
Robust Linear Discriminant Ttees

George H. John
Computer Science Department

Stanford University
Stanford, CA 94305

gjohnQcs . Staaford. EDU

Abstract

We present a new method for the induc-
tion of classification trees with linear dis-
criminants as the partitioning function at
each internal node. This paper presents
two main contributions: first, a novel ob
jective function called sofi entropy which is
used to identify optimal coefrcients for the
Iinear discriminants, and second, a novel
method for removing outliers called irer-
atiue re-filterdng which boosts performance
on many datasets. These two ideas are pre.
sented in the context of a single learning
algorithm called DT-SEPIR.

1 Introduction

Recursive partitioning classifiers, or decision trees,
are an important nonparametric function represen-
tation in Statistics and Machine Learning (Fried-
man 1977, Breiman, Friedman, Olshen & Stone
1984, Quinlan 1986, Quinlan 1993). Their wide and
successful use in fielded applications and their sim-
ple intuitive appeal make decision tree learning al-
gorithms an important area of study. In this paper
we address both of the main issues in decision tree
induction: constructiou and pruning.

We follow the traditional recursive partitioning
approach to tree building, but rather than parti-
tioning the data on a single axis we instead em-
ploy a linear discriminant at each node to recursively
split the data (Henrichon, Jr. & Fu 1969, Fliedman
1977, Breiman et al. 1984). The issue of how to
fiud a good discriminant naturally arises. We dis-
cuss problems in previous approaches and propose a
new splitting criterion, soft entropy. The DT-SE al-
gorithm uses recursive partitioning on this criterion
to build a pure tree, one that correctly classifies each
instance in the training set.

A problem with working on decision tree splitting
criteria is that nobody ever actually uses a decision

tree without first pruning it in an attempt to avoid
overfitting and address the bias-variance tradeoff.
Thus, results on the superiority ofone splitting crite-
rion over another should be iu the context ofthe use

of some regularization algorithm in order to mirror
the results we expect to observe in practice.

To address the overfitting problem, we developed
the DT-SEP algorithm which prunes the pure tree
using a method similar to a stopping rule. Pruning
involves removing an entire subtree and replacing
it with a leaf. Implicit in this operation is the as-

sumption that the input patterns which caused the
subtree to be built are locally either unimportant or
harmful. We suggest that these patterns might be
globally unimportant or harmful (they might have
caused bad splits higher in the tree) and thus the in-
duction algorithm should remove such patterns from
the trainiug set and build a new tree. This step offl-
tering the pruned instances out of the training sam-
ple and rebuilding yields the DT-SEPIR (Iterative
Re-filtering) algorithm. Though common in regres-
sion in the guise of robust (Hubel 1977) or resistant
(Hastie & Tibshirani 1990, Chapter 9) fittiug, in the
context of classification this appears to be novel.

In Section 2 we formalize the problem of finding a
splitting function for an arbitrary splitting criterion
as a function optimization problem. Section 3 dis-
cusses problems with splitting criteria used in previ-
ous work in decision trees, and presents the soft en-
tropy criterion. Section 4 presents the pruning algo-
rithm and discusses the iterative re.filtering method
in more detail. Experimental results comparing DT
with related algorithms are presented and discussed
in Section 5. Section 6 discusses related work, and
Section 7 gives directions for future work. Finally,
Section 8 presents our conclusions.

2 Finding Splitting f\rnctions

In this section we frame the problem of finding the
best splitting function at each node in the tree as a
function optimization problem. To define this cor-
rectly we require a bit of notation summarized in

285

T

,

s

Table 1: Notation used in the rest of the

€ vector
v€yf

The class or output value of an instance.
A target function mapping instances to
outputvalues. f :X+!.
A training set. ? C {(t, dli € X,U =
f (d) + e) for some nodse term e.

