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Abstract

Robust natural language parsing systems must
be able to handle words thatare not in their lex-
icons. This paper describes a statistical clas-
sifier that determines the most likely parts of
speech of new words. The classifier uses alog-
linear model to obtain smoothed conditional
probabilities that take into account the inter-
actions between different features. We show
accuracy results for this model, and compare
it to some simpler methods.

1 Introduction

Current natural language parsing systems typically
assume a closed vocabulary. For example, the
most successful data extraction system at the sec-
ond Message Understanding Conference would “sim-
ply halt processing when a new word was encountered”
[Weischedel et al., 1993].

As natural language analysis systems move out of the
realm of small, experimental domains with limited vo-
cabulary and toward applications with open-ended vo-
cabulary, robust methods to handle new words become
necessary.

This paper describes a statistical classifier that deter-
mines the most likely parts of speech (POS) for unknown
words. The classifier is used to supply the lexical proba-
bilities for unknown words for a stochastic part of speech
tagger. In this way, the most likely part of speech given
the unknown word and the context is found, and the new
word becomes amenable to further analysis.

We compare the results of the classifier with a num-
ber of simpler procedures for finding the parts of speech
of unknown words, and show that the classifier obtains
higher accuracy.

2 Constructing the Classifier

The classifier was constructed in the following way. First,
features that could be used to guess the part of speech of
a word, such as a prefix or suffix, were determined by
examining a portion of an online text corpus.
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Figure 1: Performance of Different Models

Exploratory data analysis was performed in order to
determine relevant features, their possible values, and
approximate how they interact.

The training data were turned into feature vectors v,
and the feature vectors were cross-classified in a contin-
gency table. The contingency table was smoothed using
a loglinear model.

Let P(7) the prior probability distribution over the
possible parts of speech, and P(¥) the prior distribution
for the features. From the training data that are annotated
with the correct part of speech we can estimate P(7]q),
the conditional probability distribution for v, given the
part of speech <.

Bayes rule can then be used to derive the condi-

tional probability distribution for the correct interpreta-
tion, given the feature vector:

P(3li) P(i)
P(®)

As will be shown in Section 3.4, the conditional
probabilities P(:|¥) can be obtained directly from the
smoothed contingency table. Maximizing this condi-
tional probability leads to minimum error rate classifica-
tion [Duda and Hart, 1973].

1) P@l) =
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3 Estimating the Conditional Probabilities

This section describes how we used a loglinear model to
estimate the smoothed conditional probabilities that are
used for classification.

3.1 The Contingency Table

A contingency table was used to count the observed fea-
tures. A contingency table is an array with one dimension
for each feature; the size of the table is the product of the
number of possible values for the features. Each cell in
the contingency table records the frequency of data with
the appropriate feature values.

Cells in the contingency table are addressed using the
appropriate subscripts. In a table with four features, z;;x;
is the cell atlevel ¢ of the first feature, level j of the second
feature, and so on. Given a contingency table, the cell
entries can be summed up to form marginal totals. A
marginal total is represented by replacing the subscripts
for the dimensions that are summed over by a plus sign.
For example, the sum of all cell counts where the first
feature is at level 1 is denoted by z1444.

3.2 Smoothing the Conditional Probabilities

We used a loglinear model as a “smoothing device, used
to obtain cell estimates for every cell in a sparse array,
even if the observed count is zero” [Bishop et al., 1975].

A loglinear model is a statistical model of the effect
of the statistical features and their combinations on the
cell counts in a contingency table. Marginal totals of the
observed counts are used to estimate the parameters of
the loglinear model; the model in turn delivers estimated
expected cell counts, which are smoother than the original
cell counts. Let m;;x; be the expected cell count for cell
(4,7, k,1). The values for the expected cell counts that
are estimated by the model are represented by the symbol
m;jr. The general form of a loglinear model is shown
in Equation 2:

(2)  logmijk.. = u~+uy) +u() +us(x) + u.. +1dots

u is the mean of the logarithms of all the expected counts,
u + uy(;) is the mean of the logarithms of the expected
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Figure 3: Effect of Number of Features on Cutoff-factor
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counts at level 7 of the first feature, u + uy(;) is the mean
of the logarithms of the expected counts at level j of the
second feature, and so on. In other words, the term u (;)
represents the deviation of the expected cell counts at
level ¢ of the first feature from the grand mean u.

