
Omega-Stafi An Envinonment for Implementing
Intelligent Modeling Strategies

E. James llarner and llanga C. Galfalvy
West Virginia University

Key Words: Modeling system, modeling stategies, tree structure, semantic map, dynamic graphics, expert
system, Lisp programming environments.

Abstract

Omega-Stat is a new statistical envtonment built on LispStat, an object-oriented statistical prograrnming
environment. It contains extensible, reusable-component libraries for performing data management, multi-
variate analyses, modeling, and dynamic graphics. The point-and-click user interface allows instant access

to all objecs, including analysis and graphics objects comprising a semantic map. Knowledge, and methods
for accessing this knowledge, are embedded within model objecs and edge objects linking these models.
This will allow the modeling process to be studied by following the analysis trails of expert analysts. The
objective is to provide an "expert consultant" that is accessible as part of the man/machine interaction. Mod-
eling strategies can then be built into Omega-Stat by using prior knowledge and data-analytic heuristics to
guide the process of constnrcting the model tree and the iterative search for an "optimal" model.

Intnoduction

Omega-Stat is an integrated, user-friendly, extensible, object-oriented environment for data analysis, model-
ing, and dynamic graphics based on LispStat. Early versions of Omega-Stat are described by Harner (1990,

1991). LispStat is a protoq?e-based, object-oriented statistical programming environment developed by
Tierney (1990). This paper presents the modeling component being developed within Omega-Stat. Modeling
is complercly integrated with the data management, dynarric graphics, and multivariate components of
Omega-Stat.

The modeling environment builds on the ideas of many researchers, but those of Thisted (1986) and Oldford
and Peters (1986) are most relevant. Specifically, the modeling process generates a tree structure with nodes
representing expanded dataset models. A brief summary of the underlying statistical objects in Omega-Stat
is presented first to provide the backdrop for the modeling system. Acomplete description is given in Gal-
falvy (199a). The modeling environment is described next, including both the underlying objects and the
strategies for analysis.

Basic Statistical Objects: Variables and Datasets

A dataset-a collection of variables with value-lists of equal length-is the basic data structure for perform-
ing statistical analyses in Ornega-Stat. Most analyses begin by selecting variables from a dataset according
to their role. These variables are the arguments to a constructor function which retuns a child dataset with a
pointer to its parent. For exartple, a single response variable, with role f, and one or more explanatory vari-
ables, each with role X are selected prior to choosing Model from the Data Bmwser menu (see Figure l).
Analysis or graphical messages can also be sent to an individual variable. In this case, the constructor func-
tion returns a dataset, but the parent is a variable.

Both dataset and variable objects contain metadata (Hand, 1993), i.e., properties and descriptors about the
variables and datasets themselves. A variable object has slots for its name, label, type (numeric or categoric),
role (I-abel, X,Y, D, admissible values, order (if categoric), and its distribution which, along with its values,
define a variable. These can be defined initially, specifred later (except for the variable values), and changed
at any time. During initialization of numeric variables, inforrration on discreteness, sparseness, and other
descriptive properties are computed and saved. Similar considerations apply to categoric variables. During
initialization, categoric variables save infonnation on the actual and formal levels, level frequencies, con-

252

EIIEHilSE llataSessisn L

Ilataset $tate...

trI-Mtr
P_E YH

H RORS x

trTETilE

$elect Hll
Select ffll Numeric
Clear Hll

Model

ngPlot
$catPlot
llEoordinate

ENERCISE

PrinCompl

CHEI"IICAL

CHEHICAL -Models

Ilescribe
PrinEomp
0iscrim
EanEorr
EouBeg
Eluster
Scale

Hide llatabrouser

Messa es

FIGLIRE 1. Session Log with dataset object subviews, Data Bnowsers, and a Data Browser Menu.

trasts, etc. At any time, users can also have other numerical infonnation computed and automatically saved
within variable objects, e.g., information on synmetry.

Metadata for datases contain inforuration on the nesting and crossing relationships among categoric vari-
ables, variable groupings, and special constaints, such as that imposed by composition data. As analysis
proceeds, additional information is stored within datasets or their descendants. For example, the results of
generalized singular value decompositions on groupings of numerical variables give information on col-

253

linearity, missing values, and multivariate outliers; on groupings of categorical variables, similar decompo-
sitions give infonnation on dependency relationships and "cell outliers." The results of the former should be
considered prior to and during regression analyses, whereas the latter is relevant to log-linear and analysis of
variance models.

This metadata is used for data validation initially; subsequently, it is used to constrain the admissible analy-
ses. Furttprmore, tbis a prioi sp*ified (and computed) metadata is used along with diagnostics in assessing
the efficacy of statistical models and in guiding statistical model selection. For example, models with count
data as the dependent variable suggest exarrining the mean-variance relationship to determine if the Pois-
son, negative binomial, or some other probability model is appropriate.