A training (labeled) instance. z - (d,0.
Z-Xx!.
A weighted set of training instances. For
each z € S, ws(z) € (0, 1] where u.,s is the
weighting fuuction of ^9. ro5 (z) = 0 for all
z i S. Unweighted sets are a special case
where tos(z) € {0, 1}.
A vector of parameters for a splitting
function. In the case of linear splitting
functions, 0 is the vector of coefficients.
A soft binary splitting function, mapping
instances into [0,1]. 9e : .t + [0,1].
Given a weighted set ,S, define ^9/96 to
be the tuple of weighted sets (,Ss, 51) got-
ten by applying 96 to each zc € S such
that toso Q) = gsk,)urs(z) and uso(z) *
us,(z) - .s(r). I/ord splitting functions
have the range {0,1}.
A splitting criterion (impurity function)
over binary splits, mapping two weighted
sets to the real numbers IR.

Table 1.

We view the problem of choosing a splitting func-
tion at a node of a decision tree as a function opti-
mization problem. Given a weighted set

^9
of train-

ing instances we desire to split, and some fixed para-
metric form of the splitting function g0, our goal is
to find 0' satisfying:

,. =
u'FS' r(S/se\ . (1)

We could as well search over several diferent forms
of g, so that the minimization is over both g and
0. We have investigated this but do not pursue it
further in this paper.

In defining a problem as function optimization
there are three important decisions: the domain in
which the optimization should be performed, the ob-
jective function, and the fuuction optimizer used.
The domain, O, is defined by whatever functional
form we set for g-all parameters remaining to be
set constitute O. The optimization algorithm could
be any method for unconstrained optimization, in-
cluding methods using first derivative information if
AI/0e can be derived.

Fortuuately, by the chain rule AI/A0 can be sep
arated into two terms: 0I l)ge ?ge 100, so that we

need only derive the derivatives for the splitting cri-
terion with respect to the outputs of the splitting
function (whatever it may be) and the derivative of
the output of the splitting function with respect to
its parameters 0 (regardless of the impurity function
being used).

The essential ingredient is the objective function:
the splitting citerion .I which we wish to minimize.
All of the splitting criteria we are aware of-twoing
(Breiman et al. 1984), entropy, Gini, delta (Morgan
& Messenger 1973), gain-ratio (Quinlan 1993), C-sep
(Fayyad & Irani 1992)-are defined on sets, but have
straightforward extensions to weighted sets. The cri-
teria are all just functions of the following counts:
the total number of instance in ,5, the total number
in ^50 and 5r, and the number of instances of each
class in So and 5r. For weighted sets, we define car-
diuality as f,Sl = D,esws(z). Simply by replacing
sets with weighted sels and the standard cardinal-
ity measure by the new cardinality measure, we can
define so;t versions ofall ofour favorite splitting cri-
teria.

As an example, consider the softened linear dis-
criminant splitting function

oe(i) - t/$ + exp(-|" i)) . (2)

Note that the range ofg is (0, 1), thus when using ge

to partition a set ,S, all z € S a,re partially assigned
to both 5o and ,Sr.

The function optimization algorithm repeatedly
evaluates l(Slse) to get the value ofthe current d,
makes adjustments to d (perhaps based on 01100)
and evaluates the new 0. Eventually the optimiza-
tion algorithm stops, outputting d, its estimate of 9*
from Equation I.

3 Building Tlees with Soft Entropy

Although several approaches to building linear dis-
criminant trees have used a soft splitting crite.
rion (mean-squared error in logistic regression), and
many other approaches have used a hard criterion
based on entropy or Gini, we are aware of no ap
proach combining the desirable properties of both.
Below we discuss why we prefer a criterion based on
entropy and why we prefer a soft criterion. We then
give the details of the tree construction algorithm
DT-SE.

