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Abstract

We present a precise definition of cause and
effect in terms of a more fundamental notion
called unresponsiveness. Our definition de-
parts from the traditional view of causation
in that our causal assertions are made relative
to a set of decisions. An important conse-
quence of this departure is that we can reason
about cause locally, not necessarily attach-
ing a causal explanation to every dependency.
Such local reasoning can be beneficial in that,
given a set of real decisions to make, it may
not be necessary to determine whether some
dependencies are causal. Also in this paper,
we examine the graphical encoding of causal
relationships. We show that ordinary influ-
ence diagrams are an inadequate representa-
tion of cause, whereas influence diagrams in
Howard Canonical Form can always represent
cause and effect accurately. In addition, we
establish a correspondence between Pearl and
Verma’s (1991) causal model and the influ-
ence diagram.

1 Introduction

Most traditional models of uncertainty, including
Markov networks and belief networks have focused on
the associational relationship among variables as cap-
tured by conditional independence and dependence.
Associational knowledge, however, is not sufficient
when we want to make decisions under uncertainty.
For example, although we know that smoking and lung
cancer are probabilistically dependent, we cannot con-
clude from this knowledge that we will increase our
chances of getting lung cancer if we start smoking. In
general, to make rational decisions, we need to be able
to predict the effects of our actions.

Recent work by Artificial Intelligence researchers,
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statisticians, and philosophers—for example, Pearl
and Verma (1991), Druzdzel and Simon (1993), and
Spirtes et al. (1993)—have emphasized the impor-
tance of identifying causal relationships for purposes
of modeling the effects of intervention. They argue,
for example, that if we believe that smoking causes
lung cancer, then we believe that our choice whether to
smoke can affect whether we get lung cancer. In con-
trast, if we believe that smoking does not cause lung
cancer, our choice whether to smoke would not affect
whether we get lung cancer, and the observed corre-
lation between our smoking and lung cancer could be
explained perhaps by a common cause of both (e.g., a
genetic predisposition toward cancer and the desire to
smoke), which we are unable to control.

This recent work has led to significant breakthroughs
in causal reasoning. For example, Pearl and Verma
(1991) have shown how causal knowledge represented.
graphically in a causal model can be used to predict
the effects of interventions, Spirtes et al. (1993) have
shown how observational data can be used to suggest
causal relationships, and Pearl (1994) has shown how,
given a qualitative causal structure, the quantitative
effects of intervention may be estimated from observa-
tional data alone.

In this paper, we offer two improvements to the cur-
rent work in causal reasoning. First, the current ap-
proaches either take causality as a primitive notion, or
provide only a fuzzy, intuitive definition of cause and
effect. For example, in the introduction of their book
on causation, Spirtes et al. (1993, p. 42) write:

We understand causation to be a relation be-
tween particular events: something happens
and causes something else to happen. Each
cause is a particular event and each effect is a
particular event. An event A can have more
than one cause, none of which alone suffice to
produce A. An event A can also be overde-
termined: it can have more than one set of
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causes that suffice for A to occur. We as-
sume that causation is transitive, irreflexive,
and antisymmetric.

In this paper, we offer a definition of causation in terms
of a more fundamental relation that we call unrespon-
siveness. Qur definition is precise, and can be used
as an assessment aid when someone is having trouble
determining whether or not a relationship is causal.
Also, our definition can help people accurately com-
municate their beliefs about causal relationships.

Second, the current approaches require all relation-
ships to be causal. That is, for any two probabilis-
tically dependent events or variables £ and y in a
given domain, these methods require a user to assert
either that z causes y, y causes z, ¢ and y share a
common cause, or z and y are common causes of an
observed variable. For example, Verma and Pearl’s
(1991) causal model is a directed acyclic graph (DAG),
wherein every node corresponds to a variable and ev-
ery arc from nodes z to y corresponds to the assertion
that z is a direct cause of y. When using a causal
model to represent a domain, one of these four causal
explanations must hold for every dependency in the
domain.

Our definition of causation is local in that it does not
require all relationships to be causal. This property
can be advantageous when making decisions. Namely,
given a particular problem domain consisting of a set
of decisions and observable variables, there may be no
need to assign a causal explanation to all dependencies
in the domain in order to determine a rational course
of action. Consequently, our definition may enable a
decision maker to reason more efficiently.

Another advantage of our approach is that it is con-
sistent with both current methods for reasoning about
causality as well as the philosophy of decision analy-
sis, and thereby provides a means by which the two
disciplines may communicate. For over a decade, deci-
sion analysts have used the influence diagram to rep-
resent the effects of interventions on a set of uncertain
variables [Howard and Matheson, 1981]. Nonetheless,
they have carefully avoided using notions of causality
in their work, in large part due to a lack of a precise
definition of causality. Our paper offers a means by
which the decision analysts may begin to understand
the ongoing efforts in causal modeling and contribute
to this research endeavor. We begin the dialogue by
showing how causal relationships (by our definition)
may be encoded in special forms of the influence dia-
gram, and by showing a relationship between the influ-
ence diagram and existing graphical models of cause.
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2 Background

Fundamental to our discussion is the distinction be-
tween a chance variable and a decision variable. In
general, a variable has a (possibly infinite) set of mu-
tually exclusive and collectively exhaustive possible
states. The state of a decision variable corresponds to
an action chosen by a person, usually called the deci-
sion maker. In contrast, a chance variable is uncertain
and its state may be at most indirectly affected by the
decision maker’s choices. For example, whether or not
to smoke is a decision variable, whereas whether or not
a person develops lung cancer is a chance variable. We
shall use lowercase letters to denote single variables,
and uppercase letters to denote sets of variables. We
call an assignment of state to every variable in set X
an instance of X. Typically, we refer to the possible
states of a decision variable as alternatives. We use a
probability distribution P{X|Y} to represent a deci-
sion maker’s uncertainty about X, given that a set of
chance and/or decision variables Y is known or deter-
mined.

