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ABSTRACT
We describe a Monte Carlo method for solving influence diagrams. This method is a combination of

stochastic dynamic programming and Gibbs sampling, an iterative Markov chain Monte Carlo
algorithm. Our method is especially useful when exact methods for solving influence diagrams fail.

1. INTRODUCTION

In this paper we describe solution algorithms for influence diagrams (IDs) as elaborations of various forms of
the principle of optimality in stochastic dynamic programming, which allows us to find the decision functions in
problems of this type sequentially (Bellman and Dreyfus, 1962). In particular, we describe the standard version of
the principle of optimality in stochastic dynamic programming. However, since this version is not quite adequate for
the case of influence diagrams, we introduce a modification that allows us to determine an optimal decision function
for each decision variable sequentially.

In its standard form, the principle of optimality in stochastic dynamic programming applies when we want to
maximize or minimize the expectation of a real-valued variable V whose joint distribution with k+1 other variables
') AP % (which may each actually be vectors of variables) depends in a stagewise manner on k parameters
(which also may be single numbers, vectors or functions) 81 e ,Sk . More precisely, we assume that we can factor
the joint probability for I"g,I";,...,I"y and V in the form
P;,,..5, Tos--Tks V) =ho(To)hg (T4|Co)---hg, _ (Tyq|Tose-sTie—a g, (T, V[Tgyeers Tiey), ()
where the factors are conditional probabilities. We must also assume that it is computationally feasible to compute
Es, (VIFO,...,Fk_l) from hg (Fk,VIFO,...,Fk_l) for each value of Oy and each configuration of values of
[gu...UTy_, or at least to find for each configuration (Yg,...,Yy—1 ) of T'gU...UI'y_; the value of 8 that

i

Es, (VITo = Yo Tt = Vi) @
Finally, we must assume (this is crucial) that we can find a single value of Sk that optimizes (2) for all
(Ygs---»Yi—1)- Since the distribution of I'yU...UT',_; does not depend on 3y, we have

Eg 5. (V)=EBs 5 . (Esk (V[Tose-rs Tt ))

Therefore, this optimizing value of &, will also optimize the unconditional expectation Es,,..5, (V) for any
choice of (8,...,8;_1). And therefore, it can be extended to a choice of (8y,...,8; ) to optimize this
unconditional expectation.

T The author is currently Assistant Professor of Management at the University of Tampa. He is finishing his
doctoral dissertation at the University of Kansas under professor Glenn Shafer (Rutgers University and Princeton
University), and professor Prakash Shenoy (The University of Kansas).
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Suppose we fix this optimal value of 8k eliminating it from our notation, and reducing (1) to
ha, s (Dpsss] 3 V) = ho(l"o)hsl (1"1|l"0)...h5k_l (Fk_1|F0,...,Fk_2)h(Fk,VIFO,...,Fk_l), 3)
From this point, we proceed in either of two ways. We can sum or integrate Fk out of the expectation. Or we can
incorporate Ty as partof ' _;. \
The first option, summing or integrating I'y out, means reducing (3) to
b, 5., TossTk1, V) = ho(Todhg (Ty|To)...h5 (Tg-1, V[T 0s---sT_2), where
5, Cets VIl s Typ) =g (Tyey[CoseensTicm) [ (¥, VT gy, Tt J4Yyc - Onee again, we
assume that we can choose 81:-1 S0 as to optimize simultaneously
Es,_, (V|To = Yo.T1 = V1o Tz = Vi) @
for all (Yg,-..,Yx_2)- Then, as before, the choice of 8y _; can be extended to a choice of (8y,...,8;_;) to
optimize the unconditional expectation ES,,. V).
So we may also fix this optimal value of 81:—1 , and reduce the problem further. We can continue in this way,

..,Sk_l

choosing the 8i sequentially, provided that the successive simultaneous optimizations like those in (2), (4), etc. are
possible.

The second option means setting I'y_; = I'y_; U T}, and reducing (3) to
hs, _5,_, (Tos--sTi15 V) = ho(Tohg (Ty|Tg)...hg  (Tyy, V|Cos.... Tyc5), where

8, Tie1:V[Tos-sTiep) = hg, (Tyq|ToseeesTo2)0(Tie V[T, Ty ). Again, if we can choose
8y_1 to optimize simultaneously (4) for all (Yg,...,¥x—2), and so on, we can proceed to choose the J;
sequentially.

This standard version of stochastic dynamic programming is not quite adequate for the case of influence
diagrams. The reason is that although these diagrams involve factorizations that can be written in the form (1), the
factors are not necessarily conditional probabilities.

