Which method learns most from the data?
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Introduction

The mutual discovery of the statistical and artificial intelligence communities (see e.g.
[Han93, CO94|) has resulted in many studies which compare the performance of statistical and
machine learning methods cr empirical data sets; examples are the StatLog project ([MST94])
and the Santa Fe Time Series Competition ([WG94|), as well as numerous journal articles
((KWR93, RABCK93, WHR90, TAF91, TK92, FG93]).

What has struck us is the casual manner comparisons are typically carried out in the litera-
ture. The ranking of k preselected methods is performed by training (estimating in statistical
terminology) them on a single data set, and estimating their respective mean prediction errors
(MPE) from a hold-out sample. The methods are, subsequently, ranked according to their
estimated MPEs. When the total number of observations is small, usually cross-validation
rather than a hold-out sample is used to estimate the mean prediction errors.

A more rigourous comparison of methods should include significance testing rather than giving
a mere ranking based on the estimated MPEs. The statistical analysis of comparative studies,
method ranking in particular, is addressed in this paper. Specifically, we address methodolog-
ical issues of studies in which the performance of several regression or classification methods is
compared on empirical data sets.

1 Ranking Methods by Significance Testing

The ranking of methods by simply ordering them by their estimated prediction errors should
be extended by statistical significance testing. Appropriate tests are those for the difference
between means (regression) and proportions (classification). The standard ¢-test for testing
the difference between two sample means Y, and Y, which come from independent normal
distributed populations, leads to the following confidence interval for the difference

01 — 0, € (Y1 = Y32) £ t(a/2,.) Ggig] (1)

where G 3;¢ equals | /6'2?1 + &272. In the standard comparative experiment, however, the MPEs
are all estimated from the same test sample, which makes them highly correlated. Therefore,
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a paired sample t-test should be used instead. The dependence within the pairs only changes
the standard error of the difference 4;g, which now becomes

Suig = 1[0, + 0%, = 2o (V0 T .

When the variables are positively correlated the covariance will have a positive value and thus
the variance and standard error of a difference between means will be less for matched than for
unmatched samples. Consequently, the confidence intervals become smaller (given the same «
value), which results in more powerful tests. In conclusion, neglecting the dependence between
the samples generally results in too conservative tests.

Often the estimated prediction errors of more than two, say k, methods are being compared.
The first idea that comes to mind is to test each possible difference by a paired t-test with
P(Type I error) of a. The problem with this approach is that the probability of making at least
one Type I error in the whole family of ¢-tests exceeds ¢, by an amount that increases with the
number of tests that are made. For J statistically independent tests the probability of making
at least one Type I error, better known as the familywise error rate (FWE), is 1 — (1 — a)”.
When J is large, say 20, this can be a large probability; for & = 0.05 there will be a probability
of 0.64 for one or more Type I errors. When the tests are statistically dependent of each other,
such as pairwise difference tests, the FWE becomes even larger. Thus, when enough pairwise
tests are performed one will with high probability find one or more ’significant’ differences.
This problem is known as the multiplicity effect or selection effect. Statistical procedures have
been designed to take into account and properly control for the multiplicity effect, they are
called multiple comparison procedures.

A crude approach to deal with the multiplicity effect is the Bonferroni method, which rejects
the pairwise null hypothesis 6; —6;; = 0 when the p-value is less than «/J, where « is the preset
FWE level and J is the number of tests. This method, neglects the dependency between the
pairwise difference tests, and it further assumes normality of the data.

Many alternative tests ranging from slight adjustments to the Bonferroni method to very
sophisticated techniques have been developed [HT87, WY93] and still are being developed. The
characteristics of a particular experimental design often prescribe adjustments to general tests
for differences or make special purpose tests necessary. The experimental design that captures
the subject of this study is the one-way repeated measures design, which is displayed in Table 1.
In such designs blocks consisting of a random sample of, say, n experimental units drawn from
a large population constitute the random factor. Each unit is measured under % different
conditions. The conditions of measurements are fixed in advance, and constitute the treatment
factor. In the terminology of this study experimental units correspond to the observations from
the test set, and the treatment factor corresponds to the regression or classification model type.

2 Pairwise Comparisons for Regression

The general setting of this section is the one-way repeated measures design with & different
(prediction) models which predict the observations from the same random test set of size n.
The deviation of the predicted value from the true value is assumed to be measured as squared
error, but any other error measure could be inserted equally well. When the observations are
not randomly drawn from a population but result from a (highly) autocorrelated time series,
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Table 1: One-way repeated measures lay-out.

the subsequent approach seems not to be justified. Diebold [DM94] discusses the comparison
of predictive accuracy of two time series models; he leaves the multiple comparison problem
for further research.

