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Abstract

In this paper, a comparative study of six well-known post-pruning methods is presented. Each method is briefly
described and its weaknesses and strengths are pointed out. Moreover, some results on anew experimentation on pruning
methods have been reported. Eleven databases available via ftp at the UCI Machine Leamning Repository have been
selected. By comparing error rates of pruned trees with the corresponding unpruned trees we have found no clue
supporting Mingers' claim that pruning methods exploiting an independent pruning set perform better than the others.
On the contrary, our results confirm Holte's observation that even simple rules perform well on most commonly used
data sets in the machine learning community.

1. Introduction

The problem of inducing the smallest decision tree consistent with a training set has been proven to be NP-complete when
tree complexity is measured as the external path length, that is, the sum, over all leaves, of the number of edges on the
path from the root to that leaf (Hyafil & Rivest, 1976). The NP-completeness has also been conjectured for other
complexity measures, such as the number of bits necessary to encode a decision tree (Quinlan & Rivest, 1989). For
this reason, various heuristic methods have been proposed for the construction of a decision tree, among which the
most widely known is the top-down approach. In top-down induction of decision trees (TDIDT) it is possible to identify
three tasks (Breiman et al., 1984):

1) definition of a decision process associated with the tree,
2) determination of the test to associate with each edge coming out from a node,
3) determination of the leaves.

This paper is mainly concerned with the third one. There are two different ways to cope with it: either deciding when
to stop the growth of a tree or reducing the size of a fully expanded tree, T___, by pruning some branches. Methods
that control the growth of a decision tree during its construction are called pre-pruning methods, while the others are
called post-pruning methods (Cestnik et al., 1987). The former methods establish stopping rules for preventing the
growth of branches that do not seem to improve the predictive accuracy of the decision tree. One problem is that the search
myopia of the hill-climbing search strategy adopted in TDIDT algorithms may prevent from finding a decision tree that
is consistent with the training set, even though one exists. One way around this short-sightedness is that of considering
multivariate (polythetic) tests when no univariate (monothetic) test seems good enough (Fisher & Chan, 1990). Another
way, which is implemented in many TDIDT systems, consists in keeping on growing a tree T___in any case, and then
retrospectively pruning those branches that seem superfluous with respect to predictive accuracy (Niblett, 1987). The
final effect is that in this way the intelligibility of a decision tree is improved, without really affecting its predictive
accuracy.

Some authors push forward by claiming that tree pruning is a way of improving predictive accuracy of the tree, since
it eliminates even harmful branches (Cesmik et al., 1987; Mingers, 1989). Informally, a branch can be defined harmful
when it tests irrelevant attributes, fitting the noise in the training data and lowering accuracy on unseen cases. Thus, the
presence of harmful branches, not only reduces the comprehensibility of a tree by making it more complex, but it also
degrades the classification performance on new observations. When this happens, we say that the complex tree overfits
the data. Recently, Schaffer has shown that overfitting avoidance by means of tree pruning is a form of bias (here intended
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as a set of factors that influence hypothesis selection) rather than a statistical improvement of the classifier (Schaffer,
1993). In fact, the definition of a complexity measure for a decision tree amounts to accepting a certain prior probability
distribution over the set of possible subtrees (Malerba et al., 1994).

The variety of post-pruning (or simply pruning) methods proposed in literature does not encourage the comprehension
of both the common and the individual aspects. In fact, while some methods proceed from the root towards the leaves
of T__ when they examine the branches to prune (top-down approach), other methods follow the opposite direction,
starting the analysis from the leaves and finishing it with the root node (bottom-up approach). Furthermore, while some
methods use only the training set in order to evaluate the accuracy of a decision tree, other methods exploit an additional
pruning set, sometimes improperly called test set, that allows them to get less biased estimates of the predictive accuracy
of a pruned tree.