In this paper, we are interested in modeling relation-
ships in a domain consisting of chance variables U and
decision variables D. A well-known graphical language
for modeling such relationships is the influence dia-
gram. In this paper, we use this representation to il-
lustrate many of our concepts. In addition, we critique
the influence diagram as a representation of causal re-
lationships. In the remainder of this section, we review
the representation.

An influence diagram is (1) a directed acyclic graph
(DAG) containing decision and chance nodes corre-
sponding to decision and chance variables, and infor-
mation and relevance arcs, representing what is known
at the time of a decision and probabilistic dependence,
respectively, (2) a set of probability distributions as-
sociated with each chance node, and optionally (3) a
utility node and a corresponding set of utilities. A
belief network is an influence diagram containing only
chance nodes and relevance arcs.

An information arc is one that points to a decision
node. An information arc from chance or decision
node a to decision node d encodes the assertion that
variable @ will be known when decision d is made. (We
shall use the same notation to refer to a variable and
its corresponding node in the diagram.) A relevance
arc is one that points to a chance node. The absence
of a relevance arc represents conditional independence.
To identify relevance arcs, we start with an ordering of
the variables in U = (z1,...,2,). Then, for each vari-
able z; in order, we ask the decision maker to identify
a set Pa(z;) C {z1,...,zi—1, D} that renders z; and
{z1,...,2zi—1, D} \ Pa(z;) conditionally independent.



That is,

Plagley, o - #e1; D} = Pla]| Pa(e:)} (1)

For every variable a in Pa(z;), we place a relevance
arc from a to z; in the diagram. That is, the nodes
Pa(z;) are the parents of z;.

Associated with each chance node z; in an influence di-
agram are the probability distributions P{z;|Pa(z;)}.
From the chain rule of probability and Equation 1, we
obtain

Pl v | D} = HP{:c,-]Pa(:v,-)} (2)

t=1

That is, every influence diagram for U U D uniquely
determines a joint probability distribution for U given

D

A deterministic node is a special kind of chance node
that is a deterministic function of its parents. A min-
tmal influence diagram is an influence diagram where
.Equation 1 would be violated if any arc were removed.

Finally, an influence diagram may contain a single dis-
tinguished node, called a utility node that encodes the
decision maker’s utility for each instance of the node’s
parents.

Figure 1 contains an influence diagram for two lifestyle
decisions: whether or not to smoke and whether or not
to change diet. As is illustrated in the figure, we use
ovals, squares, and a diamond to represent chance, de-
cision, and utility nodes, respectively. (Not shown in
the diagram, we use double ovals to represent a deter-
ministic nodes.) There are no information arcs in the
diagram, although one can imagine that—someday—
we may be able to observe our genotype prior to mak-
ing these decisions. The influence diagram contains
several missing relevance arcs. One assertion made by
the absence of these arcs is that lung cancer and car-
diovascular status are conditionally independent, given
smoke, diet, and genotype. This assumption and oth-
ers in the diagram are questionable, but they will serve
for purposes of example. We note that this influence
diagram is not complete, in that the decisions are not
ordered. As we shall see, however, decision order is
not important for our discussion.

3 Unresponsiveness

In this section, we introduce the notion of responsive-
ness, a fundamental relation underlying causation. In
the following section, we use this relation to define
causal dependence.

Let us consider the simple decision d of whether or not
to bet heads or tails on the outcome of a coin flip ¢. Let
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Figure 1:
lifestyles.

An influence diagram for decisions about

the variable w represent whether or not we win. Thus,
w is a deterministic function of d and ¢: we win if and
only if the outcome of the coin matches our bet. Let us
assume that d and ¢ are probabilistically independent
and that the coin is fair—that is P{heads} = 1/2. In
this case, d and w are also probabilistically indepen-
dent: the probability of a win is 1/2 whether we bet
heads or tails.

In this example, we are uncertain about whether or not
the coin with come up heads, but we can be certain
that whatever the outcome, it would have been the
same had we bet differently. We say that ¢ s unre-
sponsive to d. We cannot make the same claim about
the relationship between d and w. Namely, we know
that w depends on d in the sense that had we made a
different bet d, the state of w would have been differ-
ent. For example, we know that if we had bet heads
and won, then we would have lost if we had best tails.
We say that w is responsive to d.

In general, to determine whether or not uncertain vari-
able z is unresponsive to decision d, we have to answer
the query “Would the outcome of z have been the same
had we chosen a different alternative for d?” Queries
of this form are a simple type of counterfactual query,
discussed in the philosophical literature. In our ex-
perience, we have found that people are comfortable
answering such restricted counterfactual queries. One
of the fundamental assumptions of our work presented
here is that these queries are easily answered.

We see that probabilistic independence and unrespon-
siveness are not the same relation. Although both ¢
and w are (individually) probabilistically independent
of d, ¢ is unresponsive to d whereas w is responsive to

d.

Nonetheless, if an uncertain variable z is unresponsive
to a decision d, then z and d must be probabilistically
independent. That is, if the outcome of z is not af-
fected by d, then the probability of z given d must



be the same for all states of d. For example, consider
the decision smoke and the uncertain variable genotype
in our lifestyles decision problem. Until methods im-
prove for genetic analysis, we will be uncertain about
our genotype. Nonetheless, it is reasonable to assert
that whatever our genotype is, it will not be affected
by whether or not we smoke. That is, it is reasonable
to assert that genotype is unresponsive to the decision
smoke. Given this belief, we must also believe that
these two variables are probabilistically independent.

