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Abstract about the domain under observation. Concept

for-mation is defined as incremental conceptual
clustering [4]: incrementaiity is the ability to
maintain a conceptual structure, which is up-
dated after each observation.

1 Introduction

Many machine learning clustering algorithms
still use propositional logic to describe the data,
but seek for an enrichment of the language used
to describe concepts. Some systems use a e.x-

tended form of propositional logic, where con-
cepts are defined by logical formulae [1U. Oth-
ers use probabilistic concepls [3], where a con-
cept can be thought ofas a prototype (a typical
instauce) along with a probability distribution
on each dimension. More recent works extend
clustering techniques to higher ievel languages:
KBG [1] deals with first-order logic. Kr,ustun
[6] uses a Kr-onB-lite language to avoid com-
putationnal complexity and still keep comfort-
able represeniative power.

This paper examines the problem of ciustering
a sequence of objects that cannot be described
rvith a predefined list of attributes (or vari-
ables). In many applicatious, such a crisp rep
resentation cannot be determined. An exten-
sion of the traditionnal propositionnal formal-
ism is thus proposed. which allows objecrs to be
represented as a set of components. The algo-
rithm used for clustering is briefly illustrated,
and mechanisms to handle sets are described.
Some empirical evaluations are also provided,
to assess the validity of the approach.

The basic process of clustering consists in find-
ing coherent groupings from a given data set.
Each groupiag must exhibit suficient iatet-
nal cohesiveness. while maintaining enough dis-
tance to other members of the partition. Such a
definition of clustering importantly conditions
many techniques and algorithms devoted to the
automated discovery of clusters [7].

The statistical view on the problem. namely
the field of cluster analysis. essentially deals
rvith numerical and/or categorical data. where
objects are represented as feature vectors [2].
This representation is equivalent, in essence, to
propositionnal logic (or attribute-value formal-
ism). Derived clusters are usually represented
as centroids in the instance-space, these being
used for further classification of nerv data (ei-
ther with the help of a distaace measure, or
rvith some implicit probability distribution).

On the other hand, machine learning research

on conceptual clustering [11] conducted during
last decade focused on the representation of in-
stances and concepts, the goal being to derive
some effective knowledge (i.e. generali:alions)

However, there are domains where many nu-
merical aspects are to be considered: ia such
domains. logic-based formalisms apply diffi-
cultly, and their generality might be penal-
izing. This paper describes an exteusion of
attribute-value formalisms which allows obj ects
to be represented as somewhac (w)slructured:
in that framework, an object is built up from
any number of components. Earlier work on
such extensions of propositional formalisms in-
troduced the name of slractured corcept forma-
lioz (see[i2]), because objects exhibit several
levels of detail in terms of their structure.

Section 2 briefly reviews the algorithm used

for clustering. Section 3 describes how the clus-
tering can be done with objects described as

sets. Section 4 gives three examples of sets clus-
tering.
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2 Concept Formation
The underlying concept formation algorithm
used throughout this paper is Coswpsl. This
algorithm forms a hiera.rchy of clusters from
a sequence of objects. Each object is an
attribute-value list. Derived clusters (or con-
cepts) are represented in a probabilistic form.
Attributes arc lyped: the algorithm is able to
handle nominal variables as well as numerical
ones. In the case ofnumerical attributes, an un-
derlying normal distribution is assumed, whose
parameters are estimated. Therefore, a con-
cept stores for each numerical attribute the es-

timated mean and variance with respect to the
covered objects. The variances help define a
global predictivity score for one concept, named
tr, which is an averaging of the inverse of the
standard deviation over all attributes.

Each object is incorporated into the concept
hierarciy in turn. When incorporating a new
object, a search is performed by hill-climbing
through a space ofconceptual hierarchies. The
object is sorted down through the current hi-
era,rchy. At each level, several operators are
temptatively applied to the current partition,
some of them having restructuring properties.
The best of these operators is definitely applied,
and the process restarts one level deeper (see

[3, 5] for a complete description of the alge,
rithm).