The standard version of stochastic dynamic programming can be modified to fit influence diagrams, but there
has been a considerable variety of opinion about how to do this. The oldest sequential solution algorithm for
influence diagrams, the Olmsted-Shachter reduction algorithm (Olmsted, 1983; Shachter, 1986) goes considerably
beyond stochastic dynamic programming, in order to maintain a representation of the influence diagram form as the
algorithm proceeds. More recent algorithms, including the valuation network algorithm of Shenoy (1992 and 1993)
and the potential influence diagram algorithm of Ndilikilikesha (1992), stay closer to stochastic dynamic
programming.

The simulation algorithm we describe in Section 2 does not fit exactly into either Shenoy's or Ndilikilikesha's
framework, primarily because their algorithms integrate 'y out, while our algorithm follows the second option
described above, that of absorbing I"y into h 8, We could elaborate one of their frameworks in order to make
our algorithm fit, but it will be simpler for us to deal directly with the necessary modification in the standard form of
stochastic dynamic programming that we have just described.

Here is the modification that we require. Let us assume that the joint probability for I'g,I";,...,I'y and V
is proportional to a factorization of the following form
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P;,..5,(TosTks V) o ho(Tg )hsl(ro)(rdro)...nﬁk_I (ro,“,r,,_,)(l'k-xll"ov--vrk-z )hak(ro _____ rl‘_l)(r,‘,v|r(,,...,rk_l) )]
Here we do not assume that the factors are conditional probabilities. But we do assume that the 5i are functions;

and we assume, as the notation indicates, that for fixed values of I'g,I";,...,I'y_;, the factor hsk(ro AT
regarded as a function of I'y and V, depends on O, only through the value 3y assigns to those values of
I'g,Ty,....T ;. This assumption, as we will see implies that the simultaneous optimizations at each step are
possible.

Notice first that the factorization () implies that hy (. ,...,rk_,)(l“k’VlFo’---’ Ty_;), for fixed values of
I'g,Iy,...,T'x—1. is at least proportional to the conditional probability distribution for I'y and V given these
values of I"g,I'y,...,I'y_;. To see this, recall that a conditional probability distribution is always proportional to
the corresponding joint probability distribution. Thus

Ps,....8, (T VIT 05+ Ti1) = APg, 5, (T, T, V), ©
where A is constant with respect to Fk and V. (The other variables are thought of as fixed.) We usually write (6)
with a symbol of proportionality:

Pt (Fk’vlrov"’rk-l) = Pg. 5 (Tos---Tx, V).
Since only the last factor of (5) involves I'y or V, (6) implies that

P3y...0 (Tio VIToreTi) < b,y (T V05T ).

Again, this proportionality is to be interpreted by taking both sides as functions of I", and V only, with the other
variables fixed; we are able to omit the other factors only because they, as functions of the other variables, are also
fixed and hence can be absorbed into the constant of proportionality.

Whenever a function is proportional to a probability distribution (or probability conditional), it contains all
the information needed to find that conditional because the constant of proportionality is simply what is needed to
make the function sum (or integrate) to one. Thus

hsk(YO,,.,,yk_l)(Fk’VIro = Yoorrrs et = Vi)
has, in particular, all the information needed to determine the conditional expectation of V given (Yg,---, Yx_1 ),
B3, (fortros )(rk’ VITo = Yo Tt = Yie1)- @
We can choose the value of Sk E’YO,...,‘yk_l) to optimize this expectation, and by doing this for each set of values
(Yos---»Yk—1)» We will have chosen a function 8y that simultaneously optimizes (7) for all (Y gs.---,Y_1)-

Once this choice of Oy has been carried out, we can proceed, as before, absorbing h Bl i) into
h 8¢-1(Ton...Ty_, ) first integrating Yy outif we wish to do so.

In order to fit influence diagrams into this version of stochastic dynamic programming, we write I; for the
set of variables consisting of Ai together with the chance variables observed by the decision maker between Ai and
Ay, fori=1, .., k-1, we write I for the chance variables observed before A; and ', for the set of variables
consisting of Ak together with the chance variables (other than V) observed after Ak (or never), and we write 8i
for the decision function for A;. Then we set h (Fo) equal to the product of conditionals for the chance variables
in I'y. Fori=1, .., k-1, we set hsi (l“i|1“0,...,l“i_1) equal to the product of conditionals for the chance variables
in Fi , times the conditional corresponding to the decision function 6i (this conditional gives only probabilities of
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zero and one). And we similarly set hy (rk,v|1“0,...,1‘k_1) equal to the product of the conditionals for all
variables in 'y U{V}. Since hs (I‘k,v|r0,...,rk_1) depends on O, only through its value
84 (Tgs----T k1), this puts us in the framework just described.

2. DERIVATION OF A GENERAL SOLUTION ALGORITHM

In this section we show how to use Gibbs sampling (Geman and Geman, 1984; and Gelfand and Smith,
1990), an iterative Markov chain Monte Carlo algorithm (Hastings, ) to implement stochastic dynamic programming
for an influence diagram. Since the stochastic dynamic program is iterative, it suffices to explain how to implement
it using Gibbs sampling for a single step. We will explain how to implement it for the first step.