In this paper, we compare six of the most renowned pruning methods, by emphasizing their weaknesses and strengths.
In particular, we point out the main assumptions underlying the method, the appropriateness of some error rate
estimations, as well as the behaviour of the method under conditions different from those considered by the proposing
author(s). Then, we provide a summary of some empirical results we obtained by using an experimental procedure fairer
than that adopted in a previous work by Mingers (1989).

2. A critical review of some pruning methods

This section is devoted to the presentation of six pruning methods we tested in our experiments. In particular, each
method is firstly explained by means of a brief description that reflects its original formulation, then it is criticized with
the aim of emphasizing properties and limits.

2.1 Reduced error pruning (REP)

This method, proposed by Quinlan (1987), uses an independent set of examples, here called pruning set, in order to
evaluate the goodness of a subtree of T__. It works as follows: for each internal node ¢, the number of classification errors
made on the pruning set, when the subtree T, rooted in¢ is kept, is compared with the number of misclassifications made
when ¢ is turned into a leaf and associated with the best class. Sometimes, it may happen that the tree obtained by pruning
¢ has a better performance than the original tree, that is, the number of errors on the pruning set made by the pruned
decision tree is lower than the number of errors made by the original tree. In this latter case the harmful branch is removed.
The branch pruning operation is repeated until further pruning increases the classification error rate on the pruning set.
Itis worthwhile to recall that Quinlan limits the pruning condition given above by imposing a further constraint: a branch
T, can be pruned only if that branch contains no subtree that results in a lower error rate than T, itself (botzom-up method).
This contrasts with the description of the same method reported in (Mingers, 1989). In fact, Mingers maintains that,
among all the nodes, the one having the largest difference between the number of errors when the subtree is kept and the
number of errors when the node is pruned must be chosen. This variant causes the loss of an important property of
Quinlan's original method, namely the generation of the smallest subtree with the lowest error rate with respect to the
pruning set. As we will see later, such a property can be effectively exploited in the experimental comparison in order
to find the optimally pruned tree with respect to the test set.

2.2 Pessimistic error pruning (PEP)

This pruning method, proposed by Quinlan (1987) as the previous one, does not need an independent pruning set.
However, since the misclassification rate estimate on the training set is optimistically biased, Quinlan introduces the
continuity correction for the binomial distribution that, in his opinion, should provide a more realistic estimate of the
classification errorrate. Lete(z) be the number of training examples erroneously classified at the node te T. Then, according
to the continuity correction, the number of errors made in ¢ is given by:
n'(t)=e(t) + 112
while for the subtree T it is:
n(T)= X(e(s)+1/2)

where the summation is intended on the set of leaves of T.

It should be observed that, if the development of a tree goes on until all its leaves do not make errors on the training
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set, then e(s) = 0 for each leaf 5. As a consequence, in that case »'(T) only represents a measure of the tree complexity
that associates each leaf with a cost equal to 1/2.

As expected, the subtree T, makes less errors on the training set than the node 1 when ¢ is transformed into a leaf, that
is, e(t) > Z e(s). Nevertheless, it may happen that n'(z) < n'(T ) due to the continuity correction, since the complexity of
T,isalsotaken into account. In that case, the node ¢ ought to be pruned, but unfortunately, the estimate n'(T ) of the number
of misclassifications made by the subtree remains optimistic. This is the reason for which Quinlan weakens the condition
that rules the pruning of a subtree T, and requires that:

n'(t) <n’(T) + SE(n(T))
where
SE(n'(T)) = [n(T) - (N(1) - n'(T)) | N(t)]"*
is the standard error for the subtree T under the assumption that errors on the training set are binomially distributed. The

algorithm evaluates each node starting from the root of the tree and, if a subtree is chosen for pruning, its internal nodes
are not examined. This top-down approach gives the pruning technique a high run speed.