3.1 Why ^9ofi Eutropy?

The left graph in Figure 1 shows several candidate
hard splits of a small dataset. All of the splits shown
have equivalent counts (number of instances of each
class in each subset) and hence they are evaluated
equally by a hard splitting criterion. Because they

0eo

9e

I

286

o o C oC(,

Figure 1: Left: all four splits have equivalent entropy
(and Gini, delta, etc.). Right: the split found by
minimizing soft entropy.

o o
o

o o
Figure 2: Left; The soft linear discriminant minimiz-
ing mean squared error fails to partition the data.
Right: The soft linear discriminant minimizing soft
entropy.

o
o !o o !o

use sets instead of weighted sets, hard criteria pos-
sess limited granularity and are unable to distinguish
between splits that are quite different.

The unique best soft split is shown in Figure 1

on the right. Since the soft split assigns instances
partially to both the left and right subset (in the
case of Equation 2, based on the distance between
the instance and the splitting hyperplane), all hyper-
planes are assigned different values by the splitting
criterion. Additionally, since soft criteria are dif-
ferentiable they are amenable to the use of a wider
variety of function optimizers.

3.2 Why Soft Entropy?

Given that softness is a desirable property, much
work has used the soft linear discriminant of Equa-
tion 2 combined with an error criterion such as sum-
squared error, common in logistic regression and
neural networks. However, Breiman et al. (1984)
argue against error as a splitting criterion, and our
example in Figure 2 demonstrates a shortcoming of
error. Figure 2 shows two liuear discriminant func-
tions each optimizing some splitting criterion. (In
this case they happened to be soft linear discrimi-
nants, but the same phenomenon occurs with hard
splits.) The entropy-minimizing discriminant does
an excellent job of partitioning the data, while the
error-minimizing discriminaut fails to partition the
data at all.

3.3 Fiuding the Best Discriminant

To build trees using the soft entropy criterion, we
must combine several ingredients. Perhaps most im-
portant is the agenda for constructing the tree itself.
We will use the standard recursive partitioning ap-
proach, at each node finding the splitting function
that minimizes some impurity measure, splitting the
data with this splitting function, and then recur-
sively building trees from the resulting subsets.

The splitting criterion we wish to minimize is still
I(Slge), where .I is now specified to be the entropy
measure. (Note that f is a function on a pair of
sets while entropy is a function of a single set-as
in Breiman et al. (1984) we take the weighted aver-
age of entropy on the two sets.) The splitting func-

tion g is defined in Equation 2. In this case, cal-
culating I(SlSi,) and 01100 is straightforward, so
we used the simplest unconstrained function opti-
mization method using first derivative information:
steepest descent.

The function optimization technique used in DT-
SE is a modified version of steepest-descent. Steep
est descent optimizers begin with some 0s, then re.
peatedly move some distance in the direction of the
gradient of the objective function at 0s. Typically
the distance is set by the user as a parameter or it
is found by an expensive line minimization. In DT-
SE we have employed a few tricks to get reasonable
speed while retaining the basic steepest descent al-
gorithm. (We do not claim to be at the cutting edge
of function optimization here, but the algorithm is
included for replicability.) The update equation for
going from d;, the parameters currently under con-
sideration, to 0;q1, the next parameters to be con-
sidered, is:

alt^
0;+t = 0;'O.t-{- + 0.8(di - 0;-) (3)' llfii,la,ll, "

The algorithm stops when the current l(Slge)
drops below 0.00002, when i > 1000, or when 20
steps fail to produce a change in .[of at least 0.00005.
The whole process repeats once, starting from a dif-
ferent do, in an attempt to avoid the perils of getting
trapped in a local minimum.

It is important to note that once the best 0 is
found, we use a hard split to partition the data into
a left and right subset, which are themselves recur-
sively split. All of the work on soft splitting func-
tions wa.s done just to discover a good hard split. In
the case of the soft linear discriminant, it is replaced
by its hard cousin:

se(i) =lif eri 2 0,0 otherwise (4)

4 Pruning a Tbee

While studying the trees induced by the algorithm,
we found that most trees contained several leaves
matching on the order of 50 to 100 instances from
the training set, and a few leaves matching only a

287

few instances. We conjectured that these isolated
instances constituted noise in the training data, and
that we might improve performance by pruning such
instances.

