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Introduction
The mutual discovery of the statistical and artificial intelligence communities (see e.g.

[Ean93, CO94]) has resulted in many studies which compare the performance of statistical and
p3chins learning methods on empirical data sets; examples are the StatLog project ([MST94])
and the Santa Fe Time Series Qsmpetition ([WG9 ]), as well as numerous jourual articies
([KWR93, RABCKg3, WIIRgo, TAF91, TK92, FG93]).

What has struck us is the casual uranner comparisons are typically carried out in the litera-
ture. The ;anking of k preselected methods is performed by trainiug (estimating in statistical
terminolory) them on a single data set, and estimatiug their respective mean predictiou errors
(MPE) from a hold-out sa,mple. The methods are, subsequently, ranked according to their
estimated MPEs. Wheu the total number of obsernations is small, usually cross-validation
rather than a hold-out sarnpl€ is used to estimate the mean prediction errors.

A more rigourous comparison of methods should include significance testing rather than giving
a mere sankinB based on the estimated MPEs. The statistical analysis of compa^rative studies,
method sanlring in particular, is addressed in this paper. Speciflcally, we address methodolog-
r'cal issues of studies in which the perfor'"a"ce of several regression or classification methods is
compared on empirical data sets.

1 Ranking Methods by Significance Testing

The ranking of methods by simply ordering them by their estimated predictiou errors should
be extended by statistical significauce testing. Appropriate tests are those for the difference
between Ereans (regression) and proportions (classification). The staadard t-test for testing
the differeace between two sample rnear$ 71 and 72 which come from independent normal
distributed populations, Ieads to the followir.g confidence interval for the difference

or. - 0, € [(7, -Y) *t6ply661g) (1)

where &6i6 equals A+,+ A+". b the standard comparative experiment, however, the MPEs
are all estimated from the sarae test sempl€, whicb makes them highly correlated. Therefore,
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a paired sa,mple t-test should be used instead. The dependence within the pairs ouly changes
the standard error of the difference &6i6, which uow becomes

adif : irL,* o|, - 2cov(Yr,Tr) (2)

When the variables are positively correlated the corariance will have a positive value aud thus
the va,riance and standard error of a difference between means will be Iess for matched than for
unnatched samples. CousequentlS the confidence iuterrrals become smaller (given the same o
value), which results in more powerful tests. In conclusion, neglecting the dependence betweeu
the samples geuerally results in too conservative tests.

Often the estimated prediction errors of more thau two, say /c, methods are being compared.
The first idea that comes fs rnind is to test each possible difference by a paired t-test with
P($pe I error) of a. The problem with this approach is that the probability of making at least
oue Ilpe I error iu the whole family of t-tests exceeds a, by an amount that increases with the
number of tests that are made. For J statistically iadependent tests the probability of rnaking
at least one Tlpe I error, better known as the faaillmise error rate (FWE), is 1 - (1 - o)'.
When J is large, say 20, this can be a large probability; for a : 0.05 there will be a probabiiity
of 0.64 for one or more Tlpe I errors. Wheo the tests are statistically dependent of each other,
such as pairwise diference tests, the FWE becomes even larger. Thr:s, whea enough pairwise
tests are performed one will with high probability find one or rnore 'significant' diferences.
This problem is. kaown as the aultiplicity efrect ot selectioa efrect. Statistical procedures have
been designed to take iuto account and properly control for the multiplicity effect, they are
called aultiple coaparison procedures.

A crude approach to deal with the multiplicity efiect is the Bonferroni method, which rejects
the pairwise null hypothesis 0;-0;, : 0 wheu the pvalue is less thaa af J, where a is the preset
FWE level and ./ is the number of tests. This method, neglects the depeudency between the
pairn'ise difierence tests, and it firrther assumes normality of the data.