Thismethod raises some perplexities. First, theintroduction of the continuity correction has no theoretical justification.
In statistics, it is used to approximate a binomial distribution with a normal one, but it has never been applied to correct
optimistic estimates of error rates. In fact, the continuity correction is useful only to introduce the tree complexity factor.
Nonetheless, in the method, this factor is improperly compared to an error rate. It follows that results are not always the
expected ones. For instance, let us consider a sample of 1024 training examples, described by 20 binary features randomly
generated, that are assigned to two distinct classes with equal probability. In this situation, it would be possible to induce
abinary tree T__ with 990 leaves that correctly classifies all examples but does not have any predictive capability due
to the random generation. A good pruning method should reduce the tree just to one leaf. Nevertheless, the PEP method
will never prune the root t, since n'(t)) = 512.5, n'(T__ ) = 495 and SE(n'(T__ ))=16.

Finally, the top-down approach to tree pruning is not justified when there is no guarantee that all subtrees of a pruned
branch T, should be pruned. Indeed, it is not difficult to find examples in which this method prunes subtrees which
contain other subtrees that should not be pruned according to the same criterion (Esposito et al., 1993).

2.3 Minimum error pruning (MEP)

Niblett and Bratko (1986) proposed a bottom-up approach seeking for a single tree that minimizes the expected error
rate on an independent data set. In the following, we will refer to an improved version of the minimum error pruning
reported in (Cestnik & Bratko, 1991).

For a k-class problem, the expected probability that an observation reaching a node ¢ belongs to the i-th class is the
following:
p{t) = [nft) + p,m] | [N(t) + m]

where:

e n(t) isthe number of training examples in ¢ classified into the i-th class,

*p. is the a priori probability of the i-th class,

m is a parameter of the estimate method,

e N(t) isthe number of training examples reaching .

The parameter m determines the contribution of the a priori probability of the i-th class to the estimate of the conditional
probability of the i-th class in a node : computed as the relative frequency n (t) / N(t). For the sake of simplicity, m is
assumed to be equal for all the classes. Cestnik and Bratko name p (1) as m-probability estimate. When a new observation
reaching ¢ is classified, the expected error rate is given by:

EER(t) = min { 1 - p() } =min{ 1 - [n(t) + p_m] | [N(t) + m] } = min { [N(1) - n(t) + (1- pym ] | [N(t) + m] }

In the minimum error pruning method, the expected error rate for each internal node ¢ is computed. It is called static
error,STE(t). Then, the expected error rate when ¢ is not pruned, called dynamic (or backed-up) error, DYE(t),is computed.
It is given by a weighted sum of the expected error rates of the children, where the weights are the probabilities that an
observation will reach the corresponding child. In the following, the weights p, will be estimated by the proportion of
training examples reaching the i-th child, as originally proposed by Niblett and Bratko.
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Having obtained several subtrees for distinct values of m, we are faced by the problem of choosing the best one. Cestnik
and Bratko suggest the intervention of a domain expert who can choose the right value of m according to the level of noise
in the data or even study the selection of produced trees. Since we do not dispose of an expert, in our experiments we
adopted a different criterion. The classification accuracy of the trees has been evaluated on an independent pruning set
and the smallest tree with the lowest error rate on the pruning set has been selected.

The newer version of the minimum error pruning seems to overcome two problems that affect the original proposal
by Niblett and Bratko: optimistic bias (Watkins, 1987) and dependence of the expected error rate on the number of
classes (Mingers, 1989).

As to the first problem, let us consider a set of high-dimensional binary feature vectors. Each feature vector is an
example of one of two classes: the class is assigned randomly to each example. If we induce a decision tree from this
set, then the true error rate of the tree would be 50% since the tree has no predictive power. Let us suppose that each
leaf of the tree covers a single training example (this hypothesis seems quite realistic since no binary attribute has a
predictive power for the problem, thus, an exact classification of an example can only be obtained by looking at its
feature vector as a whole). In the original version of the minimum error pruning the static error of the root equals the
true error rate, while the dynamic error of the root itself is at most 33.33%. Therefore, the tree can never be pruned
in the root, even if this is desirable. In the improved version of the method we have:

STE(root) = [1024-512+(1-1/2)m]/(1024+m) = 1/2 DYE(root) = [0+(1-1/2)m]/(]1+m) = m/[2-(m+1)]
therefore the root will be pruned when we recognize that the degree of noise is very high and we set m to infinity.