In the examples that we have considered, we have im-
plicitly held the belief that after we have made our
decision, the outcome of all uncertain variables are de-
termined, albeit possibly unknown. We call the out-
come of some or all of the uncertain variables together
with our decisions that led to those outcomes a coun-
terfactual world. In the coin example, we have one
binary decision to make. Regardless of this decision,
the coin will come up either heads or tails, although
we do not know which. If the coin comes up heads,
then the counterfactual worlds are {d = heads,c =
heads, w = win} and {d = tails, ¢ = heads, w = lose}.
If the coin comes up tails, then the counterfactual
worlds are {d = heads,c = tails,w = lose} and
{d = tails, ¢ = tail,w = win}. In general, the deci-
sion maker may be (and usually is) uncertain about
which set of counterfactual worlds is realized.

When an uncertain variable z is responsive to a de-
cision d, z is different in at least two counterfactual
worlds of {z,d}. In some subset of those counterfac-
tual worlds, however, ¢ may be the same. For ex-
ample, consider the variables smoke, lung cancer, and
length of life in our lifestyles decision problem. As
mentioned, length of life is responsive to the decision
. smoke. Nonetheless, if we consider only the counter-
factual worlds in which lung cancer is true (or false),
then length of life will be the same. We say that
length of lifeis unresponsive to smoke in counterfactual
worlds where lung cancer is the same, or that length of
life s unresponsive to smoke in worlds limited by lung
cancer for short. We refer to this concept as limited
UNTESPONSIVENESS.

In general, to determine whether or not an uncertain
variable z is unresponsive to decision d in worlds lim-
ited by y, we have to imagine a scenario where we
decide d and observe z and y and answer the coun-
terfactual query “Would z still be the same had we
decided differently, assuming that we were to find out
(after deciding) that y was the same?” This counter-
factual query is somewhat more complex than is the
simple query associated with the unlimited form of
unresponsiveness. In Section 5, we present an alterna-
tive formulation of limited unresponsiveness that some
people may find easier to understand than this one.
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Limited unresponsiveness has several simple proper-
ties. First, whether an uncertain variable z is unre-
sponsive or responsive to d, it will always be unre-
sponsive to d in worlds limited by d.

Second, if z is unresponsive to d, it follows that z
is unresponsive to d in worlds limited by Y for any
set of variables Y. That is, if # is unaffected by d,
then it must be unaffected by d in the subsets of all
counterfactual worlds where Y is the same. In our
lifestyles decision problem, for example, if we believe
that genotype would be the same whether or not we
smoke, then we must believe that, genotype would be
the same if lung cancer is the same, whether or not
we smoke. The coin example is a bit more tricky, due
to the deterministic relationship between {d, c} and w.
As we discussed, c is unresponsive to d. Consequently,
¢ should be unresponsive to d in worlds limited by w.
That is, we should answer “yes” to the query “Would ¢
still be the same had we bet differently, assuming that
we find out after betting that w is the same.” Indeed,
the answer is “yes” trivially, because the only way that
w could be the same is if we had not changed our bet.

We now formalize these concepts.

Definition 1 (Counterfactual World) Given un-
certain variables X C U and decisions D, a counter-
factual world of X and D is any instance assumed by
X U D after the decision maker chooses a particular
instance of D.

We emphasize that the decision maker may be (and
usually is) uncertain about the counterfactual world
that results from deciding D.

Definition 2 ((Un)responsiveness) Given uncer-
tain variables X and decisions D, X is unresponsive to
D, denoted X ¢ D, if X assumes the same instance
in all counterfactual worlds of X U D. X is respon-
sive to D, denoted X « D, if X can assume different
instances in different counterfactual worlds of X U D.

Definition 3 (Limited (Un)responsiveness)
Given sets of uncertain variables X and Y and de-
cistons D, X is unresponsive to D in worlds limited
by Y, denoted X ¢y D, if X assumes the same
instance in all counterfactual worlds of X UY U D
where Y assumes the same instance. X is responsive
to D in worlds limited by Y, denoted X >y D, if X
can assume different instances in different counterfac-
tual worlds of X UY U D where Y assumes the same
instance.!

!Our notions of unresponsiveness and limited re-
sponsiveness correspond with those of fized set and
conditional fized set, respectively, in earlier work
[Heckerman and Shachter, 1994].



Again, we emphasize that the identity of the counter-
factual worlds may be (and usually is) uncertain. In
the coin example, we do not know whether the coin will
come up heads or tails, but we do know that whatever
the outcome, it will be the same in the counterfactual
worlds {d = heads,c} and {d = tails,c}. Also, we
emphasize that that X and Y refer to the collections
of events some of which—the responsive ones—occur
after decisions D have been made.

Finally, we note that the identification of variables that
are unresponsive to D does not depend on the order in
which the decisions in D are made. In the remainder
of the paper, we will ignore the ordering of decisions.
Consequently, we have no need to use information arcs
in our influence diagrams.

4 Definition of Cause

Armed with the primitive notions of unresponsiveness
and limited unresponsiveness, we can now formalize
our definition of cause.

Definition 4 (Cause) Given decisions D, the vari-
ables C are causes for z with respect to D if (1) z € C,
(2) z is responsive to D, and (8) C is a minimal set
of variables such that z is unresponsive to D in worlds
limited by C —that 1s, z > D, and C is a minimal set
such that z ¢~¢ D.