When several distinct pa,rtitions are gener-
ated, a heuristic ca,lled. category dilitg is used
to select between them. Category atility eval-
uates the global qaalitg of a single partition.
This evaluation is based on the individual pre-
dictivity of each concept involved. The parti-
tion (C, [Cr, . . .,Cx\) is evaluated by:

1K

;f, P(c*) [u(cr) - tr(c)]
l=1

where tr(C*) measures the individual predic-
tivity of C-. This expression is an averaging
of the predictivity-gain when stepping from the
concept C to one of its sub-concepts. The indi-
vidual predictivity of a concept is defined as:

ll.u this paper, we consider Coawsg to be the algo-
rithm described in [3], with a.n extension to deal with
numericalattributes developpedin Ct rcsrr(see [5]), but
without any other extersion from Ct.lssm.

,4; is predictive in C, (i.e. how precisely values
of .A; can be predicted for members of C.).

In this framework, an learning-problem is de-

fined on a set of attributes. Observations must
be represented by a value for all (or some) of the
attributes. Concepts or clusters must represent
some distribution of values for each attribute
of the learning-problem. Attributes may be
of different types. The definition of a type
of attribute must thus include a value.space, a
way to represent a distribution of such values.
and a predictivity measure for such a distribu-
tion. As originally described in [3], CogwBa
provides the definitions for nominal (categori-
cal) attributes. Crlsstt [5] provides the def-
initions for numerical (continuous) attributes.
The LnsynINTH system [12] further extends
CogwBs to deal with composite objects by the
way of "structured" attributes. The next sec-

tion introduces a new type ofattributes, called
"set" attributes, defines the representation of
values and distributions, and gives a predictiv-
ity evaluation measure for such distributions.

3 Clustering Sets

3.1 Representation of Objects
The aim of this paper is to describe a concep
tual clustering system that allows objects to be
represented as sets of componenls (i.e. suL
objects). The representation formalism is in-
spired by propositionnal logic. In that frame.
work, each object is a list of attribute-value
pairs. Our system allows a value to be a set
of objects (instead of being one single numer-
ical or categorical quantity), all these objects
being described with the same set of attributes.
Members of such a value are less abstract ob-
jects which are part of the description of the
englobing (abstract) object. To illustrate this
notion, an example domain from the littera-
ture will be used. This domain is the one of
qvadrtped, marnmals:. each object is constituted
of several suLobjects (cylinders), each of them
being, in turn, descibed with several numerical
features. An observation of that domain may
be written down as:

Dogl=[cyts=1
[r=13.9,1=25.1] ,

[r=6.5,1=10.0],
[r=4.7,1=6.3] ] l

In that case, the object Dogl is described
with only one attribute, named cy1s, whose
value is a set containing three sub-objects.

C*A;tr

where II(.,{;,C,) quantifies how the attribute

I

D
d=1

tr(c.) = +
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Each ofthese sub-objects is described with two
numerical attributes (r and 1)2.

The previous section briefly explained how to
build a concept hierarchy. It was said that this
problem can be cast iuto the problem of quan-
tifying how predictive a concept is. In the case

of the domain described above, the question is:

" Eow can one quantify the predictivity of a set
of animals ?".

The answer to this problem Iies in the
fact that a concept hierarchy can be built
at each level of abstraction. In the animal
domain it means that two conceptual hierar-
chies are maintained: one for the cylinders
(the component-concept hierarchy) and one for
the animals (the composite.concept hierarchy).
The results of incorporating the cylinders form-
ing an animal are used during the incorporation
of the animal. That is, the same process is re-
peated at each level of structural abstraction.
This is a componenl-frsl strategy, where parts
are clustered before the whole. The algorithm
may be summarized as follows :

- for each component

- incorporate the component in the
component-concept hierarchy

- update the description of the compos-
ite (replace the component by a ref-
erence to the concept it reached)

- incorporate the composite object into the
composito.concept hierarchy

Each 'incorporate" operation is a recursive
call to Coswns. The first call operates in
each component-space, the second call in the
composite-space.

It follows from that sketch that the integra-
tion of a composite object (e.g. an animal) is
done with each component replaced by a refer-
ence to a concept3. What is thus needed is a
way to quantify the predictivity of a set of sets
of component-concept references. This problem
divides itself into two distinct phases, explained
in the next two sections.