As to the second problem, we observe that, in the improved version, the expected error rate is not affected by the
number of classes but by a free parameter, m, whose choice is committed to an expert or based on an independent data
set.

2.4 Critical value pruning (CVP)

This bottom-up method, proposed by Mingers (1987), operates as follows. A threshold, called critical value, for thenode
selection measure is initially set. Then, an internal node of the tree is pruned if the value taken by the selection measure
in that node does not exceed the critical value. Nevertheless, it may happen that the pruning condition is met by a node
¢ but not by all its children. In that case, the branch T, is kept because it contains relevant nodes. Obviously, the higher
the critical value the more drastic the pruning.

The method proposed by Mingers consists of two main steps:

1) prune T__for increasing critical values
2) choose the best tree among the sequence of the pruned trees by measuring both the significance of the tree as
a whole and its predictive ability.

As to the first phase, if the evaluation measure used for developing the tree is the gain ratio (Quinlan, 1993), and the
tree is grown until all examples in each node belong to the same class, then all nodes that are parent of leaves will have
a gainratio equal to 1.0 while the others will have a lower value. This means that, with the gain ratio as selection measure,
we can choose only between two trees: T__ and the root tree. Thus, the method does not seem sufficiently general to be
applied to trees built by using any criterion for attribute selection. Nonetheless, this is in contrast with the experimental
results provided by Mingers (1989, Table 1).

For the second phase, the author proposes to measure the significance of the tree by means of the G statistics. It is
computed for a large contingency table having a row for each leaf in the tree and a column for each class. It evaluates
the degree of interdependence between the leaves of a tree and the classes of the problem, so that it is high for fully
expanded trees that correctly classify the whole set of examples. Mingers presents also a teston the significance measure,
but unfortunately, such a test is only able to establish whether the predictive ability of a tree is meaningful, but it cannot
be used to choose among trees that pass the test. Indeed, itis not enough to compare the G values taken by two contingency
tables, since such values depend on the degrees of freedom of the G statistics, so that they are usually higher in unpruned
trees, because of the higher number of rows in the contingency table (obviously the number of columns does not change).

For what concerns the evaluation of the predictive accuracy, two alternative solutions are proposed:

¢ toestimate the probability of a correct prediction p and then to estimate the probability that the number of correct
predictions equals the number of observations correctly classified by the pruned tree,
¢ to compute the error rate by using an independent test set.

214



The formulation provided by Mingers for the first solution is rather weak. Indeed, he estimates the probability that class
C. is correctly predicted as follows:

P(xeC, A x is classified as an instance of C) = P(xe C)-P( x is classified as an instance of C,/ x€C) = n/n - n/n = nZin?

While approximating P(xe C)) by means of the relative frequency of the examples of class C, is plausible, using such
a frequency to approximate the a posteriori probability is untenable.

Finally, we observe that Mingers also suggested to estimate the error rate on an independent pruning set and to use
this measure to choose the best subtree in the resulting sequence of trees. Nevertheless, the sequence detected in the
first step of this method might not contain the best tree with respect to the pruning set; therefore we have no guarantee
of finding the smallest and most accurate subtree as for the reduced error pruning.