The first condition simply says that cause is irreflex-
ive. The second condition says that for « to be caused
with respect to decisions D, it must be responsive to
those decisions. The third condition says that if we
can find set of variables Y such that z can be differ-
ent in different counterfactual worlds only when Y is
different, then Y must contain a set of causes for z.

Our definition of cause departs from traditional usage
of the term in that we consider causal relationships
relative to a set of decisions. At first glance, this de-
parture may appear to be a drawback of the definition.
Nonetheless, we find this departure has its advantages.
First, we do not require the decisions D to be realizable
in practice or at all. If we want to think about whether
the moon causes the tides, we merely need to imagine
a decision that affects the moon’s orbit (e.g., we can
imagine a decision of whether or not to destroy the
moon). Therefore, our definition does not restrict the
types of causal sentences that we can consider. Sec-
ond, given a set of real decisions to make, it may not
be necessary to determine whether some dependencies
are causal. As we see in the examples that follow,
our decision-based definition makes us provide causal
explanations only for those relationships that matter.
Using our definition, we can reason about cause locally,
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not necessarily having to attach a causal explanation
to every dependency.

Variants of our lifestyles decision problem shown in
Figure 2 help us to illustrate the definition. Some
conclusions that can be drawn about each domain are
shown next to the influence diagram for that domain.
The arcs in the figures are suggestive of causal rela-
tionships. Nonetheless, the reader should resist this
interpretation until reading Section 6.

First, let us consider the decision problem in Figure 2a.
Here, we model only the decision of whether or not to
smoke; and we do not bother to model the variable
length of life. For this problem, it is reasonable to
assert that lung cancer is responsive to D = {smoke}.
Also, as we discussed, lung cancer is unresponsive to
{smoke} in worlds limited by {smoke}. Consequently,
by our definition, we can conclude that {smoke} is
a singleton cause for lung cancer. Similarly, we may
conclude that {smoke} is a cause for smoking pleasure.
In general, some subset of D will always be causes for
any chance variable z.

Also in the example, it is reasonable to assert that utel-
ity is responsive to D, utility is unresponsive to D in
worlds limited by {smoking pleasure, lung cancer},
and there
is no subset C of {smoking pleasure, lung cancer}
such that wutility is unrespomsive to D in worlds
limited by C. Therefore, we can conclude that
{smoking pleasure, lung cancer} are causes for util-
ity. As shown in the figure, we may also conclude that
{smoke} is a cause for utility.

Someday, it may be possible to use retroviral therapy
to alter one’s genetic makeup. Figure 2b shows an
influence diagram assuming that a decision of whether
or not to undergo such therapy is available. Here, it
is reasonable to assert that genotype is responsive to
D = {smoke, retroviral therapy}. In contrast, it is
reasonable to assert that genotype is unresponsive to D
in worlds limited by {retroviral therapy). Therefore,
{retroviral therapy} is a singleton cause for genotype.
Furthermore, it is reasonable to assert that lung cancer
is responsive to D and that {smoke, genotype} is a
minimal set C such that lung cancer is unresponsive to
D in worlds limited by C. Thus, we can conclude that
{smoke, genotype} are causes for lung cancer with
respect to {smoke, retroviral therapy}.

The examples in Figures 2a and b illustrate the bene-
fits of defining cause with respect to a set of decisions.
Given our definition, not all dependencies need have
a causal explanation. For example, in the first ex-
ample, genotype and lung cancer are dependent, but
not causally related. Without a retroviral therapy or
any other alternative for modifying genotype, how-
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Figure 2: Variants of the decision problem in Figure 1.

ever, there is little point in knowing whether genotype
causes lung cancer. Our approach allows us to ignore
this question, and still make a rational decision. Of
course, we may believe that someday such a therapy
will be found, in which case we may want to include
the decision of whether or not to wait a few years be-
fore deciding to smoke. In this case, as our formulation
would show, we would want to know whether genotype
is a cause of lung cancer.

The influence diagram in Figure 2c corresponds to an
“alternative” view of the relationships between the de-
cision to smoke and lung cancer. Here, smoking is not
a cause for lung cancer. Rather, genotype is a cause
for lung cancer, and both genotype and smoking are
causes for smoking pleasure. As mentioned in the in-
troduction, these two views predict differently what
would happen should one start smoking. This exam-
ple emphasizes that our definition of cause and effect
is subjective. One person may hold beliefs correspond-
ing to the model in Figure 2a (or b), whereas another
person may hold beliefs corresponding to the model in
Figure 2c. Both people are “correct” provided they
make their decisions in a manner that is consistent
with their beliefs.

Our definition of cause has two satisfying ramifica-
tions. First, it implies that z and y cannot cause each
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Table 1: The four states of the mapping variable c(s),
which relates smoking and lung cancer.

state 1 state 2 state 3 state 4
smoke no yes no yes | no yes no yes
lung cancer | no yes | yes no no no yes yes

other, except for the special case where z and y are re-
lated deterministically. Namely, if {z} is a cause for y
with respect to D and {y} is a cause for z with respect
to D, then one can show that £ must be a determinis-
tic function of y and D (and y must be a deterministic
function of # and D).

Second, if C are causes for ¢ with respect to decisions
D, then every variable in C' must be responsive to D.
Otherwise, C' would not be a minimal set such that

z $>c D.

5 Mapping Variables and Causal
Mechanisms

In this section, we show how the concept of limited
unresponsiveness can be formulated in terms of the
simpler concept of unresponsiveness. We thereby pro-
vide an alternative definition of cause.