Let Y; = (Yj1,Y2,...,Yjx) denote the vector of prediction errors for the jth observation
(1 £ 7 £ n). The following model is assumed:

Y;=M;+E; (1<j<n) (3)

where all the M; = (M1, Mj3,...,Mj;) and E; = (E;1, Ej3,...,Eji) are distributed indepen-
dently of each other as k-variate normal vectors, the former with mean vector 8=(6,,6,,...,6%)
(the vector of model effects) and variance-covariance matrix X, and the latter with mean vector

0 and variance-covariance matrix o?I. Thus the Y,’s are independent and identically distributed
(ii.d.) N(6,X) random vectors where ¥ = ¥, + 1.

Exact procedures for making pairwise comparisons among the 6;’s can be constructed if we
impose special restrictions on the form of X. The least restrictive of such models for a one-way
repeated measures design is the spherical model. In words, this model assumes that all pair-
wise differences of the sample means of the regression models have the same variance (for more
details see [HT87, CH90, WBM91, Hay88|). This assumption, however, will rarely be satisfied
in practice [HT87, Hay88].

Hochberg and Tamhane [HT87, page 215] propose a test that is to be preferred in case one is un-
sure about the sphericity assumption being satisfied. They propose the following approximate
100(1 — @)% simultaneous confidence intervals for the pairwise differences 6; — 6;:

> = a S+ Sue — 25 5 o
Y.,‘ = Y_il + |M|£‘3n—1 \/7 i = 5 :| (1 S 1 <1 S k) (4)

6; -0, €

where |M Isc‘fzn_l is the upper a point of the Studentized maximum modulus distribution (see
[HT87, Table 6]) with parameter k* = k(k — 1)/2 and degrees of freedom n — 1; and where

TV =Y ) (Ve — V)
n—1

Sip =

(1<4,i' <k) (5)
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An empirical analysis of the boston housing data! illustrates this procedure. We compare
the performance of four regression models, designated f; through f,. The first model f; is a
linear model trained with OLS; models f, through f, are feed-forward neural networks with
respectively 2, 4 and 6 hidden units. The data set is split into two parts: the first part (400)
is used to estimate the parameters of the model; the second (106) to measure the model’s
performance. The observed average squared prediction error Y ; for method f; (i = 1,2, 3, 4)
areY ; =6.38¢ —3; Y, =3.49¢ — 3; Y ; = 2.94¢ — 3; and Y 4 = 3.00e — 3.

Suppose that it is of interest to make all pairwise comparisons among the prediction accuracy
of the different methods with Type I familywise error rate a = 0.10. In Table 2 the S;; values
are displayed in the cells, calculated according to (5). We use |M |§,‘j§,’5, which equals 2.135
([HT87, Table 6]), to construct the confidence intervals for the pairwise differences 6; — 6,
according to (4). Table 3 shows that the linear model performs significantly worse than the
three neural network models. Among the neural network models no significant differences can
be observed; there is no statistical evidence for preferring neural network models with more
than two hidden units.

fi f2 f3 fa
f1 | 1.68e-04 3.76e-05 3.46e-05 4.02e-05
fa - 3.01e-05 1.54e-05 1.27e-05
f3 - - 2.24e-05 2.67e-05
fa - - - 4.15e-05

Table 2: The S;; matrix.

62 63 04
61 | [5.9e-4,5.2e-3] [l.le-3,5.7e-3] [l.le-3, 5.8¢-3]
6, - [4.3e-4 , 1.5e-3] [-9.2e-4 , 1.9e-3]
03 - - [-7.2e-4 , 6.2¢-3]

Table 3: All pairwise confidence intervals. The cell (6;,6;) contains the confidence interval for
the pairwise difference 8; — 6;:.

3 Pairwise Comparisons for Classification

In this section we discuss significance testing for the comparison of two or more classification
methods. Again we notice that it is not appropriate to use a standard test based on the assump-
tion of independent samples. Instead, we use - as suggested by Ripley ([Rip93]) - McNemar'’s
test ([MMT77]), when only two classification methods are compared. This test is normally used
to test for differences between proportions in paired sample designs. The comparisons per-
formed in this section should not be considered as serious evaluations of the methods involved,
they are purely illustrative.

A hypothesis test involving the application of linear discriminant analysis and a feed-forward
neural network to the diabetes data set? illustrates the use of McNemar’s test. The 768 obser-
vations in this dataset were divided in a training and test set of 384 observations each.