2.5 Cost-complexity Pruning (CCP)

This method, proposed by Breiman et al. (1984) and called cost-complexity pruning, is characterized by two phases:
1) selection of a family of subtrees of T__ , {T_ =T, T, T,, ..., T}, according to some heuristics,
2) choice of the best tree T, according to an estimate of the true error rates of the trees in the family.
In the first phase, each T,_, is obtained from T, by pruning those branches that show the lowest increase in apparent
error rate per pruned leaf. In other words, given T,, the following ratio is computed for each internal node
a =@ - (THAL, - 1)
where r(t) and r(T ) are apparent error rates of the node t and the branch T, respectively, while L, is the number of leaves
in the branch T.. Then, T, is pruned in all nodes with the lowest value of ., and a new tree T, , of the family is obtained.
The process stops when the root tree is obtained. It is possible to prove that each tree T, is characterized by a distinct
value o, such that o, < o, ,. Therefore, {T,, T,, T, ..., T, } is actually a parametric family of trees, denoted as T__ (c).
The second phase chooses the best tree in T__ (o) with respect to predictive accuracy. Breiman et al. propose two
distinct ways of estimating the true error rate of each tree in the family, one based on the use of an independent pruning
set as for the reduced-error pruning, while the other based on cross-validation sets. In the first case, however, the cost-
complexity pruning method is theoretically under a disadvantage with respect to the reduced-error pruning because
it can only choose a tree in the set {T,, T,, T,, ..., T } instead of the set of all possible subtrees of T  , with the
consequence that, if the most accurate subtree with respect to the pruning set is not in {T,, T, T,, ..., T, }, it cannot
be selected. On the other hand, when cross-validation sets are used, the tree selection process is based on a strong
assumption whose amount of bias is unpredictable (Malerba et al., 1994).

There is another aspect of the pruning method adopted in CART that deserves special attention. Breiman et al.
decide to choose the smallest tree in the set {T,, T,, T,, ..., T, } such that its error rate is not greater than one standard-
error with respect to the lowest error observed for trees T . As we will see later, the effect of such a rule of thumb, called

1SE, is a strong tendency to overprune.
2.6 Error-Based Pruning (EBP)

This pruning method has been implemented in C4.5 (Quinlan, 1993) and presents a novelty with respect to the others
seen so far, since it allows the replacement of a subtree by one of its branches. In this way it is possible to overcome
a limit of the bottom-up strategy that does not prune ancestors of nodes which appear to be good. Indeed, if ¢ is a node
that should be pruned according to some criterion, while ' is a child of ¢ that should not be pruned according to the
same criterion, bottom-up pruning methods generally avoid pruning ¢ since T, contains sub-branches with significant
classification performance. On the contrary, the error-based pruning acts by grafting T, onto the place of 7, so saving
the good sub-branch and deleting the useless node .

Unfortunately, the main weakness of such a method is the criterion used to predict the error rate of nodes and branches.
Indeed, if a node r makes e(t) errors on n(t) training cases that reach it, Quinlan estimates the upper confidence limit of
the expected error probability of the node by means of e(t) and n(t) themselves. The underlying assumption is that the
same sample used to build the classifier can be considered asarandom sample on which to test the tree. As the same author
admits, such an assumption is untenable, but, strangely enough, Quinlan himself claims that C4.5 employs a far more
pessimistic estimate of errors than the pessimistic error pruning. As we will show in the next section, from our
experimental results we draw the very opposite conclusion.
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3. Experimental results

The need of making some experiments on pruning methods arises from the fact that the experimental procedure designed
by Mingers (1989) for his empirical study is not very fair (see (Esposito etal., 1993) for a detailed discussion). Moreover,
since we are conscious that different pruning methods represent different biases, we will avoid to draw conclusions on
which is the “best” method, but, following the main stream of the analytical comparison between methods pursued in
the paper, we will try to understand which are the biases that affect them.

In our experimentation, each data set is still randomly divided into three subsets, according to the following criterion:
growing set (49%), pruning set (21%) and test set (30%). The union of the growing and pruning set is called training
set, and its size is just 70% of the whole data set. The growing set contains the 70% of cases of the training set, while
the pruning set the remaining 30%. Both the growing set and the training set are used to learn decision trees, that, for
simplicity of naming, we will call grown tree and trained tree, respectively. The former is used by those methods that
need an independent pruning set in order to prune a decision tree, namely REP, MEP, CVP, and the ECP based on
an independent test set and adopting the 1SE rule (1SE) or not (OSE). The latter is used by those methods that exploit
the training set only, such as PEP, EBP, and the CCP based on cross-validation sets and adopting the 1SE rule (CV-1SE)
or not (CV-0SE). The evaluation of the error rate is always made on the test set.