Our alternative formulation of limited unresponsive-
ness is based on the concept of a mapping variable.
To understand what a mapping variable is, let us con-
sider the relationship between the decision smoke (s)
and the chance variable lung cancer (c). In this situa-
tion, the mapping variable for ¢ as a function of s, de-
noted c(s), represents all possible deterministic map-
pings from s to c. The possible states of this variable
are shown in Table 1. Each state contains a particular
assignment to ¢ for every possible state of s.

When we introduce the mapping variable ¢(s) to a do-
main containing variables ¢ and s, lung cancer becomes
a deterministic function of smoke and ¢(s). For exam-
ple, if smoke is yes and c(s) is in state 1, then lung
cancer will be yes. The uncertainty in the relationship
between smoke and lung cancer, formerly associated
with the variable lung cancer, now. is associated with
the variable ¢(s). In effect, we have extracted the un-
certainty in the relationship between these two vari-
ables, and moved this uncertainty to the node c(s).

In general, we have the following definition.
Definition 5 (Mapping Variable) Given
uncertain variables X and variables Y, the mapping

variable X (Y') is the uncertain variable that represents
all possible mappings from'Y to X.

There are several important points to be made about



mapping variables.  First, as in our example, X is
always a deterministic function of X(Y) and Y.

Second, additional assessments typically are required
when introducing a mapping variable. For exam-
ple, two independent assessments are needed to quan-
tify the relationship between smoke and lung cancer,
whereas three independent assessments are required
for the node c¢(s). In general, many additional as-
sessments are required. If X has r instances and Y
has ¢ instances, then X(Y) will have 7 states. In
real-world domains, however, reasonable assertions of
independence decrease the number of required assess-
ments. In some cases, no additional assessments are
necessary (see, e.g., Heckerman et al. 1994).

Third, although we may not be able to observe a map-
ping variable directly, we may be able to learn some-
thing about it. For example, we can imagine a test
that measures the susceptibility of someone’s lung tis-
sue to lung cancer in the presence of tobacco smoke.
The probabilities on the outcomes of this test would
depend on c(s).

Fourth, an most important, we have the following the-
orem.

Theorem 1 (Mapping Variable) Given decisions
D, uncertain variables X, and a set of variables Y,

X ¢y D ifand only if X(Y) ¢~ D.

Roughly speaking, Theorem 1 says that X is unre-
sponsive to decisions D in worlds limited by Y if and
only if the way Y depends on X does not depend on
D. This equivalence provides us with an formulation of
limited unresponsiveness in terms of unresponsiveness.
In addition, we have an alternative set of conditions for
cause.

Corollary 2 (Cause) Given decisions D, the vari-
ables C are causes for z with respect to D if (1) z is
responsive to D, and (2) C is a minimal set of vari-
ables such that z(C) s unresponsive to D.

In our experience, we have found that neither formula-
tion is universally less complex. In different situations,
we have found that one or the other or both of our for-
mulations has been useful for the assessment of causal
relationships.

We can think of z(C')—where C are causes for z—as a
causal mechanism that relates C and . For example,
suppose chance variables 7 and o represent the volt-
age input and output, respectively, of an inverter in a
logic circuit. Given a decision d to which ¢ responds,
we can assert that {i} is a cause for 0. In this exam-
ple, the mapping variable o(i), represents the mapping
from the inverter’s inputs to it’s outputs. That is, this
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mapping variable represents the state of the inverter
itself.

Definition 6 (Causal Mechanism)

Given decisions D and an uncertain variable z that
is responsive to D, a causal mechanism for z with re-
spect to D is a mapping variable ©(C) where C are
causes for .

From Corollary 2, it follows that any causal mechanism
for z with respect to D is unresponsive to D.

6 The Influence Diagram as a
Representation of Cause

Given the known benefits of the belief network for rep-
resenting conditional independence, we would like a
graphical representation of cause and effect. In this
section, we show that an ordinary influence diagram
is not an adequate representation for causal depen-
dence, and describe conditions under which some in-
adequacies may be removed. In the following section,
we examine a special type of influence diagram that is
always an accurate representation of cause.

In Section 4, we saw that our notion of cause and effect
is intimately related to the notion of unresponsiveness.
Thus, we desire a graphical representation in which we
can encode the existence or lack thereof of this relation.

At first glance, the influence diagram appears to be
such a representation. In particular, consider the fol-
lowing graphical condition.

Definition 7 (Block) Given an influence diagram
with decision nodes D and chance nodes U, C C U
is said to block D from = € U if every directed path
from a node in D to z contains at least one node in

C.

If we reexamine our examples in Figure 2, we see that
whenever z is not blocked from D by the empty set—
that is, whenever there is a path from a decision node
to z—then z is responsive to D. In addition, whenever
z is blocked from D by C, then z is unresponsive to
D in worlds limited by C. Thus, in these examples, we
may read cause and effect directly from the influence
diagram.

In other examples, however, this correspondence be-
tween the graphical condition of blocking and unre-
sponsiveness breaks down, making the ordinary influ-
ence diagram an inadequate representation of cause
and effect. To formalize these inadequacies, we in-
troduce the following definitions, which closely paral-
lel Pearl’s concepts of Z-map and D-map. In these
definitions, S(D, U) denotes the complete set of unre-
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Figure 3: Influence diagrams for betting on a coin flip.

sponsiveness and responsiveness assertions made by a
decision maker about domain DU U.