Mauy alteroative tests ranging from slight adjustmeuts to the Bonferroni method to very
sophisticated techniques have been developed [8T87, WY93] and still are being developed. The
characteristics of a particula,r experimental desigu often prescribe adjustments to general tests
for differences or ma,ke special purpose tests necessary. The experimental desigu that captures
the subject of this study is the oaeway repeated. &easures design, which is displayed in Tb,ble 1.

In such desigus bloclcs consistiag of a random sample of, say, n experimental units drawa from
a large popul,ation constitute the random factor. Each unit is measured under & difierent
conditions. The conditious of measurements are fixed in advaace, aud constitute the treatment
factor. In the terminology of this study experimental units correspond to the obsernatious from
the test set, aad the treatment factor correspouds to the regression or classification model type.

2 Pairwise Comparisons for Regression

The general setting of this section is the one-way repeated Eeasures desigu with & different
(prediction) models which predict the observatioas from the sarce random test set of size rz.

The deviation of the predicted value from the true value is assumed to be measured as squa.red
error, but any other error measure could be inserted equally well. Wheu the observations are
not randomly &awn from a popuiation but result from a (highly) autocorreliated time series,
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Observations
Fuuctions

f, f, f, l* Total
1

2

J

n

Y1 Yrz Yt; Yt*
Yz, Yzz Yz; Yzx

Yi, Yi, Yi, Yir

Ya Y*z Y"i Y^x

YL.

Yz.

Y,

Yn.

Total
Means

Y.L

T,
Y.2

7.,
v.
v.

Y.p

Y,K

Table 1: One-way repeated measures lay-out

the subsequent approach seems trot to be justified. Diebold [DM94] discr:sses the comparison
of predictive accuracy of two time series models; he leaves the multiple comparison problem
for further research.

Let Y; - (Y1,Yiz,. .. , Y1r) denote the vector of predictioD, errors for the jth observation
(1 S j S n). The following model is assumed:

Yi:Mi+Ej (1 SiSn) (3)

where all the Mj: (MpMiz,...,Mit) aud Ei - (Eir,Eiz,...,Eix) are distributed indepen-
dently of each other as /c-rrariate normal vectors, the former with mean vector 0:(0u0r, . . . ,0r)
(the vector of model effects) a,nd r"a,riance.covariance matrix Es aad the latter with meau vector
0 and va,riaoc+.covariaace matrix a2I. Thr:s the Yi's a.re independent aad ideotically distributed
(i.i.d.) iV(0, >) random vectors where E : Eo +;T.
Exact procedures fs3 making pairwise comparisons arnong the 0;'s cao be coustructed if we

impose special restrictions on the form of E. The least restrictive of such models for a one-way
repeated Ereasures design is the spherical model. In words, this model assurnes that all pair-
wise differences of the sample Eerns of the regression models have the same variance (for more
details see [HT87, CH90, WBM91, IIay88]). This assumptiou, however, will rarely be satisfied
in practice [HT87, Hay88].

Hochberg and Ta"'hane [HT87, page 215] propose a test that is to be preferred in case one is un-
sr:re about the sphericity assumptiou being satisfied. They propose the foilowing approximate
100(1 - a)% simultaneous confideoce intervals for the pairwise differences 0; - 0i,:,

S;;*S;,;,-2Sit,
n

(1 <i<i'<k) (4)

where lMll:]"-, is the upper o point of the Studentized ma:cimum modulus distribution (see

[HT87, Table 6]) with pa.rameter &' : k(& - L) 12 aod degrees of freedom n - L; and where

o - Xt, Vi, -Y.r)(Yiu -Y.o) t1Dir-- (1 <i,i'1k) (5)
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Au empirical analysis of the boston trousing datar illustrates this procednre. We compare
the performance of four regression models, designated fi through /a. The first model .fr is a
linear model trai''ed with OLS; models /, through .fo a^re feed-forward neural uetworks with
respectively 2, 4 aad,6 hidden uuits. The data set is split iuto two parts: the first part (400)
is used to estimate the par"meters of the model; the second (106) to measure the model's
performance. The observed average squared prediction error 7.; for method l; Q : L,2rg,4)
are F.1 :6.38e -3;T.r:3.49e - 3;7., :2.94e -3; and Tt:3.00e - 3.