Our regularization algorithm contains a pruning
step and a retrainiug step. The pruning step replaces
a decision node with a leaf whenever the number of
positive or negative instances matching that node
drops below *. (In our experiments, /c was arbitrar-
ily set to 5.) This is applied to all nodes in the tree
in a top down fashion.

In what appears to be a novel approach, the
regularization algorithm then retrains on the re
duced training set, building a completely new tree.
The reduced training set is defined to the original
training set minus the instances which the pruned
tree now classifies incorrectly (the "confusing" in-
stances). While retraining may seem odd, it is in
fact just an extension of the assumptions underlying
pruning. By pruning the tree we essentially assume
that these confusing instauces are locally not use-
ful. Retraining merely takes this assumption a step
further by completely removing these instances from
the training set. The regularization algorithm con-
tinues pruning and retraining until no further prun-
ing can be done.

The hypothesis behind iterative re-filtering is thus
that data which is locallyun-informative is also gloD-
clly un-informative. In statistics, estimators resis-
tant to the effect of outliers, robust estimators, have
been studied in some depth. Points with high leoer-
oge, points with disproportionately high effect on the
fitted model, are often removed from training data
in order to better fit the remaining points. In the
context of decision trees, we may identify a set of
points with high leverage by examining the differ-
ence in number of nodes between a tree built with
and without the set of points. This difference is es-
timated by starting with a pure tree built using all
the points and then pruning. The training instances
that it now classifies incorrectly are the high lever-
age points that were removed. However, the removal
of the points by pruning was only approximate-the
obvious step is to remove the points from the train-
ing set and retrain.

Another way of looking at iterative re-filtering is
as a pattern selection method. The selection of pat-
terns for training is an ubiquitous problem in pat-
tern recognition. Many methods are possiue, ac-
cepting data from a training sample in some ran-
dom order or all at once as a set. Other methods
(Aha 1991) actively accept or reject training pat-
terns from a temporal sequence presented to them.
The difference between our method and theirs is
somewhat akin to the difference between forward
and backward feature subset selection (John, Kohavi
& Pfleger 1994) or forward and backward (construc-

tion/pruning) search methods over neural net or de-
cision tree a,rchitectures. In general, unless time is a
very limited resource, the best results are achieved
by starting "big" and then shrinking (Breiman et al.
1984). This should apply to pattern selection as well,
and thus we suspect backward pattern selection will
give greater performance than forward selection.

5 Experiments with DT-SEPIR

We ran cros+validation experiments comparing DT-
SE, DT-SEP and DT-SEPIR with CARiT and a
CART-like algorithm, OCl. Experimental method-
ology is first discussed, then results are presented
and analyzed.

5.1 Methodology

Five datasets were gathered from the UCI (Mur-
phy & Aha 1994) and Statlog (Michie, Spiegelhalter
& Taylor 1994) collections. In the Votel dataset,
the task is to predict the political party of congress
members given their votes on key issues. The most
predictive attribute has been removed. In the Aus-
tralian database, the task is to decide whether or
not to give someone a credit card. The Breast-Wisc
is the Wisconsin breast cancer database. The task
is to classify a lump as benign or malignant. The
task in the Diabetes dataset is to classify a Pima In-
dian female as having diabetes or not. In the Heart
database, the algorithms must predict whether or
not a patient has heart disease given various infor-
mation.

All datasets were processed (either by the author,
or in the case of the Statlog datasets, by others)
so that all unordered categorical attributes were en-
coded using 0-1 indicator variables and all ordered
categorical attributes were encoded as integers. All
missing values were either removed or replaced with
their mean or mode.