Every statistical object cunently created by a constructor function, e.g., a principal component, discriminant,
or model instance, is an extended dataset" which has dependency relationships to its higher-level datasets. A
dataset is said to be extended in the sense of Thisted (1986), i.e., it is a dan-anatytic artifact wtnchbas
pointers to the original statistical and state variables, model-derived variable expressions, indicator vari-
ables, nrmerical descriptors, and dependency views.

Datasets, whether specified by the user or generated by a constnrctor function, are visualized iconically in
the Scssion Log (Figure 1). Session-log-prcto has a slot containing a tree with nodes containing pointers to
the actual datasets and linkages representing parent-child relationships. This dependency tre€ is the basis for
updating child dataset objecs when a parent object is changed. Similar dependency relationships (and

updating considerations) exist between dataset model objects and their views.

Within a child dataset the underlying variables from a parent dataset are never replicated and derived vari-
ables are stored as expressions. This economy is necessary since numerous dependent datasets are created
during the analysis process. For example, a principal component dataset has a slot containing pointers to the
variables underlying the model and to the constnrcted principal variables (linear expressions with the right
singular vectors as coefficients) and a slot for the principal variable scalings (the singular values), but not for
the canonical basis of the principal variables (the left singular vectors).

The principal variable objects are parameterizedby a power (c) of the principal variable scalings, for
0 s os I . This allows any plot involving the principal variables, e.g., a high-dimensional dynamic projec-
tion biplot, to be animated on a, which in the case of a biplot smoothly Eansforms the representation in
terms of the principal component scores and principal variable coefficients (cr = I) to one approximating
Mahalanobis interpoint distances and the original covariance stnrcture (a = 0).

Statistical dataset objecs are abstract data types with the following data access methods: recognizers for
detemrining dataset typs; selectors for extracting or modifying object slots, and constructors for creating
dataset instances. Datasets, as abstact objec6, exist independently of their views. Generally, dausets have
multiple views: iconic, data browser, attribute (slot), textual, and graphical.

The standard representation of a dataset is its iconic view. Dataset icons are actually subviews of the Session
Log, which shows the hierarchical structure of related datasets and provides an analysis history mechanism.
The controller for this subview is a popup menu for sending messages to the dataset object.

The Data Browser view has variable objects as subviews (Figure 1). The controller for variable icon sub-
views is a popup menu for sending messages to a variable, e.g., to visualize the variable values in a quantile
plot. The messages depend on the type of the variable object: numeric or categoric variables. The controller
for the Data Browser is a popup menu for sending messages to collections of variables. Depending on the
message, variable roles need to be specified, e.g., as response (4, explanatory (X), or nuisance (Z) variables.
Dialog views of variables and datasets show their state information.

Datasets generally have one textual view, which summaries the numerical information aboutthe dataset, and
many graphical views. Graphical-view constructors actually create a new dataset object which in turn is
visualized. Many views are available or are being developed. These include various types ofquantile, condi-

264

tioning, and multivariate plots. For example, :ryPlot provides "guided tours" (Hurley and Buja 1990) of
user-specified subspaces constrained by the roles ofthe variables.

Graphical views have two types of controllers (input devices): methods built into the view itself or object

instances of controller prototypes. The latter controllers are reusable components which are available to any

graphical view object. Although views and controllers have explicit links to each other and to their dataset

object, datasets do not have explicit links to their views and contollers. However, implicit links exist

through the dependency trees of sessionJog-prcto, since views (and child datasets) must be given the

opportunity to reflect changes ma& to their underlying dataset object. Protocols determine how views are

updated.

Datasets also contain state variables which deterrrine how individual observations are represented in dataset

views. These "variables" have point labels, symbols, colors, and states (invisible, hilited, etc.) as values'

State variables are defined in the toplevel dataset and are'inherited" by child datasets. This forms the basis

of the strong linking among dataset views, e.g., dynamic hiliting when the mouse is in brushing mode.

Datasets can also contain user-defined logical (indicator) variables to flag outliers, identify groups, etc., and

are specific to a dataset. A special logical variable defines a mask and is used to select, generally by hilight-

ing poins in a plot, a subset of the parent dataset for analysis.

Omega-Stat curently supports two classes of datasets-those derived from multivariate- Proto and those

from model-proto. The remainder of this paper focuses on dataset objects derived from model-proto. The

principal difference berween multivariate and model dataset objects is in the depth of their dependency trees.

Multivariate datasets typically are shallow since multivariate analyses are often descriptive and generally do

not involve search strategies for "optimal" models.

Model Objects

All prototypes and model objects inherit from model-pnoto, which has no instances. Model-pmto is a basic

or foundation prototype; it contributes functionality and attributes that all models share. Curently, two Prc'
totypes inherit from model-proto; these are linear-model-proto and nonlinear-model-proto (see Figure 2).

