goldberg (1989),
Davis (1991)), Evolution Strategies (Schwefel (1967))
and Evolutionary Programming (Fogel (1962)) . This
paper, however, focusses upon Genetic Algorithms
(GAs). GAs are search algorithms based on the me-
chanics of natural selection and genetics. They com-
bine “survival of the fittest” among string structures
with a structured yet randomized information ex-
change to form a search algorithm which, under cer-
tain conditions, evolves to the optimum with proba-
bility 1 (Eiben et al. (1990), Chakraborty and Dasti-
dar (1993), Rudolph (1994)).

In GAs the search space of a problem is represented
as a collection of individuals. The individuals are
represented by character strings, which are often re-
ferred to as chromosomes. The purpose of a GA is
to find the individual from the search space with the
best “genetic material”. The quality of an individual
is measured with an objective function. The part of
the search space to be examined in each iteration is
called the population.

A Genetic Algorithm approximately works as follows.
First, the initial population is chosen at random, and
the quality of each of its individual is determined.
Next, in every iteration parents are selected from the
population. These parents produce children, which
are added to the population. For all newly created
individuals of the resulting population a probability
near zero exits that they can “mutate”, i.e. that they
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change their hereditary distinctions. Later, some in-
dividuals are removed from the population according
to a selection criterion in order to reduce the popula-
tion to its initial size. One iteration of the algorithm
is referred to as a generation.

The operators which define the child production pro-
cess and the mutation process are called the crossover
operator and the mutation operator, respectively. Mu-
tation and crossover play different roles in the GA.
Mutation is needed to explore new states and helps

“the algorithm to avoid being trapped on local optima.
Crossover should increase the average quality of the
population. By choosing adequate crossover and mu-
tation operators, as well as a reduction mechanism,
the probability that the GA results in a near-optimal
solution in a reasonable number of iterations is en-
larged.

In Figure 1 we show the basic structure of a Genetic
Algorithm (GA).

BEGIN GA
Obtain the initial population at random.
WHILE NOT Stop DO
BEGIN

Select parents from the population.

Produce children from the selected parents.

Mutate the children.

Add the children 10 the population.

Reduce the population 10 its original size.
END

END GA

Figure 1 : Basic Structure of the Genetic Algorithm ( GA ).

. 3. PROPOSED APPROACH

We represent a Bayesian Network structure by a con-
nectivity matriz C = (cij)i j=1,.. n, Where

—_ 1 if (j is a parent of 7) and (¢ > j),
Y7 1 0 otherwise.

The inequality ¢ > j originates in the assumed an-
cestral order between the variables. Because of the
inequality the crossover and mutation operators to
be used are closed operators.

We consider four different Genetic Algorithms to which
we refer as the SSGA ( Steady State Genetic Algo-
rithm), the GAeA ( Genetic Algorithm elitist of de-
gree A), the hSSGA (hybrid Steady State Genetic Al-
gorithm) and the hGAeA (hybrid Genetic Algorithm

elitist of degree A).

In an iteration of the SSGA and the hSSGA only
one new individual is created, while in the GAe) and
the hGAeA the generation replacement has a global
character. In all algorithms, the reduction criterion
is elitist. In the SSGA and the hSSGA, the created
individual is compared with the worst existing indi-
vidual at the time of creation. In the GAel, and
the hGAe), however, the population at time t + 1
consists of the A best individuals of the set of the A
individuals which constitute the population at time
t and their A created children.

The behaviour of all algorithms is studied with the
help of three different population sizes A (A = 10,
A =350, A = 100).

The objective funciion to be used to evaluate the
quality of a structure, is based on the formula pro-
posed by Cooper and Herskovits (1992), for a joint
probability P(Bs, D) of a Bayesian Network struc-
ture B, and a database D, expressed in terms of the
natural logarithm. Therefore, our aim is to find the
structure with the highest joint probability.

The selection function is based on the rank of the
objective function. If we denote by I{ the j-th indi-
vidual of the population at time ¢, and by rank(g(7))
the rank of its objective function, the probability p; :
that individual I7 is selected to be a parent is equal
to :

__— rank(g(1}))

N TP Y )

The reproduction function to be used is the so-called
1-point crossover operator. Following the selection
of two parents, the probability that these parents are
crossed is 1. This probability makes it feasible to
compare the algorithms.

The mutation operalor consists of the probabilistic al-
teration of the bits, which represent the connectivity
matrix. This alteration is performed with a probabil-
ity near to zero. We consider two different mutation
probabilities p,,, namely p,, = 0.001 and p,, = 0.01.