Three different algorithms were used: the DT-SE
algorithms discussed in this paper, CART (Breiman
et al. 1984), and OC1 (Murthy, Kasif & Salzberg
1994, Murthy, Salzberg & Kasif 1993). CART was
set to use linear splits whenever the number of in-
stances at the node was greater than teu times the
number of attributes. (When using linear splits,
CART seems to be quite numerically fragile. This
high setting was required to get it to run on most of
the datasets.) CART used ten-fold cross-validation
and the 1-SE rule to select the correct pruned tree.
Default values were used for all other parameters.
OCl is similar to CARIT, also learning trees with lin-
ear splits. It uses a modified version of CAHJI's opti-
mization algorithm which seems to do a better job of
avoiding local minima. It does not offer the option
of using cross-validation to select a pruning param-

288

Votel Australian Breast-Wisc Diabetes
89.0+4.0
8.8+3.7

85.0*4.6
8.0+3.0

95.ttz.2
6.2+2.3

73.7+5.8
16.6+5.1
'(1.9t6.7
58.2+6.7

6tr.9+5.6
r1.8+2.3

Et.Et3.6
35.4*6.3

9b.3+'2.2
8.2+1.0

E5.5+4.E
20.4+3.3

E0.2+4.3
85.8*1i.0

94.3+1.9
19.8+4.3

6E.9*6.7
127.6+10.1

85.1t2.9
10.2+9.6

95.6*2.7
3.6+1.0

74.3+3.5
r3.6*12.1

69.9*.4.2
5.8+6.0
87.1*3.5
36.2+5.3

E1.2t4.6
83.6*11.0

94.9*r.6
35.2*5.4

6E.4+4.3
149.8+7.7

E2.0t2.9
3.0+0.0

96.2*U.r
3.8+1.8

74.6!.4.b
3.6+9.7

Table 2: Test set

Size

Size

Size

Size

Size

Size

eter; rather, it randomly picks 10% of the training
set to use as a pruning set. Default values were used
for all OCl parameters.

Ten-fold cross-validation was used to estimate the
accuracy of each algorithm on each dataset. (This
is a separate step from CARI's own internal cross-
validation.) In 10-fold CV, the dataset is divided
into 10 blocks ofroughly equal size, then the learning
algorithm is repeatedly trained on nine out of the
ten blocks and tested on the block not seen during
training. From the ten accuracy results we report
the mean and variance.

5.2 Results and Discussioa

Table 2 gives 10-fold cross-validation results for the
DT-SE algorithms, the OCl algorithm, and CART.
Each box contains 2 measurements: the top is the
accuracy, and the bottom is the tree size for the ten
runs.

No results are reported for CART on the Votel
domain because CART failed with a numerical error
on each of the ten folds. On the diabetes and heart
domains, all ten runs completed successfully; on the
rest, only a few runs completed without errors.

We applied the paired t-test to every meaning-
ful set of results we could think of. Comparing
the tree sizes of OCl-unpruned and DT-SE, DT-
SE produces smaller trees on all domains except
Australian with over 99.57o confidence. Within the
DT-SE group of algorithms, DT-SEP is superior to
DT-SE with nearly g7.5To confidence on the vote,
breast, and diabetes datasets, and with 90% on the
Australian dataset. DT-SEPIR is superior to both
DT-SEP aud DT-SE with 95% confidence on votel
and Australian. DT-SEPIR is superior to DT-SE
with 907o confidence on breast and diabetes. Com-
pa"ring CART, OC1, and DT-SEPIR we found that
noue ofthe differences in accuracy between these al-
gorithms is significant at the g0% level, except that

and tree size results from l0-fold cross-validation

7.4+2.3

1,3.2+2.0

25.0*2.7

9.6+10.2

42_2+6.3

3.4+1.3

CART performed better than OCl on the Heart data
at the 95% confideuce level. Comparing the accu-
racy of OCl-unpruned and DT-SE, OCl-unpruned
is better than DT-SE at the 90% confidence level on
vote1.