A loglinear model provides a way to estimate expected
cell counts that depend not only on the main effects of the
features, but also on the interactions between features.
This is achieved by adding “interaction terms” to the
model. For further details, see [Agresti, 1990].

3.3 The Iterative Estimation Procedure

For some loglinear models, it is possible to obtain
closed forms for the expected cell counts. For more
complicated models, an iterative estimation procedure
is used. The iterative proportional fitting algorithm
for hierarchical loglinear models was first presented by
[Deming and Stephan, 1940]. Briefly, this procedure
works as follows.

The interaction terms in the loglinear models repre-
sent constraints on the estimated expected marginal to-
tals. Each of these marginal constraints translates into
an adjustment scaling factor for the cell entries. The
iterative procedure has the following steps:

1. Start with initial estimates for the estimated ex-
pected cell counts. For example, set all 7 =
1.0.

2. Adjust each cell entry by multiplying it with the
scaling factors. This moves the cell entries towards
satisfaction of the marginal constraints specified by
the model.

3. Iterate through the adjustment steps until the max-
imum difference € between the marginal totals ob-
served in the sample and the estimated marginal
totals becomes small enough, e.g. ¢ = 0.1.

3.4 Obtaining Smoothed Conditional Probabilities

Recall that the smoothed cell counts in the contingency
table are denoted by m;;x;, that P(i;) is the prior prob-
ability of the Interpretation feature having level ¢, and
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Figure 5: Ambiguity versus Accuracy in Different Mod-
els

that P(¥;) is the probability of the remaining features
in ¥ having levels j, k, l.

The contingency table is used to obtain the probability
distribution for ¢; given values for the features in 7 in the
following way:

y m;
Bl = e
5 Mkl
Pl = m+‘:f++
= e My k1
P(Ujkili;) = ﬁ

Substituting this into Bayes theorem yields the following:

P(@jki]is) P (i)
P(@jk1)
Myjkl
Thus, the prior probabilities P(4;) and P(¥;x:) corre-
spond to the marginal totals 7n; 4 and /4 jz, and the

conditional probability P(%,|?) can be calculated directly
from the cell entry 7n;;z; and the marginal total 7. jx;.

4 Experimental Results

This section describes the results of evaluating the classi-
fier using online natural language corpora on the follow-
ing problem: Given an unknown word in isolation or in
context, find its most likely open class part(s) of speech.
(The open class parts of speech, into which an unknown
word must fall, are summarized in Table 1.)

4.1 Data

To obtain training and evaluation data, the Penn Tree-
bank Brown corpus [Marcus et al., 1993] was divided at
random, on a file-by-file basis, into three sets:

1. A set S; containing 400,000 words was selected to
represent the “known words”.

2. A set S, containing 300,000 words was selected to
represent the new text. Every word in S; but not in
S, is considered an unknown word. These unknown
words make up the training data.

3. A third set S; containing 300,000 words was se-
lected to evaluate the model. Every word in S;
but not in S; was used as an unknown word for
evaluation.

There were 17,302 training words, and 21,375 evaluation
words.

4.2 Determining the Feature Set

A set of data does not come with instructions for its
analysis. Which aspects of the data should be modeled?
Which features should be chosen? What should be cho-
sen as the levels (possible values) for the features? For
the loglinear model, which features appear independent,
and which features interact?

There are no exact recipes for answering these ques-
tions. We explored the data to look for variables that
are good discriminators, tried out different combinations
of variables, and compared the performance of different
models.

Based on this exploration, some features were added
and deleted, and the number of levels was changed for
others. These changes have the effect of changing the
shape of the contingency table. By deleting features or
some levels of features we merge parts of the table, or
“coarsen” it. By adding features or introducing finer
distinctions in the levels of a variable we introduce more
cells, or “refine” the table.