The algorithms stop when either, 10,000 structures
have been evaluated or when in 1000 successive eval-
uations, the value of the objective function of the best
structure corresponds with the average value of the
objective function.

The initial population is generated at random, sub-
ject to the restriction that a node never has more
than m parent nodes (in our case, m = 4).
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After applying the crossover and mutation operators,
the created structures do not necessarily fulfil the re-
striction that the nodes all have at most m parents.
To maintain this restriction, in a first approach (the
algorithms SSGA and GAel), we select n parents
at random, (0 < n < m), for every node from the
parent nodes resulting from crossover and mutation.
This approach will give quite poor results. Therefore,
we try a second approach in which the fundamental
characteristic is the hybridization of the previously
mentioned Genetic Algorithms, with the help of a lo-
cal opiimizer. This optimizer selects for every node
in a child structure, the best subset of at most m ele-
ments from the set of its parents nodes. The process
of generating child structures and the application of
the local optimizer, is repeated in every iteration of
the algorithm.

4. RESULTS

We describe the results of an experiment in which
a database of cases generated by simulation of the
ALARM Network is used to search for the struc-
ture which has a maximal joint probability. This
joint probability is compared with the corresponding
value of the structure of the ALARM Network. Also
the Hamming distance between both structures, and
the number of evaluations needed to obtain conver-
gence are considered. All results were obtained with
a SPARCserver 1000 under operating system Solaris
2.3. ' :

We applied the algorithms to a database of 10,000
cases generated with the ALARM Network, which
was constructed by Beilinch et al. (1989) as a pro-
totype to model potential anesthesia problems in the
operating room. The simulation of the 10,000 cases
of this network has been achieved with the help of a
Monte Carlo technique developed for Bayesian Net-
works by Henrion (1988). It corresponds with the
first 10,000 cases generated by Herskovits (1991). We
have considered different subsets consisting of the
first 100, 200, 500, 1000, 2000, 3000, and 10,000 cases
from the original database. The evaluations of the
initial structures for the different databases can be
seen in Table 1.

All algorithins are evaluated with respect to the pop-
ulation size and the mutation rate. For every pos-
sible combination of parameters 10 executions were
carried out. Therefore, the total number of per-
formed evaluations for every database of cases has
been 2 x 2 x 3 x 2 x 10 = 240.

Number of cases
ALARM Network
100 -6.3860e02

200 -1.1413e03

500 -2.6461e03

1000 -5.0345e03

2000 -9.7291e03

3000 -1.4412¢04

10,000 -4.7086e04

logP(Bs, D)

Table 1: Evaluation of the ALARM Bayesian Net-
work structure with different simulation sizes.

In Table 2 and Table 3 the results are presented. The
legend BOF means the best value found of the ob-
Jjective function and AOF is the average value of the
objective function. The legend HD refers to the Ham-
ming distance between the ALARM Network struc-
ture and the one with the best objective function,
while the number between parenthesis is the average
Hamming distance.

By comparing Table 2 with Table 3, we see the im-
portance of the local optimizer. While in Table 2 only
for small population sizes (A=10) the corresponding
evaluation function of the ALARM Network was im-
proved, all results of the hybrid algorithms hSSGA
and hGAe) (see Table 3) were better than the ones
presented in Table 1.

Another remarkable point is the small variability in
the results found by the hybrid algorithms (see Ta-
ble 3) with respect to the ones obtained by the SSGA
and the GAeX (see Table 2).

Because of the mentioned considerations, we dec'ided
to analyze the algorithms SSGA and GAel sepa-
rately from the hybrid algorithms.

The analysis of the 1680 (240 x 7) runs has been car-
ried out using the Kruskal-Wallis test, which looks
for differences statistically significants.

1.- Analysis of the results of the SSGA and
the GAel)

Objective Function

The average behaviour of the SSGA is similar to the
GAel). There are no statistically significant differ-
ences in any of the 7 databases. However, statisti-
cally significant differences exist with respect to the
population size, obtaining the best performance with
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A=10. The results found with the mutation rate
Pm=0.001 are significantly better than the ones found
with p,,=0.01. :

Number of evaluations needed until convergence

For the population sizes A=50 and A=100, none of the
algorithms was able to converge under the stop cri-
terion earlier described. For A=10, the convergence

velocity, both of the SSGA as well as of the GAel,-

is significantly larger for p,»=0.001 than for p,=0.01
for all databases considered.