Though the accuracy results are mixed, the sizes
of the unpruned trees does support the idea that
soft entropy is a good splitting criterion. (Presum-
ably a characteristic ofgood splitting criteria is that
they result in small trees.) Regarding iterative re.
filtering, it is promising that the DT-SEPIR results
were competitive with OCl-pruned and CART, both
of which employ what might be thought of a-s more
sophisticated methods. Iterative re-filtering, when
combined with these better pruning methods, might
yield an even better boost in performance.

6 Related Work

John (1994) presents preliminary experiments with
DT-SEPIR, comparing against other neural network
and decision tree algorithms. Friedman (1977) gives
an excellent discussion of practically every issue re-
lated to the induction ofdecision trees from data, in-
cluding linear discriminant splits using Fisher's lin-
ear discriminant (Duda & Hart 1973). The earliest
attempt at building linear discriminant trees seems
to be Henrichon, Jr. & Fu (1969), who use the max-
imum eigenvector of the covariance matrix to deter-
mine the split. Lin & Fu (1983) use k-means cluster-
ing to find the splitting function. Bennett & Man-
gasarian (1992) use a parallel pair ofhyperplanes as

a splitting function and use linear programming to
miuimize their splitting criterion, which was the dis-
tance between the pair. Sankar & Mammone (1991)
present "Neural Tree Networks," which seem to be
simply soft linear discriminant trees using mean
squared error as the criteriou. Loh & Vanichsetakul
(1988) present linear discriminant trees where the
discriminant hyperplane may be solved for exactly
by making normality and homoscedasticity a^ssumP

289

tions about the data. Qing-Yun & Fu (1983) present
a sophisticated method for not only finding linear
splits at each node (based on regression) but also
selecting the best subset of variables to use in the
split. Brodley & Utgoff (n.d.) present a similar al-
gorithm, also based on linear regression with subset
selection.

Although this work was developed independently,
Brent (1991) discusses essentially the same tech-
nique for softening a related splitting criterion. How-
ever, Brent's focus was not on fiuding a better split-
ting criterion for multivariate decision trees; rather,
he used this impurity measure to train neural net-
works one node at a time. Sethi (1990) gives the
original description of the mapping between neural
nets and decision trees, and proposes converting the
tree (build with univariate splits) to neural net form
for further refinement. Along the same lines, Jor-
dan & Jacobs (1993) present a method that allows
simultaneous optimization of all coefficients in the
tree by defining the model likelihood and using the
EM algorithm (Dempster, Laird & Rubin 1977) for
optimization. Soft splits are used not only for tree
construction but also during classification. However,
their method requires the user to specify the tree
structure.

Bichsel & Seitz (1989) gives an algorithmfor train-
ing a tree-structured net very simila^r to the approach
by Heath, Kasif & Salzberg (1993), using simulated
annealing to search the space ofhyperplanes at each
node. The procedure for adding nodes is somewhat
similar in spirit to that used in TDIDT methods, but
their actual construction algorithm assumes the tree
will be very small. A related approach in the neural
net community was by Koutsougeras & Papachris-
tou (1988). They discuss the benefits of learning
entropy-minimizing hyperplanes in a tree.structured
neural net, but in the actual algorithm they instead
implement Fisher's linear discriminant function.

Regarding robust methods and outlier rejection,
Hubel (1,977) states "I am inclined to ... prefer
technical expertise to any 'statistical' criterion for
straight outlier rejection." We are guilty of this sin
in our work, but Guyon, Boser & Vapnik (1993)
have proposed an interesting method for making use
of human expertise in outlier removal to "clean" a
dataset.

7 tr\rture Work

A known problem with decision trees is that as one
goes deeper in the tree, less data is available to each
node, due to the recursive hard-partitioning. Since
DT-SE already deals with partial assignments of in-
stances to the left aud right subsets, it would be a
simple matter to use the soft partitions in the recur-
sive step of the tree-building algorithm and during

classification as in Jordan & Jacobs (1993).