Suppose that it is of interest to make all pairwise comparisons iuaong the predictioa accgracy
of the different methods with Tlpe I fernil] rise error rate a : 0.10. In lbble 2 the Sri, values
are displayed in the cells, calculated according to (5). We use lMllo,ill, which equals 2.138
([IIT87, Table 6]), to construct the confidence intervals for the pairwise differences 0; - 0;,
ssgerling to ( ). Tbble 3 shows that the liuear model performs significantly worse than the
three ner:ral network models. Among the ueural network models no siguificant differences can
be observed; there is no statistical evidence for preferring neural uetwork models with more
tban two hiddea units.

h fz ls la
It
lz
ls
le

1.68+04 3.76e05
3.01e05

3.46e-05
1.54s'05
2.24s,05

4.02e-05
L.27e05
2.67e05
4.15e-05

Thble 2: The 5;;, matrix.

0z 0s 0t
01

0z

0g

[5.9e4 , 5.2e31 [1.1e-3 ,

[4.3s4
5.7e'31

,1.5e31
[1.1e3, 5.8e3]

[-9.2e4, 1.9s3]
l-7.2*4,6.2e-31

Tbble 3: All pairwise confidence interrrals. The cell (0rr0o) s6afains the confidence interval for
the pairwise difference 0; - 0i,.

3 Pairwise Comparisons for Classification

In this sectiou we discuss significance testing for the comparison of two or more classification
methods. Agaia we notice that it is not appropriate to use a standard test based on the assurnp
tioa of independent samples. Instead, we use - as suggested by Ripley ([Rip93]) - McNemar,s
test ([MM77]), when ouly two classification methods are compared. This test is normally used
to test for difierences between proportions in paired sample designs. The compa,risorut per-
formed in this sectiou should not be considered as serious evaluations of the methods involved,
they are pr:rely illustrative.

A hypothesis test involviug the application of linear discriminant analysis and a feed-forward
neural network to the diabetes data set2 illustrates the use of McNemar,s test. The 768 obser-
vations in this dataset were divided in a trai',iug aud test set of 384 observations each.

rThis dataset is publically anailable by ftp from lib.stat.c8u.cdu with usel statlib
'This data set can be obtainid 

-by 
auonJrrnous ftp from icc.uci.cdu in, the directory

pub/aacbilc-lcataiag-databas c r
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I,,n Cnn Total
Itao

Cuo
61

32

23

268

84

300

Total 93 29L 384

Table 4: Incorrect and Correct classifications of lda and nn

Table 4 summarizes the result of using the linear dissriyninant function aad a neural network
estimated on the training set to classify the obserrrations in the test set. The cells (Crd", C,,)
ud (\ao, I,,*) respectively cotrtain the number of cases classified corectly and incomectly by
both the linear discriminant function and the neural network. Since we want to test

.Ee : MPEsa" : MPE.' against .f[1 : MPE16" * MPE',",

only the cells (4ao, C"") aud (Ctao,.I,,) of this table are of interest. Here MPE is defined as

the proportion of misclassifications I uakes on the population of interest. When observations
falling ia the (Itao, Cnn)-cell of this table a,re defined asr a success, then the number of successes

is binomially distributed with n : (Iuo,C^n) * (Ctoo,Inn) :55 and p : 0.5, under the null
hlpothesis. Since z ) 10, a normal or chi-square approximation of the binomial distribution is
sufrcieutly accurate, and is thus employed. Application of the chi-square version of McNemar's
test to the data in Tbble 4 yields

x2:W:1.1636
where the X2 statistic has a chi-square distributiou with 1 degree of freedom. This value of
X2 has a pvalue of approximately 0.28. According to any couventional significaace level, we
should conclude that .f0 cannot be rejected.