Each of these is "specialized" by prototypes allowing generalized linear and nonlinear models, respectively.

As described above, model objects are actually datasets which have report and graphical views. However,

unlike multivariate dataset objects, only the foundation dataset is recorded in the Session Log. All other

"descendant" datasets are visualized in a Model Bmwser which gives an overall view of the model depen-

dency tree and the inheritance links to prototypes. This approach was taken to eliminate complexity in the

Session Log, since model dependency trees can grow rapidly and become deep. Furtherrrore, session'log-
proto is too general and does not contain sufficient structure for developing intelligent modeling strategies.

The Model Bmwser is a powerful tool for communicating with model dataset objects, which are repre-

sented by iconic subviews. The controller for these model object subviews is a popup menu @gure 2). It
contains messages for producing summary and diagnostic views of the current model object and for creating

new model objects with dependency links to the current object.

The modeling portion of Omega-Stat is an implementation of Thisted's paradigm for data analysis (Thisted,

1986), i.e., the model objects are extended datasets which are viewed as nodes in a dependency tree. Further-

more, edge subviews connecting the nodes fonn the basis of a semantic map. The edge object contains infor-
mation on the heuristics used to generate the next model object (node). The controller for the edge subview

is a popup menu which provides the mechanism for the data analyst to record modeling explanations.

Fitted models are data-analytic anifacts as discussed above. Depending on the parent prototype of a model,

the extended dataset contains expressions for fitted values, residuals, leverages, etc. Perhaps most impor-

tantly, it contains symbolic representations of the model. The model forrtula scanner and parser, I well as

a constnrctor for the model matrix, was developed by Hasebe (194). Both the syntax and semantics of
model formula are based on the approach taken in S (Chanbers and Hastie,1992), except that both infix and

prefix notations are pennitted here.

255

t
o!,
E,
E

U)

o!to
E

E E

:
Et
E
tr
E
o
F
EoL(J

a

t,l-,lt El--
-gar

EXo-EE
b

=ootrt
LE.tG

o
-E
-
.!n
C'ETLoE=
EEE
F**coo
---rLr

o
lEE
LAo o=E=z
Et= rtEL

=glgttr
UIUIE
EE= g
(J(JG

o,Eo
E
tr
co(5

{,!to
L

N
{,T'o!

E
coz
Eo
c}

to
&E(}
E

10

{,
E'o
E

o- E E o- E

{,E
C}
E
L
J!
o
E

oEo
I
Loo
E
Eo
=

o- o-

o
o
L
o-
{,E'o
E
o-

(n
o
ltr
inr
0J

E

FIGLTRE 2. Model Browserwith its model dependency tnee and a model popup menu.

256

Modeling Strategies

Modeling entails node exploration and node transformation strategies. Messages selected from the controller
of a model iconic subview either create another model (a node transformation) or produce summary and

diagnostic views (node explorations).

Node explorations strategies, which are directed at a specffic model instance, consist of both low-level and

interrrediate-level methods. Low-level diagnostics use "primitives" already available in the extended model
dauset, e.g., a residual expression, to produce views which are generally graphical. Intennediate-level
explorations, such as collinearity diagnostics, build on the "primitives" or require new computations to gen-

erate views, which are often both textual and graphical. Recall, however, that graphical views are them-

selves based on an extended datasets; thus, each specific model object not only has model dependents, but

also dataset dependens associated with diagnostic graphical views. The dataset graphical views of a model

can be visualized as subviews in its model diagnostic browser.

Most of the diagnostics for model checking are based on methods owned by model-proto. These form a
group of diagnostics which in their basic form apply directly to linear models, but weighted versions apply

to generalized linear and nonlinear models. These include case-deletion diagnostics. Generalized singular

value decompositions, with appropriate row and column weights, allow collinearity and other diagnostics to
be made.

The inheritance structure of the model prototypes will allow approximate diagnostic methods, based on lin-
earizing higher-level models, to be replaced by more precise methods as they become available. This is the
justification for having generalized.linear-model-pnoto, which contains linear models as a subset, inherit
from linear.model-proto rather than the reverse. Each prototype in the inheritance chain has additional

diagnostics; for example, checks on the link and variance function are added for generalized linear models.

The infonnation gleaned from the model diagnostics are saved in slots in each of the model objects. This
includes numerical or categorical inforrration summarizing plots and other diagnostics. For example, assess-

ments of trend using smoothing algorithms for added variable plos or explorations using animation inARES
plos indicate whether an omitted variable should be included, and in what way, as an explanatory variable
(Cook and Weisberg, 1994). Currently, this diagnostic information is added to the model object by the ana-

lyst, but automated procedures are planned.