As mentioned in the introduction, the procedure
for findiug a good splitting function isjust one part
of a whole decision tree learning algorithm. The
most important issue with respect to generalization
ability is regularization (pruning). The simple prun-
ing strategy described should be extended to use
cross-validation to pick the threshold, rather than
arbitrarily setting it at five. As Brodley & Utgoff
(n.d.) point out, pruning in multivariate trees can be
carried out at a finer granularity than removing en-
tire nodes: subset selection should be investigated as
an alternate mears of regularization. Penalty func-
tions such as AIC, BlC, etc., should also be investi-
gated.

Finally, another beuefit of this approach is that
it can be easily generalized to learn splittiug func-
tions other than linear splits. Neither the function
optimizer nor the objective function depend on the
actual splitting function used, so this is a completely
independent module. We have investigated the use
of more complex splitting functions (neural networks
with few hidden units) with mixed results but plan
to investigate this further.

E Conclusion

We have provided a general framework to ad-
dress the problem of finding a splitting function in
recursive-partitioning classification tree algorithms.
Within this framework we have identified a splitting
criterion, soft entropy, which appears to combine the
good properties of its hard counterpart entropy as
well as soft criteria such as mean squared error in
the logistic regression setting. Experimental results
indicate that soft entropy is a better objective func-
tion than its ha.rd counterpart. A rudimentary prun-
ing algorithm was employed to address the overfit-
ting problem, and a novel data filtering method was
used. Accuracy results for the resulting DT-SEPIR
algorithm as compared with CART and OCl are
inconclusive. More experiments are needed to iso.
late the effects ofthe splitting criterion and pruning
methods.

I Acknowledgments

This work was supported under a National Sci-
ence Foundation Graduate Resea,rch Fellowship. We
would like to thaak Pat Langley, Wray Buntine,
Jerome Friedman, Scott Benson, Ron Kohavi and
Nils Nilsson for comments on the ideas presented
here. Thanks to Richard Olshen for providing ac-
cess to the CART software.

290

References

Aha, D. W. (1991), "Instance-based Iearning algo-
rithms" , Machine Learning 6(1), 37-66.

Bennett, K. P. & Mangasarian, O. L. (1992), Nerual
network training via linear programming, in P. M.
Pardalos, ed., "Advances in Optimization and
Parallel Computing", North Holland, Amsterdam,
pp. 56-67.

Bichsel, M. & Seitz, P. (1989), "Minimum class en-
tropy: A maximum information approach to lay-
ered networks", Neuzul Networks 2, 133-14L.

Breiman, L., Friedman, J., Olshen, R. & Stone, C.
(1984), Classification and Regression Trees, Chap-
man & Hall, New York.

Brent, R. P. (1991), "Fast traiuing algorithms for
neural networks", IEEE Transactions on Neural
Netuorks 2(3), 346-354.

Brodley, C. E. & Utgoff, P. E. (n.d.), "Multivariate
decision trees", Machine Leaming. Forthcoming.

Dempster, A. P., Laird, N. M. & Rubin, D. B.
(1977), "Maximum likelihood from incomplete data
via the EM algorithm", Journal of the Royal Sta-
tistical Society B 39, 1-38.

Duda, R. & Hart, P. (1973), Pattern Classification
and Scene Analysis, Wiley.

Fayyad, U. M. & Irani, K. B. (1992), The attribute
selection problem in decision tree generation, in
"AAAI-92: Proceedings of the Tenth National Con-
ference on Artificial Intelligence", AAAI Press /
The MIT Press, pp. 104-110.

Friedman, J. H. (1977), "A recursive partitioningde-
cision rule for nonparametric classification", IEEE
Transactions on Computers pp. 404-408.

Guyon, I., Boser, B. & Vapnik, V. (1993), Auto-
matic capacity tuning of very large VC-dimension
classifiers, in S. J. Hanson, J. Cowan & C. L. Giles,
eds, "Advances in Neural Information Processing
Systems", Vol. 5, Morgan Kaufmann, pp. 147-154.