The initial set of features is shown in Appendix A. This
set of features, prefixes, and suffixes would have lead to
an impossibly large contingency table. There is both a
theoretical and a practical reason why the table size has to
be kept small. First, if the table had many more cells than
the number of training instances, the smoothing method
would break down, and many cell counts would remain
zero even after smoothing. Second, there are inherent
limitations in the available software and hardware, and
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Tag Part of Speech Example
CD Cardinal (number) 500,000

FW Foreign word Fahrvergniigen
1 Adjective yellow, large
JIR Comparative Adjective | larger, nicer
IS Superlative adjective largest, nicest
LS List item marker L simsia)ss
NN Singular or mass noun | water, rock
NNS | Plural noun rocks, cars
NP Singular proper noun English, March
NPS | Plural proper noun The English
RB Adverb quickly, quite
RBR | Comparative Adverb wiser, deeper
RBS Superlative adverb nearest, best
SYM | Symbol %, *
UH Interjection uh, hmpf
VB Base form verb do, go
VBD | Past tense verb did, went
VBG | Present participle verb | doing, going
VBN | Past participle verb gone, flown
VBP | Non-3sg present verb do, go
VBZ | 3sg present verb does, goes

Table 1: Open Class Wordtags Used In The Treebank

we found it difficult to handle tables with more than a
few hundred thousand cells.

For these reasons it was necessary toreduce the dimen-
sionality of the data. There are two principal methods for
this: Reducing the number of features, and reducing the
number of possible values for the features. The number
of features can be reduced by merging multiple features
intoasingle feature, and by discarding features that do not
provide good discrimination for the response variable.

The number of values for the Prefix and Suffix features
was reduced until only those affixes that occurred 100
times or more were used; this resulted in 26 prefixes and
37 suffixes. Even so, the affixes had to go into a separate
contingency table, so an Inflection feature was added to
the main table:

o Inflection. Does the word carry one of the follow-
ing inflectional suffixes? -ed, -er, -est, -ing, -ly,
-5

During data exploration the ability of different fea-
tures to discriminate between different POSs was inves-
tigated, with the aim of excluding features entirely from
the model. For each feature, we plotted the percentage
of tags covered by that feature. For example, the Num-
ber feature picks out over 95% of the words tagged CD
(number), and very few words with other tags. On the
other hand, the feature Includes-period (one of the char-
acters in the word is a period) only picked out 12% of
the symbols (SYM) and less than 5% of the interjections
(UH), so it was dropped from the model.

Answer Set | Accuracy | Res. Amb. | Set Size
Overall 73% 34

2-best 87% 1.8

3-best 93% 23

4-best 96% 2.9

5-best 98% 29

0.7-factor 77% 1.1 1.1
0.4-factor 86% 1.6 1.8
0.1-factor 94% 23 29
0.07-factor 96% 2.6 3.7
0.04-factor 97% 2.8 43

Table 2: Performance of the Statistical Classifier with
Nine Features

4.3 Measuring Performance

To measure the performance of the classifier, we can
either look at the most likely POS tag, or we can con-
sider answer sets that contain some of the most likely
POS tags. The tags in such an answer set can be the
n most likely tags returned by the model, or all tags
within a certain “cutoff” factor of the most probable tag
[de Marcken, 1990]. To describe the performance of the
models with answer sets, we use a number of different
measures:

1. n-best Accuracy. Accuracy of the answer set,
which consists of the the n most likely POS tags.

2. Cutoff Factor Accuracy. Accuracy of the answer
set, which consists of all POS tags whose probabil-
ity lies within a cutoff factor F of the most likely
POS.

3. Residual Ambiguity. Mean residual ambiguity for
the POS tags in the answer set, measured by the
perplexity of the answer set [Jelinek et al., 1977].
(The perplexity corresponds to the number of equi-
probable members in the set.)

4. Cutoff Factor Answer Set Size. Mean number of
tags in the answer sets derived using a cutoff factor.

4.4 Accuracy Results

[Weischedel et al., 1993] describe a model for unknown
words that uses four features, which are shown in Ap-
pendix B. The features were treated as independent. The
probabilities for these features were estimated directly
from tagged training data. We reimplemented this model
by using four features: POS, Inflection, Capitalized,
and Hyphenated. In Figures 2-5, the results for this
model are labeled 4 Prob(abilistic).

For comparison, we also created a model with the
same four features, but using a contingency table that
was smoothed with a loglinear model. The results for
this model are labeled 4 Class(ifier).

The performance of the best model is summarized in
Table 2. This model consists of two contingency ta-
bles; the features in these two tables are described in
Appendix C. The results for this model are labeled 9
Class(ifier).
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The accuracy of the different models in assigning the
most likely parts of speech to the word in isolation is
summarized in Figure 1. The three sets of bars show
three different accuracy measures: Percent correct (Ac-
curacy), percent correct within the F=0.4 cutoff factor
answer set (F=0.4 Accuracy), and percent correct within
the two most likely answers (2-Best Accuracy).