Definition 8 (/{-map)
An influence diagram I(D,U) for domain U U D is
said to be a U-map with respect to S(D,U) if

C blocks D from z in I(D,U) => z #>¢ D € S(D,U)

Definition 9 (R-map) An  influence
I(D,U) is said to be an R-map if

C does not block D from z in I(D,U)
s sy D6 8D, U)

diagram

Consider the influence diagram in Figure 3a for our
coin example. Recall that w represents whether or not
we win; and is a deterministic function of the bet d
and the outcome of the coin flip ¢, as is indicated by
the double oval. If we believe that the coin is fair, and
if we do not bother to model the variable ¢ explicitly
(as shown in Figure 3b), then we need not place an
arc from d to w, because the probability of winning
will be 1/2, regardless of our choice d. Nonetheless,
w is responsive to d, because w will take on different
states for different bets. Consequently, we have a sit-
uation where there is no path from d to w, and yet w
is responsive to d. That is, our influence diagram for
U = {d, w} is not a Y-map with respect to S(D,U).

Conversely, consider a subset of our lifestyles deci-
sion problem shown in Figure 4a. If we choose not to
model the variable genotype, then we can obtain the
influence diagram shown in Figure 4b.? In this influ-
ence diagram, we cannot remove any arc without pro-
ducing invalid assertions of conditional independence.
Nonetheless, cardiovascular status is unresponsive to
D in worlds limited by {diet}. That is, the influence
diagram for U = {s,d,c,v} is not a R-map with re-
spect to S(D,U).

In general, an ordinary influence diagrams suffers from
the inadequacies that it may be neither a #/-map nor

2We obtained this influence diagram using the ordering
(s,d,c,v). Had we used the ordering (s,d,v,c), we would
have obtained the influence diagram where v has the single
parent d and ¢ has parents s,d, and v.
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Figure 4: A subset of the lifestyles decision problem.

R-map of the responsiveness assertions associated with
its domain. In the next section, we describe a special
type of influence diagram that is always a &/-map and
R-map. In the remainder of this section, we consider
simple conditions under which the inadequacies of or-
dinary influence diagrams can be weakened.

A decision maker can always transform an influence
diagram that is not an Z/-map to one that is an Z{-map,
by adding arcs to it. In the coin example, knowing
that w is responsive to d, a decision maker can add
an arc from d to w, making the diagram an Y-map.
The following definition and theorem lead to a simple
procedure for identifying which arcs, if any, need to be
added to an influence diagram to make it an U/-map.

Definition 10 (Unresponsive Influence Diagram)
An unresponsive influence diagram is an influence di-
agram in which every node ¢ € U is unresponsive to
D in worlds limited by x’s parents.

Theorem 3 All unresponsive influence diagrams for
domain DU U are U-maps with respect to S(D,U).

Proof: Suppose that a set of chance nodes C block D
from z, but that = is responsive to D in worlds lim-
ited by C. Because the influence diagram is causal, it
follows that at least one of z’s parents—say—y would
be responsive to D in worlds limited by C. Applying
this argument recursively, until y € C, we obtain a
contradiction. O

This theorem provides an implicit algorithm for trans-
forming an ordinary influence diagram into a i/-map.
In particular, for every chance node z, the decision
maker determines whether or not  is unresponsive to
D in worlds limited by z’s parents. If not, the deci-
sion maker need only add arcs to z until this condition
is satisfied. The result is an unresponsive influence
diagram, and consequently a /{-map with respect to

S(D, ).

The following definition and theorem demonstrates a
condition under which we can identify causes for some
variables in an influence diagram. Following Pearl and
Verma (1991), let us consider a special type of decision,



called a set decision.

Definition 11 (Set Decision) Given an influen
diagram for uncertain variables U and decisions i
a set decision for ¢ € U with respect to D s any a
cision node s, € D such that (1) s; has alternativ

“set x to k” for each state k of z and “do nothing
and (2) z is the only child of s;.

Given a set decision s, we can literally set z to any
its states, or we can do nothing. When we set z to o
if its states, none of the other ancestors of z contribu
to the determination of z. When we do nothing, «
determined as if it had no set-decision parent.

Theorem 4 Given a minimal responsiveness infl
ence diagram for uncertain variables U and decisio
D, and a variable z € U that has nonempty parer.
Pa(z), if D includes a set decision for each chanc
node parent of =, then Pa(z) are causes for x.

Proof: Consider any node z. If ¢ has no chance-node
parents, then z is caused by its decision parents. If
z has chance-node parents, then because the influence
diagram is minimal and there exist set decisions for
each such parent of z, z must be responsive to D.
Furthermore, because the influence diagram is mini-
mal and causal, Pa(z), which includes the decisions
pointing to z, must be a minimal set C such that z
is unresponsive to D in worlds limited by C. Conse-
quently, z is caused by its parents. O

7 Howard Canonical Form

Howard (1990) introduced a special type of influence
diagram, which has become to be known as an influ-
ence diagram in Howard Canonical Form (HCF). Al-
though not developed for this purpose, it turns out
that an HCF influence diagram for D U U is always
both a A-map and R-map of S(D,U). In this section,
we describe HCF and develop a method for building
influence diagrams in this form.

Although Howard (1990) does not use our language,
his definition is equivalent to the following:

Definition 12 (Howard Canonical Form) An in-
fluence diagram for uncertain variables U and deci-
stons D 1is said to be in Howard Canonical Form if (1)
every chance node that is not a descendant of a dect-
sion node is unresponstve to D, and (2) every chance
node that is a descendant of a decision node is a de-
terministic node.

We can transform any given influence diagram into
one that is in HCF by adding causal-mechanism vari-
ables. For example, the HCF influence diagram cor-
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Figure 5: A transformation to Howard Canonical
Form.

(a)

responding to the ordinary influence diagram in Fig-
ure 5a is shown in Figure 5b. In this new influence
diagram, we have added a node corresponding to the
causal mechanism ¢(s). This node becomes the only
non-deterministic chance node, and is unresponsive to
D = {smoke}.