Hastie, T. J. & Tibshirani, R. J. (1990), Genemlized
Additioe Models, Chapman and Hall.

Heath, D., Kasif, S. & Salzberg, S. (1993),Induction
of oblique decision trees, in R. Bajcsy, ed., "Pro-
ceedings ofthe Thirteenth International Joint Con-
ference on Artificial Intelligence", Morgan Kauf-
mann.

Henrichon, Jr., E. G. & Fu, K.-S. (1969), "A non-
parametric partitioning procedure for pattern clas-
sification" , IEEE Transactions on Computers C-
18(7), 614-624.

Hubel, P. J. (1977), Robust Statistical Procedures,
Society for Industrial and Applied Mathematics,
Pittsburgh, PA.

John, G. H. (1994), Finding multivariatesplits in de-
cision trees using function optimization, in "AAAI-
94: Proceedings of the Twelfth National Confer-

ence on Artificial Intelligence", AAAI Press / The
MIT Press, p. 1463. Abstract.

John, G., Kohavi, R. & Pfleger, K. (1994), Irrele-
vant features and the subset selection problem, in
H. Hirsh & W. Cohen, eds, "Machine Learning:
Proceedings of the Eleventh International Confer-
ence", Morgan Kaufmann.

Jordan, M. I. & Jacobs, R. A. (1993), Supervised
learning and divide-and-conquer: A statistical ap
proach, in P. Utgoff, ed., "Proceedings of the Tenth
International Conference on Machine Learning",
Morgan Kaufmann.

Koutsougeras, C. & Papachristou, C. A. (1988),
taining of a neural network for pattern classifi-
cation based on an entropy measure, in "IEEE In-
ternational Confereuce on Neural Networks", IEEE
Press, pp. 247-254.

Lin, Y. K. & Fu, K. S. (1983), "Automatic classifica-
tion of cervical cells using a binary tree classifier",
Pattern Recognition 16(1), 69-80.

Loh, W.-Y. & Vanichsetakul, N. (1988), "Tree-
structured classification via generalized discrimi-
nant analysis" , Journal of the American Statistical
A ssociation 83(403), 7 t5-725.

Michie, D., Spiegelhalter, D. J. & Taylor, C. C.
(1994), Machine Learning, Neural and Statistical
Classification, Prentice Hall.

Morgan, J. N. & Messenger, R. C. (1973), THAID: a

sequential analysis progrant. for the analysis of nom-
inal scale dependent oariables, University of Michi-
gan.

Murphy, P. M. & Aha, D. W. (1994), "UCI
repository of machine learning databases", Avail-
able by anonymous ftp to ics.uci.edu in the
pub/nachine-learn ing-databases directory.

Murthy, S. K., Salzberg, S. k Kasif, S.

(1993), "OCl", Available by anonymous ftp in
bLaze. cs. jhu. edu: pub/oc1.

Murthy, S., Kasif, S. & Salzberg, S. (1994), "A sys-
tem for induction of oblique decision trees" , Jout'
nal of Artificial Intelligence Research 2, l-32.

Qing-Yun, S. & Fu, K. S. (1983), "A method for the
design of binary-tree classifiers", Pattern Recogni-
tion L6(6),593-603.

Quinlan, J. R. (1986), "Induction of decision trees",
Machine Learning 1, 81-106.

Quinlan, J. R. (1993), Cl.5: Programs for Machine
Learnin g, Morgan Kaufmann.

Sankar, A. & Mammone, R. J. (1991), Optimal
pruning of neural tree networks for improved gener-
alization, in "IJCNN-91-SEATTLE: International
Joint Conference on Neural Networks", IEEE
Press, Seattle, WA, pp. II: 219-224.

Sethi, I. K. (1990), "Entropy nets: from decision
trees to neural networks" , Proceedings of the IEEE
78(10), 1605-1613.

29L