In each case, the statistical classifier with four fea-
tures shows better performance than the model assuming
independence between the four features. The statistical
classifier with nine features further improves this score,
except for the case of 2-Best accuracy, where it ties with
the classifier with four features.

4.5 Effect of Number of Features on Accuracy

The previous section showed that the performance of
the statistical classifier can be improved by adding more
features. Is this also possible with the approach assuming
independent features?

In order to answer this question, the performance of
the two types of models was measured with feature sets
that ranged from a single feature to nine features. The
performance for this series of models is shown in Figure 2.

This diagram shows two trends. First, the statistical
classifier shows higher accuracy than the simple model.
Second, the accuracy of the classifier increases as more
features are added, but does not decrease as nuisance fea-
tures are added. For example, the performance of the
models with five, six, and seven features are the same;
this suggests that these features do not contain any new
information. These features do not have a negative effect
on the classifier, however, and when the ninth feature is
added, the classifier is able to take advantage of the infor-
mation contributed by that feature to increase accuracy.

The simple probabilistic model, on the other hand,
peaks a four features, and then degrades as features with
little or no new information are added. When the ninth
feature is added the simple model improves somewhat,
but not enough to even recover to its accuracy with four
features.

Similar trends can be observed in the graph of feature
set size versus model cutoff factor accuracy for the cutoff
factor F=0.4. This graph is shown in Figure 3.

4.6 Tradeoff between Accuracy and Ambiguity

Clearly, answer set classifications obtain higher accuracy
than individual classifications at the expense of some
residual ambiguity. The effect of feature set size on F=0.4
cutoff factor residual ambiguity is shown in Figure 4.
Residual ambiguity decreases as more features are added,
and the statistical classifier shows slightly higher residual
ambiguity than the simple probabilistic model.

What is the relation between accuracy and residual
ambiguity? Figure 5 shows a scatter plot of residual
ambiguity versus accuracy. Each point in this diagram
corresponds to one particular model. For example, the
point labeled “F=0.4 9 Class.” refers to the statistical
classifier using nine features, where the answer set is
derived using the F=0.4 cutoff factor. The connected
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Figure 6: Error Rate on Unknown Words

series of points correspond to a single accuracy measure
with a series of different models.

The highest accuracy (87%) is obtained by the 2-best
set of the four-feature statistical classifier, with a residual
ambiguity of 1.6. The best accuracy-ambiguity tradeoff
seems to be the F=0.4 set of the four-feature classifier.

S Adding Context to the Model

So far, we have examined unknown words in isolation.
But the surrounding context often provides important
clues about the part of speech of a new word. To take this
into account, we integrated our classifier with a stochastic

part of speech tagger.

5.1 Part of Speech Tagging

The part of speech tagger assigns part of speech tags to
words in a sentence. It uses two types of parameters:

o Lexical Probabilities: P(¢|w)— the probability of
observing tag ¢ given that we have observed word
w.

o Contextual Probabilities: P(t;|t;—;,t;_,) — the
probability of observing tag ¢; given that we have
observed the 2 previous tags.

The tagger maximizes the probability of the tag se-

quence given the word sequence, which is approximated
as follows:

n
P(TIW) = H P(wi|ti)P(t,‘| it >)
=1
5.2 Evaluating Combined Accuracy

We evaluated the accuracy of the combined local and
global method by comparing three methods of handling
unknown words:
¢ Unigram: Using the prior probability distribution
P(3) of the part of speech tags for rare words.

o Probabilistic UWM: Using the probabilistic model
that assumes independence between the features.

230



40

o Unigrams
Probabilistic UWM
° Classifier UWM

»

35

15 20 25 30

Percent Tagging Error on All Words (Each Sample: 10,000 Words)
10

25

T T T T T T T

30 35 40 45 50 55 60

Percentage of Unknown Words

Figure 7: Percentage of Unknown Words versus Accuracy for Different Unknown Word Models

o Classifier UWM: Using the statistical Classifier.

The unknown word model was trained on text from the
Brown Corpus. We evaluated different configurations of
the system on 3040 different samples of 4,000 words of
text from the Wall Street Journal. The tagger displays
considerable variance in its accuracy in assigning part of
speech to unknown words in context. Figure 6 compares
the tagging error rate on unknown words for the uni-
gram method (left) and the classifier with nine features
(right). The classifier lowers the error rate considerable,
and eliminates all samples with error rates over 32%.