Our task, then, is to find the decision function Sk- This means finding, for each configuration
(YosY1---»Yr—1) of TgU...0T'y_y, the value dy of the decision Ay that optimizes

Eq, (VITo = Yo, T1 = Ypoees Tt = Y1) ®)
(Notice that we write dy in the place of Sk as a subscript on the expectation operator; this is because the
expectation for the configuration (’YO,'YI,...,‘Yk_l) of the predecessors depends only on the value d that Oy
assigns to this configuration.) To this end, we simply compute (8) for all dy and choose the dy that gives the
optimal (largest or smallest depending on whether we are maximizing or minimizing) result.

To compute (8) for a particular d, we recall that the conditional joint distribution of I'y U {V} is
proportional to hdk (Fk,VIFO =Yosees] ko1 = 'Yk—l)» which is simply the product of the conditionals for
r,u{v}

Leaving aside the variables Ak and V, which are deterministic in this conditional joint distribution ( Ay is
equal to the constant dy , and V is a function of the other variables), we can say that the conditional distribution of
the other variables (all chance variables) is the product of their original conditionals. We are not interested,
however, in all these variables; we are really interested only in V. Hence we can discard the conditionals for any
variables that are independent of V in the conditional joint distribution. Figure 1 gives an example where relevance
arrows are shown, and informational arrows are omitted (Clemens, 1991).

Figure 1. An ID example in which only relevance arrows are shown

Tou...ulN
0 k-1 UiV}
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Here x7 and xg are independent of V in the conditional distribution of I"y U {V'} because the distribution factors
into parts involving only x7 and xg and parts involving only the other variables. So we may omit their conditionals,
effectively eliminating them from the problem, and reducing I'y to a smaller set I'}.

The general rule for this reduction of our problem can be formulated graphically as follows. Consider the
directed graph of the ID without informational arrows (as in Figure 1). Form the moral graph (Jensen et al., 1990).
And omit any variables from I'y that are not connected with V in the subgraph of this moral graph determined by
I'y U{V}. A variable X in ", is not connected with V in this subgraph if there is no path in 'y U{V} that
connects X to V. Figures 2 and 3 show how this procedure applies to the example of Figure 1.

Figure 2. Moral graph with x7 and x8

Tou...UTy 4

Figure 3. Moral graph without x7 and x8

x1 1 1

[

x4 Ay &

| TIRE, I X 9, ri u{v}

Next, notice that only some of the variables in Fou...urk_l will affect the expectation (8). Indeed, the
only ones to affect it will be those involved in the factors that remain in the product. In our example, these factors
are I'y U{V}

L fi(x4) =[xy = ofx; = &,x = 0,x14,4; = o]

2. £(Xy3,%14) = [Xy4[Xy3]
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f3(x12) = [x12|x4 =4]
f4(xq15%12) = [X11]%12]
f5(x9,X19) = [X10[Xo]
f6(Xg) = [Xg = *xo]
f7(x13) = [x)3]
8. fg(xg) =[xo]
The variables involved in these factors are x1, X2, X4, X6 and A;. The other variables, A,, X3 and X, are not

A -

involved. Since the expectation (8) is not affected by the variables in I"g...UI'y _; that are not involved in these
factors, we need not make our choice of dy depend on them. In other words, we can make Ay a function only of
the variables involved in the factors—x1, X2, X4, X6 and A, in our example.

The general rule for finding the variables on which Ay will depend can be described in terms of the moral
graph we obtained previously: they are the neighbors of Fk in this graph. In our example (Figure 3), we see that
X1,X2, X4, X6 and A, are the neighbors of I'y .

The factors that remain can be envisioned in terms of the directed subgraph determined by the variables that
remain, as in Figure 4. They are the factors in which the variables remaining in the circle are parents or children.
Figure 4. Directed subgraph determined by the variables that remain

Now that the factors are identified , we do Gibbs sampling with these factors to simulate the joint distribution
of ' \ {Ak,V}. For the configuration of '} \ {Ak,V} obtained at each step of the Gibbs sampling, we
compute V. This gives a sequence of values for V simulating a random sample from its conditional distribution,
from which we may compute its conditional expectation.

‘When we move on to the next step of the stochastic dynamic program, we use the second of the two options
discussed in Section 1. In other words, we absorb I'y into I'y_;, and we include the conditionals from 'y in the
new factorization of h B In order to avoid zero probabilities that would interfere with the Gibbs sampling, we do
not include the conditional for A} corresponding to the decision function we have just found for Ay . Instead, we
substitute this decision function in all the conditionals in which A} appeared as a parent, thus eliminating Ay from
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the graph and producing arrows from the variables on which A, depends to the variables for which it was a parent.
Figure 5 illustrates the result for our example.
Figure 5. DAG with Ay absorbed into its direct successors
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