The poor results found with this first approach we at-
tribute to the “blind” parent selection process used
for maintaining the restriction on the maximum num-
ber of parents.

2.- Analysis of the results of the hSSGA and
the hGAel

Objective Function

For the small databases (100, 200 and 500 cases)
we found statistically significant differences for the
mutation rate, obtaining the best performance for
pm=0.01. The population size only resulted to be
significant for the 500-case database, where the per-
formance improved as the population size became
larger. The large databases (1000, 2000, 3000 v 10,000
cases) did give statistically significant differences with
respect to none of the three parameters considered
(the type of the GA, the population s Number of eval-
uations needed until convergence

The stop criterion was sufficient for guaranteeing the
convergence of the hybrid algorithms. We found,
for all databases, that the hSSGA converges signifi-
cantly faster than the hGAel. Moreover, the algo-
rithms converged faster as the population size be-
came smaller. Finally a mutation rate equal to 0.01
resulted in a faster convergence than a mutation rate

of 0.001.

The best structure obtained by the hybrid algorithms
coincided for both the algortihms and was found with
both the 3000-case database as well as the 10,000-
case database. If we compare this structure (see
Figure 2(b)) with the ALARM Network (see Figure
2(a)), we see that the only difference between the two
structures is the arc from node 12 to node 32, which
is missing in the best structure found by the hybrid
algorithms. The best structure found by the hybrid
algorithms with the 2000-case database is shown in
Figure 2(c). This structure has, in comparison with
the ALARM Network, two additional arcs (the arc
from node 24 to node 10, and the arc from node 30
to node 3) and one missing arc (the arc from node 12

to node 32).

The obtained improvements using the local optimizer,
we interpret as an empirical demonstration of the va-
lidity of our hybrid approach. The local search re-
lated to every node involves that unimportant parts
of the search space are not examined.

5. CONCLUSIONS AND FUTURE
RESEARCH

We have illustrated how the genetic approach can be
used in the Structure Learning of Bayesian Networks
from a database of cases.

First, we have tried an approach in which a “blind”
selection process was used to “repair” created struc-
tures with nodes which have too many parents. Sec-
ond, we have followed a hybrid approach.The results
of the latter approach are far better than the results
of the former approach. In this case the results are
independent of the generation gap and, in outline,
also of the mutation rate and the population size.

In the future we plan to tackle the more general prob-
lem in which the assumption of the ancestral ordering
between the variables is not assumed. Other poten-
tial research is related to the use of different evalu-
ation functions, some of which appear in Bouckaert
(1993, 1994) and Chickering et al. (1994).

We expect that our approach can also be applied to
dynamical Bayesian Networks. Also, it would be in-
teresting to investigate the use of other heuristical
search methods, like i.e. Tabu Search.
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SSGA GAel
A=10 A=50 A=100 A=10 A=350 A =100
BOF | -6.2014e02 -6.2363e02 -6.3223e02 | -6.2090e02 -6.2650e02 -6.4073e02
100 AOF | -6.3952e02 -6.4680e02 -6.5899e02 | -6.3993e02 -6.5037e02 -6.6497e02
HD | 31(48.2)  32(51.7)  34(56.5) | 37(49.4) 38(55) 51(65.7)
BOF | -1.1256e03 -1.1307e03 -1.1432e03 | -1.1253e03 -1.1348e03 -1.1587e03
200 AOF | -1.1556e€03 = -1.1673e03 -1.1911e03 | -1.1543e03 -1.1755e03 -1.2038e03
HD | 19(38.5)  19(42.4)  34(52.9) | 17(38.1)  22(45.5) 37(57.9)
BOF | -2.6350e03 -2.6438¢03 -2.6741e03 | -2.6354e03 -2.6492e03 -2.7069e03
500 AOF | -2.6918e03 -2.7186e03 -2.7740e03 | -2.6908e03 -2.7262e03 -2.7946e03
HD | 11(34.8)  18(41.2)  29(52.9) | 12(33.2)  22(45.1) 41(58.8)
BOF | -5.0279e03 -5.0404e03 -5.0799e03 | -5.0286e03 -5.0611e03 -5.1533e03
1000 AOF | -5.1117e03 -5.1741e03 -5.2491e03 | -5.1137e03 -5.2026e03 -5.3185e03
HD 4(30.2)  15(40.8)  28(53.7) 2(30.2)  20(45.3) 38(60.5)
BOF | -9.7200e03 -9.7440e03 -9.8159e03 | -9.7200e03 -9.7538e03 -9.8769e03
2000 AOF | -9.8504e03 -9.8890e03 -9.9481e03 | -9.8436e03 -9.9188e03 -10.0068e03
HD 3(30.7)  11(41.4)  28(54.9) 3(30.1)  16(47.6) 43(66.1)
BOF | -1.4404e04 -1.4425e04 -1.4485e04 | -1.4405e04 -1.4450e04 -1.4649e04
3000 AOF | -1.4578e04 -1.4722¢04 -1.4957e04 | -1.4580e04 -1.4810e04 -1.5173e04
HD 1(29)  12(41.4)  29(56.2) 2(30.3)  22(50.5) 48(68.8)
BOF | -4.7079e04 -4.7118e04 -4.7279e04 | -4.7079e04 -4.7163e04 -4.7362e04
10,000 AOF | -4.7462e04 -4.8019¢04 -4.8506e04 | -4.7531e04 -4.8264e04 -4.9083e04
HD 2(31:1)  15(46.4)  34(61.2) 2(32.5)  26(55.6) 42(72.3)