The following theorem describes, in general, how we
can construct an influence diagram in HCF for a given
domain.

Theorem 5 (Howard Canonical Form)

Given uncertain variables U and decisions D, an in-
fluence diagram in HCF for U U D can be constructed
as follows3

1. Add a node to the diagram corresponding to each
vartable in U U D
2. Order the variables z1,...,z, tn U so that the
variables unresponsive to D come first
3 PFori=1,...,n ifes <D,
e Add a causal-mechanism node z;(C;) to the
diagram,
where C; C DU {zy,...,zi-1}
e Make z; a deterministic function of C;Uz(C5)
4. Assess dependencies among the variables that are

unresponsive D

Proof: In step 3, all causal-mechanism nodes added to
the diagram will be unresponsive to D and will not be
descendants of decisions. Also, after step 3, all nodes
in U that are responsive to D will be descendants of
D and will be deterministic functions of their parents.
In step 4, only the parents of nodes responsive to D
will be altered. In no case will such a variable gain
any variable in D as a parent. O

To illustrate this algorithm, consider the influence di-
agram shown in Figure 6a. We begin the construc-
tion by adding the variables {s,d, g,c,v} to the dia-
gram and choosing the ordering (g,c,v). Both ¢ and

®As noted in the introduction, we are not concerned
with information arcs and utility nodes in our construction.



Figure 6: Another transformation to Howard Canoni-
cal Form.

v are responsive to D = {s,d}, and have causes s and
d, respectively. Consequently, we add causal mecha-
nisms ¢(s) and v(d) to the diagram, and make c a de-
terministic function of {s,¢(s)} and v a deterministic
function of {d, v(d)}. Finally, we assess the dependen-
cies among the unresponsive variables {g, c(s), v(d)},
adding arcs from g to ¢(s) and v(d) under the assump-
tion that the causal mechanisms are conditionally in-
dependent given g. The resulting HCF influence dia-
gram is shown in Figure 6b. This example illustrates
an important point that causal mechanisms may be
dependent. We return to this issue in Section 8.

By definition of HCF, we have the following theorem.

Theorem 6 A minimal HCF influence diagram for
D U U is both a U-map and R-map with respect to
S(D,U).

Thus, the HCF influence diagram is a suitable repre-
sentation for causal relationships.

It is interesting to note that Howard did not de-
velop HCF for purposes of modeling causal relation-
ships. Rather, he developed the representation to facil-
itate the computation of value of information [Howard,
1990]. Before making important decisions, decision
analysts investigate how useful it is to gather addi-
tional information. This investigation is typically done
by computing the value of information about one or
more chance nodes in the domain. To compute the
value of information of observing a chance variable z
with respect to a decision d, one computes the decision
maker’s expected value given that z is observed be-
fore the decision d is made, and subtracts it from the
decision maker’s expected value given that z is not
observed before the decision is made. If the cost of
learning something about z is greater than the value
of information about z, then we know that it is not
worthwhile to gather such information. Given an ordi-
nary influence diagram, we cannot compute the value
of information of variables responsive to D, because
such variables cannot be observed before decisions D
are made. In contrast, we can always compute the
value of information of any non-deterministic variable
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in a HCF influence diagram, because all such variables
are unresponsive to D by definition.

We also note that Theorem 5 contains the only al-
gorithm known to us for constructing HCF influence
diagrams. Until now, practicing decision analysts have
had to use their intuitions (undoubtedly employing
causal knowledge implicitly) in order to build HCF
influence diagrams in accordance with the definition.
Now, however, armed with our definitions of unrespon-
siveness and Theorem 5, we believe decision analysts
will be able to construct these diagrams more system-
atically and effectively.

8 Global Causal Models

As we have mentioned, most previous work on the
graphical representation of causality concerns the sit-
uation where all interactions in a domain are causal
(see, e.g., Pearl and Verma 1991, Druzdzel and Si-
mon 1993, and Spirtes et al. 1993, and Pearl 1994).
We consider this special case, and describe correspon-
dences between our work and the work of Pearl and
Verma (1991), which is representative of this body of
work.

Pear]l and Verma (1991, p. 2) take causation to be a
primitive notion, and define a causal model as follows:

Definition 13 (Causal Model, Pearl and Verma)
A causal model of a set of variables U is a DAG, in
which each node corresponds to a distinct element of
U.

They qualify their definition, writing:

The nodes of the DAG correspond to the vari-
ables under analysis, while the links denote
direct causal influences among variables.

Each variable in Pearl and Verma’s analysis plays a
dual role of chance and decision variable. In particu-
lar, a variable may be observed, or set to a particu-
lar state (in the sense of a set decision as defined in
Section 6). Therefore, we can convert a causal model
to an influence diagram by copying the causal-model
DAG, interpreting all nodes as chance nodes, and in-
troducing a set-decision node for every chance node.
Furthermore, as shown by the following definition and
corollary of Theorem 4, every relationship in the re-
sulting influence diagram is causal.

Definition 14 (Causal Network) An influence di-
agram with uncertain variables U and decisions D s
said to be a causal network for U with respect to D if
Pa(z) are causes for & with respect to D forallz € U.



Corollary 7 A minimal causal influence diagram for
uncertain variables U and decisions D such that D in-
cludes a set decision for each nonleaf uncertain vari-
able in U is a causal network.

For example, if we take our influence diagram for
lifestyles decisions given in Figure 1 and ignore the dis-
tinction between chance and decision nodes, then we
obtain a causal model for U = {s,d, g, ps, ¢, v, Pe, |, u}
(by Pearl and Verma’s (1991) definition). Further-
more, if we introduce set decisions for every node in U,
then we obtain an influence diagram that is a causal
network for U (by our definition).