We will now consider the case where k > 2 classification functions are compared. In this
comparison we use the sar"e training and test set as in the above example. We performed a

comparative study, including linear discriminant analysis (fi), quadratic discriminant analysis

U), a classificatiou tree (/r), and two feed-forward neural uetworks (fi and /5 respectively)
which only differ in the value of the weight decay pararneter used. All pairwise semparisons
are performed which a,mounts to a total of &' : 10 pairwise compa,risons. Table 1 presents the
geueral liay-out of a study which compares & classification fuuctions. In this matrix Yi; is one
if fi classifies observation j correctly, and zero otherwise.

For our comparative study we have: n :384,,,t : 5, Ir : 300, Y.z :295, Y.s :265, (l : 303
and {s : 296. Consequently, 7.r : 0.781, Y.z :0.768, Y.s :0.69, f.4 : 0.789, 7.s = 0.77L.

The pooled rrariance of any pairwise difference T.i - 7.y for this desigu cau be written as
([MM77], p. 180)

efu r : 2 (kE?=\Yi;- \?,='Yij
nzk(k - L)

We can now construct 100(1 - a)% simultaneous confidence interrrals for all pairwise differences
0i - 0;, as follows

0;-0;,. F, -Y.;,*2i.,1-.p&6r11) (1 <i <i'<k)
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02 03 04 0s

0L

02

0s

04

[-0.045,0.071] [0.033,0.149]
[0.02,0.136]

[-0.066,0.05]
[-0.079,0.034
[-0.157,-0.041]

[-0.048,0.068]
[-0.061,0.055]
[-0.139,-0.023]
[-0.04,0.0?6]

Tbble 5: 95% confideace intervals for all pairwise difierences.

where 0; denotes the population proportiou of comect classifications of fi, and v : n-l denotes
degrees of freedom. The distribution of. Z is based on the Studed t distribution, adjusted for
the aumber of comparisons &' involved ([Dun6t]). Tbbles for this statistic can be found in
([MM77],[Dun61]). As oue would expect, the value of,2f,..r-o12 increases with the number of
comparisons ft', learling to wider confidence interlrals.

In Thble 5, 95% confidence intervals for all pairu'ise differences are provided. In computing
these interrals we used Zfr,o.ets: 2.81 aud d'6i6 : 0.0205, leadiug to confidence intervals that
are 2 x (2.81 x 0.0205) : 0.116 wide. U the iaterval of 0; - 0;, contains 0, then there is uo
significant evidence that classification firnctions .f, and fi, difier in their true prediction error.
From Tbble 5 we conclude that f3 (the classification tree) performs significantly worse than aII
other functions; avnong these other functions no significa,at difiereoce ha. been fouad.

4 Conclusion

Itr this paper we proposed a first step towards a sound methodology for performing and
analysing studies that compa,re the predictive accuracy of several regression or classificatioa
fi:.nctions. R"ather thaa providing a mere ranking, hypothesis testiag is used to determine
whether a signifcant difference between fuuctions has been found. The for"'al methods r+.
quired to perform the appropriate hypothesis tests originate primarily from the field of expet-
imental design. This paper selected parts of these formal methods and showed their relevance
to a type of study that is encountered frequently in the recent AI and Machiue Learning liter-
ature.

Although the general difficulties induced by the multiplicity effect and by the dependency
ilnong observations are easy to grasp, fioding "the right" testing procedure is much more
difficult. The literature on the subject is somewhat ambiguous, aud requires a high entrance
level of statistical knowledg*which Al-researchers don't always possess. This may explain why
comparative experiments are often performed in a rather casual way in the AI and Machine
lrsarning literature.

We do not claim that the methods presented here are the best for the given purpose: they are
exa.mples of tests that can be used for the g6mparison of the predictiou accuracy of different
functions. We hope that in futr.ue research more attention wiU be given to this subject, and
perhaps more appropriate methods will be found.
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