Once diagnostics are "completed" on a model object, the modeler shifu attention to selecting the next model
specification, i.e., finding a node transformation based on heuristics applied to the knowledge gained from
exploring models in the dependency tree. Node-transfonnation strategies are tenned high-level and also

depend on protocols for evolving the dependency tree. For exartple, a model with minor changes relative to
the curently selected model (e.g., deleted outliers) is created as a direct descendant of the current model,
whereas a model with major changes (e.g., a different link function) is created as a descendant of the appre
priate prototype. The modeling process is helped by the flexibility of the symbolic representation of the

model fomrula and the ease of changing state infonnation. Furthermore, the analyst can move around the

dependency tree to reexemine or perfonn more diagnostics on previously generated models.

Modeling is often done in small steps, but experts move purposely as they select the next transformation and

narrow down the multitude of possible models to a manageable number. As has been mentioned previously,
the modeler is encouraged to explain why a parent or prototype gave birth to an offspring. This process cre-

ates a semantic map which provides insight into the modeling process in general and an understanding of the
generated models in particular.

FuhueWork

The current dataset model is limited in two important areas. First" regular data (e.g., time series and spatial

data), sparse data (e.g., species abundances), and other data stnrcture are not implemented. Although these

data types can be represented in datasets, it is not efficient. Also, datasets containing categorical variables

have redundancies, which would not be present in multi-dimensional arrays indexed by the categories of

257

these variables. More general data structures are possible within the Lisp-Stat object system, but the cur-
rently implemented statistical operations require a dataset (or variable) structure. As spatial and time series

models and scientific visualization plots are added, other data structures will be developed.

Secondly, statistical database objects are not implemented (e.g., see Michalewicz, 1991). Datasets are

arranged hierarchically in session.log.pmto and in model-proto, but more general dependency relation-
ships and dataset constructor operators are needed. This added functionality will define the specifcations for
an object-oriented statistical database system, which is essential for large-scale research projecs.

The search strategy described thus far is informal, but it provides a method of developing man/machine
strategies for modeling. After examining the semantic maps of expert (and perhaps non-expert) analysts'

attempts at modeling targeted datasets, arule-based system will be developed encompassing search strate-
gies for reaching one or more acceptable models. The system would need to incorporate prior substantive

knowledge of the problem domain, use metadata, interpret diagnostics (created by man or machine) of the
models in the tree, represent this knowledge, and apply heuristics from this nrle-based system. The objective
is for the machine-resident "expert consultant" to suggest, but not enforte, the next node Eansformation. At
each step, the search process is repeated until an "optimal" model is attained.

References

Chambers, John M. and Hastie, Trevor J. (1992), Sutistical ModeIs in S, Pacific Grove, CA: Wadsworth.

Cook, R. Dennis and Weisberg, Sanford (1994), An Intruduction of Regression Graphics, New York, NY:
JohnWiley & Sons.

Galfalvy, Hanga C. (1994), An Object Environment Based on)GISP-STAf, for Multivariate Analysis and
Dynarnic Graphics, Master's Project Report, Deparftlent of Statistics and Computer Science, West Virginia
University.

Hand, D. J. (1993), "Measurement Scales as Metadata," inAnificial Intelligence Fruntiers in Sntistics,D.l
Hand (ed.), London: Chapman & Hall, 5+64.

Harner, E. James (1990), "Interactively Developing Models Based on the Exponential Family," rn Comput-
ing Science and Sutistics: Pmceedings of the 2lth Synposium on the Interface, Kenneth Berk and Linda
Malone (eds.), 21: 11G'115.

Harner, E. Janes (1991), "An Exploratory DataAnalysis and Modeling System Based on Lisp.Stat,".l99.l
Pruceedings of the Statistical ComputingSection, Ameican Statistical Association:70-78.

Hasebe, Yoshinori (1994), AModel Parser and Constructor for Generalized Linear Models, Master's Thesis,
Deparment of Statistics and Computer Science, West Virginia University.

Hurley, Catherine and Buja, Andreas (1990), "Analyzing High-Dimensional Data with Motion Graphics,"
SIAM J. Sci. Stat. Comput.l1, No. 6, 1193-2111.

Michalewicz, Zbigniew (1991), Statistical and Scientific Databases, New York, NY: Ellis Horwood.

Oldford, R. Wayne and Peters, Srcphen C. (1986), "Implementing and Study of Statistical Strategy," in Arti-
ficial Intelligence & Satistics, WilliamA. Gale (ed.), Reading, MA: Addison Wesley, 335-353.

Thisted, Ronald A (1986), "Representing Statistical Knowledge for Expert Data Analysis Systems," in Arti-
ficial Intelligence & Statistics, William A. Gale (ed.), Reading, MA: Addison Wesley, 267-284.

Tterney, L. (1990), USP-STAT: An Object-Oriented Ewirunmentfor Statistical Computing and Dynamic
Graphics, New York, NY: John Wiley & Sons.

258