2Lu thi" paper, only single attribute domains will be
considercd. The mechanisms described here apply to
one att'ribute, whose values are sets of objects. With
no loss of generality, the method can be extended to
domains described with sevcral attributes, each of them
having scts as values

3A reference to the most specific concept covering
an object is also called t};'e concephtol signatrre ol the
object

3.2 Conceptual Representation
The first step is to find an adequate representa-
tion for the concept. Since members of values
(i.". suLobjects, or components) are hierar-
chically clustered, they are replaced by their
most specific covering concept: the initial in-
stance space is replaced by a conceptual hier-
achy (which is a partially ordered space). A
conceptual (or intensionnal) representation of
a set of composite objects must rely on a con-
ceptual "vocabulary" for the components. This
language is provided by the component-concept
hierachy. On the other hand, an intuitive way
to characterize aset ofsets is by the way oftheir
mutual intersection (or overlapping). This in-
tersection must be described in the lauguage
provided by the component-concepts.

The conceptual representation of a set of
composite objects will thus be a set of
component-concepts: these concepts are called
central-concepts, and must have the following
properties:

1. Each central concept must cover at least
one member of each value. This means
that each central concept must character-
ize the intersection between all the sets un-
der consideration.

2. All the members of the sets must be cov-
ered by central concepts. This means
that central concepts must cover all the
elements of all the sets, thus avoid-
ing "rnarginal" intersections between only
pa.rts of the sets (that would leave some
other components -members- uncov-
ered).

3. Central concepts have to be as specific as
possible. This means that the set of cen-
tral concepts is the most "precise" concep-
tual characterization ofthe intersection be-

tween all the sets.

As an illustration, let us consider the following
part of a component-concept hierarchy. In this
example, three sets are involved: .9a, ,Sq and

^91 . Each set has exactly two members.

^l

7o 'lr 7z

Let us suppose now a composite-concept C*o.
covering the three sets S4,, 5q and 56. Only

l}r,l}z,Or,O:,lr,l:

*r,Or,lr l}z,lz Oz
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one central-concept can be found for C+os: .l
is the only component-concept satisfying the
three conditions expressed above (71 and 72 vi-
olate the first condition, Ts the second one). Let
us now consider the composite-concept Ca.. In
that case, 7o and'/1 are both central concepts
(72 is ignored because it does not cover any
member of any value covered by Cal).

It is important to note that, in the case
where only one composite object is covered, the
set of central concepts used to represent the
composite'concept is equal to the set of concep-
tual signatures (component-concepts) of mem-
bers of the object.

3.3 PredictivityEvaluation
The second step is to evaluate the predictiv-
ity of the set of central concepts. Since each
central concept can be found in the component
hierarchy, it is labelled with its individual pre-
dictivity (named II). A straightforward way to
compute predictivity for a set of concepts is to
average their individual predictivity score. This
was the approach undertaken in our implemen-
tation, even though other methods of combina-
tion could be explored. But, since all central
concepts do not cover the same proportion of
objects, the contribution of each central con-
cept is weighted by the amount of objects it
covers. The predictivity of a set of tr central
concepts {7r,...,7r,} is thus:

posite object to incorporate, how can one com-
pute the new description of the composite-
concept ?" The process can be divided in two
phases:

- generalize any central concept that does
not cover at least one of the components
of the new object

- if any component remains uncovered by a
central concept, generalize the "nearest"
central concept

Again, this is only a sketch of the procedure:
particularly, any generalization must be per-
formed carefully. A generalization is the re.
placement of one central-concept by its par-
ent in the component-concept hierarchy. This
process is equivalent to the application of a
"climb-generalization-tree" operator [10], with
the property that the generalization tree is itself
built and maintained by the system. Neverthe-
less, this simple procedure ensures that the def-
inition of central concepts is maintained. The
two phases correspond to the first two condi-
tions in the definition of central concepts. It
has to be noted that the addition of an oL
ject to a concept may only geueralize the cen-
tral concepts descibing the composite-concept.
This does not mean that the predictivity of that
composite.concept decreases, since a loss in pre'
dictivity may be compensated by an increase in
coverage.

3.5 Complexity

This section investigates the computational
cost of the set-clustering process, and fo-
cuses particularly on the iutegration of a new
composite object into an existing composite-
concept.