5.3 Effect of Proportion of Unknown Words

Another question related to unknown words is this: How
does the overall tagging accuracy depend on unknown
words? How does it vary when there are different
amounts of unknown words in the text to be tagged?

To answer this question, we tagged samples of text that
contained different proportions of unknown words. We
found that the overall tagging error rate increases signifi-
cantly as the proportion of new words increases. Figure 7
shows a graph of overall tagging accuracy versus percent-
age of unknown words in the text. The graph compares
the three different methods of handling unknown words.

This diagram shows that the statistical classifier leads
to better overall tagging performance than the simpler
methods, with a clear separation of all samples whose
proportion of new words is above approximately 9%.

6 Conclusions

We have demonstrated a simple statistical classification
technique to help natural language analysis systems han-
dle words that have never been encountered before.

Our results show that the statistical classification
method is better than a probabilistic method that assumes
independence between the features. First, the statistical
classifier achieves higher accuracy. Second, the classifier
handles larger feature sets, which may contain nuisance
features, while the performance of simpler feature com-
bination method degrades as more features are added.

In the future we are going to apply this method to
other problems in robust natural language analysis. We
believe that the framework of categorial data analysis
and statistical classification holds the key to solving the
pervasive problem of ambiguity.
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Appendices
A Initial Feature Set

¢ Includes-Number. Does the word include a num-
ber? Positive example: 836-901. Negative exam-
ple: Absent-minded.

o Capitalized. Is the first character of the word a
capitalized letter? Positive example: Abnormal.
Negative example: carch, 500,000.

¢ Includes-Period. Does the word include a period?
Positive example: B.C., 4.2, UN. Negative exam-
ple: Union.

e Includes-Comma. Does the word include a
comma? Positive example: 500,000. Negative
example: amazement.

o Final-Period. Is the last character of the word a
period? Positive example: B.C., Co. Negative
example: UN, Command.

o Includes-Hyphen. Does the word include a hy-
phen? Positive example: Poynting-Robertson,
anti-party. Negative example: answer.

o Sentence-initial. Is the word the first word in the
sentence? The value of this feature is determined
by looking at the context of the word in the original
Treebank file.

o All-upper-case. Is the word in all upper case? “All
upper case” is defined as the absence of any lower
case letters. Thus, words without any letters at
all are also in “all upper case”. Positive example:
CTCA, 1532. Negative example: Fred, accomplish.

o Short. Is the length of the word three characters or
less? Positive example: W., Yes, bar, Eta. Negative
example: Heaven, 100,000.

o Prefix. Does the word carry one of a list of known
prefixes?

o Suffix. Does the word carry one of a list of known
suffixes?

B Meteer et al. ’s Four Features

o Inflectional ending. Possible values: “ed”, “ing”,
65s”.

o Derivational ending. 32 possible values, including
“ion7’, ‘Gal”’ “ive79’ 6‘1y’,.

o Capitalization. Four possible values: “+senten-
ceinitial+capital”, “-sentenceinitial+capitalized”,
etc.

o Hyphenation. “true”/“false”.

C Set of Nine Features

The first table contains the following seven features:

P POS. G‘CD”, “FW”, “JJ”’ “JJR”, ‘5JJS,9, LSLS??, GCNN”’
“NNS’?, “N’P”, “NPS”, €6 77, “RBR”’ “RBS”,
“SYM?” “UH”, ‘6VB’?, “VBD”, G‘VBG”, ‘GVBN”’
G‘VBP”’ “VBZ”'

o All-upper-case. “true”/“false”.

o Hyphenated. “true”/“false”.

o Includes-number. “true”/“false”.

o Capitalized. Three values: “capitalized in sentence
initial position”, “capitalized in the middle of the
sentence”, and “lower case”.

° InﬂectiOn. “ed”, “er’Q, “est”, G‘ing”’ L‘ly”, “S”, l-éno_
inflection”.

o Short. “true”/“false”.

The second table handles the affixes with the following
features:

e POS.

o Prefix. The 26 prefixes that occurred 100 or more
times in the training data, plus a “no-prefix” value:

o Suffix. The 37 suffixes that occurred 100 or more
times in the training data, plus a “no-suffix” value:
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