Table 2: Results obtained with the SSGA and the GAel.

hSSGA hGAel
A=10 A =50 A =100 A=10 A=250 A =100
BOF | -6.1901e02 _ -6.1901e02 -6.1901e02 | -6.1901e02 -6.1901e02 -6.1901e02
100 AOF | -6.1928e02 -6.1932e02 -6.1921e02 | -6.1945e02 -6.1927e02 -6.1920e02
HD | 34(35.6)  34(35.6)  33(35.6) | 34(35.7)  34(35.6)  32(35.3)
BOF | -1.1249e03 -1.1249e03 -1.1249e03 | -1.1249e03 -1.1249e03 -1.1249e03
200 AOF | -1.1249e03 -1.1253e03 -1.1249e03 | -1.1249e03 -1.1249e03 -1.1250e03
HD | 19(19.9) 19(20) 20(20) | 19(19.9)  18(19.6)  17(19.4)
BOF | -2.6350e03 -2.6350e03 -2.6350e03 | -2.6350e03 -2.6350e03 -2.6350e03
500 AOF | -2.6360e03 -2.6353e03 -2.6350e03 | -2.6350e03 -2.6350e03 -2.6350e03
HD 12(13)  11(12.5)  12(12.3) | 12(12.6)  12(12.1)  11(12.1)
BOF | -5.0279e03 -5.0279e03 -5.0279e03 | -5.0279e03 -5.0279e03 -5.0279e03
1000 AOF | -5.0279¢03 -5.0279e03 -5.0279e03 | -5.0281e03 -5.0303e03 -5.0279e03
HD 4(4) 4(4) . 4(4) 4(4.1) 3(4.1) 4(4.1)
BOF | -9.7200e03 -9.7200e03 -9.7200e03 | -9.7200e03 -9.7200e03 -9.7200e03
2000 AOF | -9.7206e03 -9.7200e03 -9.7200e03 | -9.7205e03 -9.7200e03 -9.7200e03
HD 3(3.1) 3(3) 3(3) 3(3.1) 3(3) 3(3)
BOF | -1.4404e04 -1.4404e04 -1.4404e04 | -1.4404e04 -1.4404e04 -1.4404e04
3000 AOF | -1.4404e04 -1.4404e04 -1.4404e04 | -1.4404e04 -1.4404e04 -1.4407e04
HD 1(1) 1(1) 1(1) 1(1) 1(1) 1(1.2)
BOF | -4.7078e04 -4.7078¢04 -4.7078e04 | -4.7078e04 -4.7078e04 -4.7078e04
10,000 AOF | -4.7078e04 -4.7082e04 -4.7078e04 | -4.7078e04 -4.7083e04 -4.7078e04
HD 1(1) 1(1.1) 1(1) 1(1) 1(1.1) 1(1)

Table 3: Results obtained with the hSSGA and the hGAel.
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Figure 2: (a) The ALARM network structure. (b) The network structure learned by the hSSGA and the hGAeA
algorithms from a 10000-case and 3000-case database generated from the ALARM network. (c¢) The network
structure learned by the hSSGA and the hGAe) algorithms from a 2000-case database generated from the
ALARM network. Arcs that are added or deleted with respect to the ALARM network are indicated with A
and D respectively. ;
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