We note that our definition of causal network explic-
itly allows some or all chance node in U to have no
corresponding set decision. Examples of causal net-
works of this kind include the influence diagrams in
Figures 2b and c. In the same spirit, Pearl and Verma
do not require that all nodes in U have realizable set
decisions.

Pearl and Verma (1991, p. 3) go on to define a causal
theory:

Definition 15 (Causal Theory, Pearl and Verma)

A causal theory is a pair T =< D,©p > consisting of
a causal model D and a set of parameters ©p compat-
ible with D. ©p assigns a function z; = fi[Pa(z;), €]
and a probability measure g; to each z; € U, where
Pa(z;) are the parents of z; in D and each ¢; s a
random disturbance distributed according to g;, inde-
pendently of the other ¢’s and of any preceding variable
R

This causal theory is closely related to HCF influence
diagrams. In particular, let us suppose that we are
given a causal model for U by Pearl and Verma’s def-
inition. First, create a causal network as we have just
described. Next, transform the influence diagram to
HCF, assuming the causal mechanisms are indepen-
dent. Finally, collapse the set-decision nodes back into
their corresponding chance nodes. The result will be
a causal theory, where the causal mechanism for node
z; (by our definition) corresponds to the random dis-
turbance ¢; (by Pearl and Verma'’s definition). Indeed,
Pearl and Verma state later in the text that the ran-
dom disturbances are not affected by set decisions.
This condition corresponds to our requirement that
causal mechanisms be unresponsive to all decisions in
the domain.

We note that HCF is more general than is Pearl and
Verma'’s causal theory. Namely, in HCF, causal mech-
anisms may be dependent. The HCF influence dia-
gram in Figure 6b illustrates a case where there is
such dependence. The generality of HCF suggests that
there are some problems that can be represented by

an HCF influence diagram but not by a causal the-
ory. This conclusion, however, is not so. Rather, the
generality of HCF leads to a practical advantage. For
example, to represent the relationships in Figure 6b
using a causal theory, we would introduce mapping
variables (or random disturbances) c(s, g) and v(d, g).
Assuming s,d, g,c, and v are binary variables, each
mapping variable in the causal theory would have 16
states, whereas each mapping variable in Figure 6b has
only four states. Consequently, the nodes ¢(s,g) and
v(d, g) would require 30 probabilities in total, whereas
the nodes ¢(s) and v(d) require only 12 probabilities
in total.

9 Counterfactual Reasoning

Causal models have been used to answer counterfac-
tual queries that are more complex than the simple
counterfactual queries we use to define unresponsive-
ness [Balke and Pearl, 1994]. For example, methods
exist for answering the query “given that I have not
smoked, have maintained a good diet, have not gotten
lung cancer, and my cardiovascular status has been
good, what is the probability that I would have gotten
lung cancer had I smoked and eaten poorly?” Meth-
ods for counterfactual reasoning can be important, for
example, in legal argumentation.

Influence diagrams in HCF also can be used to an-
swer counterfactual queries. For example, to answer
our lung-cancer query, we begin with the influence di-
agram in HCF shown in Figure 6b. Then, we make two
copies of all variables that are responsive to the deci-
sions, as shown in Figure 7. The first copy represents
the actual state of affairs; and the second copy repre-
sents the counterfactuals (in our example, smoke = yes
and diet = poor). The unresponsive variables are not
copied, because, by definition, they cannot be affected
by decisions. Also, by definition of causal mechanism,
each copy of an observable variable has the same deter-
ministic relationship with its mechanism. To answer
our query, we instantiate the decision and chance vari-
ables in the first copy of the diagram to their observed
values (no smoking, good diet, no lung cancer, and
good cardiovascular status, in our example). In addi-
tion, we instantiate our counterfactual decisions in the
second copy of the diagram. Then, we use a standard
belief-network inference method to compute the prob-
ability of the variable(s) of interest (lung cancer in our
example).

Using this approach, we can answer arbitrary counter-
factual queries, including queries where unresponsive
variables have been observed. For example, we can
answer the query, “given that I have not smoked, have
maintained a good diet, and have a genotype predis-
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Figure 7: The use of HCF to compute a counterfactual
query. The primed variables denote counterfactuals.
Shaded variables are instantiated.

posing me to lung cancer, what is the probability that
I would have gotten lung cancer had I smoked.”

Our HCF-influence-diagram approach is identical to
that of Balke and Pearl (1994), except that they use
Pearl and Verma’s (1991) causal theory, whereas we
use the HCF influence diagram as the base represen-
tation. Therefore, our method has the computatlonal
advantage described in Section 8.

10 Conclusions and Future Work

We have presented a precise definition of cause and
effect in terms of the more fundamental notion of un-
responsiveness. Our definition departs from the tradi-
tional view of causation in that our causal assertions
are made relative to a set of decisions. Also, our defi-
nition allows for models where only some dependencies
have a causal explanation. We have argued that these
properties are advantageous.

In addition, we have examined the graphical encoding
of causation. We have shown how the ordinary influ-
ence diagram is sometimes inadequate as a graphical
representation of cause, but that the HCF influence
diagram is always an accurate language for causal de-
pendence. Also, we have established correspondences
between Pearl and Verma’s (1991) causal model and
theory and the influence diagram.

An important aspect of causality that we have barely
touched upon in this paper is the notion of time. Al-
though many of the results presented here are applica-
ble to time-varying domains, where two different nodes
in an influence diagram may represent the same sys-
tem variable at different points in time, there are in-
teresting aspects of such domains that we have yet to
explore.
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