!This dataset is publically available by ftp from lib.stat.cmu.edu with user statlib
*This data set can be obtained by anonymous ftp from ics.uci.edu in the directory
pub/machine-learning-databases
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Lon  Can | Total
L4, 61 23 84
Cua | 32 268 300

Total | 93 291 384

Table 4: Incorrect and Correct classifications of lda and nn

Table 4 summarizes the result of using the linear discriminant function and a neural network
estimated on the training set to classify the observations in the test set. The cells (Ciaqy Cnyp)
and (Ii4q, Inn) respectively contain the number of cases classified correctly and incorrectly by
both the linear discriminant function and the neural network. Since we want to test

H, : MPE;;, = MPE,,,, against H, : MPEy, # MPE,,,,

only the cells (Ij4o, Cpnn) and (Cigq, Inn) of this table are of interest. Here MPE is defined as
the proportion of misclassifications f; makes on the population of interest. When observations
falling in the ([45, Cnn)-cell of this table are defined as a success, then the number of successes
is binomially distributed with n = (Ijgs,Crn) + (Cida;Inn) = 55 and p = 0.5, under the null
hypothesis. Since n > 10, a normal or chi-square approximation of the binomial distribution is
sufficiently accurate, and is thus employed. Application of the chi-square version of McNemar’s
test to the data in Table 4 yields

(2332 —1)°

2
& 23 +32

= 1.1636

where the X? statistic has a chi-square distribution with 1 degree of freedom. This value of
X? has a p-value of approximately 0.28. According to any conventional significance level, we
should conclude that H, cannot be rejected.

We will now consider the case where k& > 2 classification functions are compared. In this
comparison we use the same training and test set as in the above example. We performed a
comparative study, including linear discriminant analysis (f;), quadratic discriminant analysis
(f2), a classification tree (f3), and two feed-forward neural networks (f; and fs respectively)
which only differ in the value of the weight decay parameter used. All pairwise comparisons
are performed which amounts to a total of ¥* = 10 pairwise comparisons. Table 1 presents the
general lay-out of a study which compares k classification functions. In this matrix ¥j; is one
if f; classifies observation j correctly, and zero otherwise.

For our comparative study we _liave: n=2384,k=05,Y, =300,Y, =295 Y; =265 Y, =303
and Y5 = 296. Consequently,Y ; = 0.781,Y , = 0.768,Y ; = 0.69, Y , = 0.789, Y 5 = 0.771.

The pooled variance of any pairwise difference Y ; — Y ; for this design can be written as
(MMT77], p. 180)
b2 _ RS, — 20 ¥R)
diff n?k(k — 1)
We can now construct 100(1 — )% simultaneous confidence intervals for all pairwise differences
6; — 8, as follows

6:—6:€[V:-VaotZ, o] (L<i<i <k)
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02 03 04 95
8, | [-0.045,0.071] [0.033,0.149] [-0.066,0.05]  [-0.048,0.068]
8. = [0.02,0.136]  [-0.079,0.037]  [-0.061,0.055]
8 = = [-0.157,-0.041]  [-0.139,-0.023]
0, = s & [-0.04,0.076]

Table 5: 95% confidence intervals for all pairwise differences.

where 6; denotes the population proportion of correct classifications of f;, and v = n—1 denotes
degrees of freedom. The distribution of Z is based on the Student ¢ distribution, adjusted for
the number of comparisons k* involved ([Dun61]). Tables for this statistic can be found in
((MM77],[Dun61]). As one would expect, the value of Z}.,,_, , increases with the number of
comparisons k*, leading to wider confidence intervals.

In Table 5, 95% confidence intervals for all pairwise differences are provided. In computing
these intervals we used Z{5.) 975 = 2.81 and 6 4;5 = 0.0205, leading to confidence intervals that
are 2 x (2.81 x 0.0205) = 0.116 wide. If the interval of #; — 8y contains 0, then there is no
significant evidence that classification functions f; and f; differ in their true prediction error.
From Table 5 we conclude that f; (the classification tree) performs significantly worse than all
other functions; among these other functions no significant difference has been found.

4 Conclusion

In this paper we proposed a first step towards a sound methodology for performing and
analysing studies that compare the predictive accuracy of several regression or classification
functions. Rather than providing a mere ranking, hypothesis testing is used to determine
whether a significant difference between functions has been found. The formal methods re-
quired to perform the appropriate hypothesis tests originate primarily from the field of exper-
imental design. This paper selected parts of these formal methods and showed their relevance
to a type of study that is encountered frequently in the recent Al and Machine Learning liter-
ature.

Although the general difficulties induced by the multiplicity effect and by the dependency
among observations are easy to grasp, finding “the right” testing procedure is much more
difficult. The literature on the subject is somewhat ambiguous, and requires a high entrance
level of statistical knowledge-which Al-researchers don't always possess. This may explain why
comparative experiments are often performed in a rather casual way in the AI and Machine
Learning literature.

We do not claim that the methods presented here are the best for the given purpose: they are
examples of tests that can be used for the comparison of the prediction accuracy of different
functions. We hope that in future research more attention will be given to this subject, and
perhaps more appropriate methods will be found.
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