The problem of structured concept for-
mation has already been adressed by the
LasyRrNrH system [12]4. The diference be-
tween L.a,BvRINTH and the system described in
this paper is that LngvRtNtH is designed to
find a binding between the components and a
predefined set of attributes. Once the binding
is determined, the task is reduced to composite-
objects clustering. But this binding process has
an extreme computational cost: O(d!) if an ex-
haustive search is performed (d being the num-
ber of components per object, which is fixed in

{ LIBvRINTH's formalism dso includes relationnal in-
formationbetween components, which are not discussed
here.

L n"(n)
/V,t II(rr)

I=l

where no(7s) is the number of members covered
by 7, and N, = Di=, no(lt) is the total num-
ber of components.

The weight associated to a central concept
will be called its cooerage. The overall predic-
tivity is thus a tradeoff between the predictive
ability aud the coverage of central concepts.

3.4 Incrementality
The original Coswpa algorithm, which worked
with a purely propositionnal formalism, was de-
signed to handle the problem of concept forma-
tion, which is defined as incremental conceptual
clustering. The incremental ability is crucial in
most applications. It is thus important to check
that incrementality is preserved when extend-
ing the knowledge representation language.

The problem may be stated as: "Having a
composite-concept description and a new com-
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LravnrurH) , O(d') or O(d3) if heuristic solu-
tions are used (see [12]). This binding is com-
puted each time an object is added to a concept.
Note that this cost may be penalizing when d
is high (see next section for examples of such
situations).

In contrary, our systems solves the mapping
b5, finding a mutual intersection between all the
sets. Eence, the mapping process is replaced
by the search for central-concepts. Let us con-
sider a composite-concept C covering N objects
Sr, . . . , ,Siv. Let n; =l S; l. It is easy to see that
C will be represented by at most o = ma4 {q }
central concepts. Hence, the integration of the
next composite object in C may lead to at most
c.,, generalizations during the first step of the
updating process. The second step may ap-
ply only I Slu+, I times. The whole updating
process is thus linear in the average number of
components per composite object.

This notable decrease in complexity may be
explained by the fact that, instead of consid-
eriug all possible bindings between the compe
nents and a predefined set of attributes, the
set-clustering mechanism uses the component-
concept hierarchy to solve the partial matching
problem. Moreover, the biuding searched for
by LlnvuNTH appearc as an epiphenomenon:
better than searching for a fixed number of
components, a global structure appears by the
way of the representation of composite-concepts
in terms of central concepts.

4 Empirical Results

4.1 The Simplified Quadruped
Mammals Domain

This domain has already been used in the lit-
erature about structured concept formation, to
demonstrate the abilities of the Cl.lsslr algo-
rithm [5]. It has been simplified here for ex-
planatory purposes. In this domain, objects
represent some perceptual sketch of an animal:
each object is composed of three cylinders (in-
stead of eight in the original domain) represent-
ing the head, the torso and one leg of the an-
imal. Each cylinder is described by two (in-
stead of 9 in the original domain) numerical
attributes (the radius and length).

Since these objects are artificially generated

from four available models (cat, dog, horse or
gira^ffe)5, the goal is to discover these classes

sThe instance-generator is available at the "UCI
Repository of Machine Learning Databases a,nd Do-

from the unlabelled data. In our experiment,
20 objects were randomly generated (five from
each model), each one being made of three
cylinders. The system was asked to build a
conceptual hierarchy for animals: it thus built
two conceptual hierarchies (one for the cylin-
ders and one for the animals). Results are

sketched on Figure 1: note that each terminal
class on Figure 1 is in fact further developped.

Figure 1: Results in the quadruped mammals
domain.

The system found the four classes of animals,
even though all of them are not at the first
level. More important is the fact (not shown
on Figure 1) that the conceptual representation
of each of these classes included three central
concepts, corresponding to the three cylinders.
The coucept labelled "Small" covers all small
animals (dogs and cats), and its conceptual rep
resentation includes only two cylinder-concepts.
The interpretation of such a conceptual repre-
sentation is the following: a small animal is an
animal made of two cylinders of one type (de-
scribed by the first central concept) and one
cylinder of another type. Such a represeuta-
tion could not have been obtained if a fixed
structure (i.e. a predetermined number of at-
tributes) had been used.

4.2 Object Recognition Domains

4.2.L CharacterRecognition

The second experiment involves some simplified
form of pattern recognition. The basic idea is
to consider a pattern as a set of pixels. To
compensate the loss of the information of the
spatial arrangement of pixels, the representa-
tion ofeach individual pixel is based on several
convolutions.

Data are drawn from a set of four alpha-
betic characters (shown on Figure 2), each of
them printed in four directions. Each pattern
was convolved with the laplacian of a gaussian

main Theories" at Irvine, at ftp.ics.uci.edu, as

/pub/nach iae- learn ing-d atabas es /quadrapeds

All

SmallEorse Gee

DogCat
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at several different scales. Each pixel shown
black in the original pattern is considered as a
component of that pattern. Each component
is described by the values of the convolutions
at its position. These values can be seen as lo-
cal characteristics of the pixel in the original
pattern: in fact, as shown in [9], convolution
by the laplacian of a gaussian can be used as
an edge detector (a value near zero meaning
that the pixel is on an edge in the original im-
age). In the experiments reported here, three
convolutions were used, with the a parameter
respectively equal to 512,3 aodT12 (see [9] for
details about the meaning of this parameter).
The convolutions were directly applied to the
iconic images.

Note also that this means that the four sets
representing one character (one set for each "di-
rection") perfectly intersect. It means also that
all objects do not have the same number of com-
ponents, as shown on Figure 2.

tation angles. The design was as follows: each
pattern was computed from an underlying pol]r-
gon, to which a rotation was applied, whose
angle was randomly drawn. The rotated figure
was then discretized, leading to a grey-levels
icon. The icon was then treated the same way
as the alphabetic characters in the previous ex-
periment. Each non-white pixel was considered
a component, and local characteristics (i.e. val-
ues of the convolution with the laplacian of a
gaussian) were used to describe it. Parameters
of the convolutions were set to the same values
as in the previous experiment.

Three umodels" were used to generate the
data. Each model was randomly rotated by
three different angles, and each time expressed
as a set of pixels. Figure 4 shows the data, with
the angle of rotation and the number of pixels.
The result of the clustering is shown on Fig-
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Figure 2: The four characters used.

The system was thus given 16 composite.
objects, with a total of 1488 components. Re-
sults are shown on Figure 3.

Figure 3: Results in the letter-recognition do
maln.

The system discovered one concept for each
class ofcharacter, as was expected. In that case
again, a fixed structure (i.e. a predefined set of
attributes) cannot model such a problem.

4.2.2 Rotated Polygons

The third experiment was built on the same
base as the second, but with more realistic ro

Figure 4: Nine rotated polygons

ure 5. Results are as good as in the naive case,

and suggest that the set clustering algorithm is
able to discover rotational-invariant concepts of
patterns.

Figure 5: Results in the rotated-polygons do-
main.
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5 Conclusion

The set clustering mechanism described in this
paper allows concept formation to take place
in domains where a structure can be extracted.
Particularly, it resolves the task of concept for-
mation from composite objects. In the case

when each set is restricted to one member, and
several sets are used to describe each object,
the problem reduces to composite.objects clus-
tering. [n the general case, the overlapping be-
tween sets is used to cluster composite'objects.
Experimental results have been given, that il-
Iustrate the performance of the algorithm and
demonstrate abilities that can not be attained
by purely propositional algorithms.

The experiments described in the previous
section raise some questions about the nature
of the discovered concepts, particularly in the
case of the pattern-recognition problems. The
representation of a pattern (as a set of pixels)
is somewhat unusual, and the concepts that are
derived are expressed in terms of pixel-classes.
It is thus impossible to ask the system to "il-
lustrate" what is a cross, for instance. But a
new cross will be recognized as such: more pre-
cisely, a new cro$s will be recognized as being
similar to previous ones. [t seems that this is a
case of a kuowledge structure with no explicit,
internal representation of known concepts. The
component-concept hierachy may be said to re-
side at a suLsymbolic level (assuming that pat-
terns are at the symbol level).

The work presented in this paper is a part of
a project ou "Learning and Image Processing".
Earlier work on this project established the ad-
equacy on concept formation techniques for im-
age segmentation [8]. The next step is to study
the abilities of the same algorithm on an object
recognition problem. Preliminary results are
described in this paper. The important point is
that the same algorithm is used for both tasks
(image segmentation and object recognition),
and that this algorithm is totally unsupervised.
Planned future works include the integration
of both phases (i.e. object recognition working
on discovered segments), and deeper studies of
the effect ofocclusion for the object recognition
task.
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