For each data set considered, 25 experiments are made by randomly partitioning the data set into three subsets.
Moreover, in each experiment two statistics are recorded for pruned, grown and trained trees: the number of leaves (size)
of the resultant tree and the error rate (e.r.) of the tree on the test set. A two-tailed paired t-test can be used to evaluate
the significance of the error rate difference between each pruned tree and the corresponding trained tree.

As to the MEP, the following m values have been chosen: 0.5, 1, 2, 3, 4, 8, 12, 16, 32, 64, 128, 512 and 1024.
Experiments on the CVP were made by setting a maximum critical value equal to 1.0 and a step equal to 0.01. The only
selection measure considered is the gain ratio.

In Table 1, the main characteristics of the databases considered in our experiments are reported. They are available
at the UCI Machine Learning Repository (Murphy & Aha, 1994) and some of them have even been used to compare
different pruning methods (Quinlan, 1987; Mingers, 1989). The data base Heart-Disease is actually the join of four data
sets with the same number of attributes but collected in four distinct places (Hungary, Switzerland, Cleveland and Long
Beach). Of the 76 original attributes, only 14 have been considered, since they are the only ones to be considered useful
for the classification. Moreover, examples have been assigned to two distinct classes: no presence (value 0) and presence
of heart diseases (values 1,2,3,4).

Table 1. Main characteristics of the databases used for the experimentation.

150 3 4 4 0 no 66.67 low yes
214 7 9 9 0 no 64.49 low no
1000 10 7 0 0 no 90 10% yes
3772 4 29 7 1 yes 77 no no
106 2 57 0 57 no 50 no yes
155 2 19 6 0 yes 20.65 no no
303 2 14 5 S yes 45.21 low yes
294 2 14 5 5 yes 36.05 low no
123 ° 14 5 5 yes 6.5 low no
200 2 14 5 5 yes 255 low no
920 2 14 5 5 yes 44.67 low yes
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Table 2. Error rate variations for different pruning Table 3. Tree size variations for different pruning
methods (significance level: 0.10) methods (significance level: 0.10)

Inorder to study the effect of pruning on predictive accuracy of decision trees, we compare the error rate of each pruned
tree with that of the corresponding (unpruned) trained tree. Tables 2 reports the result of a two-tailed paired t-test with
a 0.1 confidence level. A (+) means that the application of the pruning method actually improves, on average, the
predictive accuracy of the decision tree, while a (-) indicates a significant decrease in predictive accuracy. When the
effectof pruning is neither good nor bad, a O isreported. Itiseasy to see that pruning does not generally decrease predictive
accuracy. The only exception is represented by the application of the 1SE rule with both an independent pruning set and
cross-validation sets. Moreover, there is no indication that methods exploiting an independent pruning set perform
definitely better than the others, as claimed by Mingers (1989).

Another interesting characteristic of pruning methods is their tendency to overprune decision trees. In order to study
such a problem, we produced two decision trees for each experiment, called optimally pruned grown-tree (OPGT) and
optimally pruned trained-tree (OPTT), respectively. The former is a grown tree that has been pruned by using the
reduced error pruning on the test set. Thus, it is the best pruned tree we could produce from the grown tree because
of the property of the reduced error pruning we mentioned in Section 2.1. Similarly, the OPTT is the best tree we could
obtain by pruning some branches of the trained tree. Obviously, OPGTs are suitable to compare trees obtained with
pruning methods that do use an independent pruning set, while OPTTs are more appropriate to compare results of
pruning methods that do not need a pruning set. Therefore, by comparing the size of trees produced by a pruning method
with the size of the corresponding optimal tree, we can have an indication of the tendency of each method. In Table
3, a summary of the two-tailed paired t-tests at a significance level 0.1 is shown. Here, (u) stands for significant
underpruning, (o) for significant overpruning, while (-) stands for no significant difference. At a glance, we can
immediately conclude that MEP, CVP and EBP tend to underprune, while REP, 1SE and CV-1SE tend to overprune.
‘We would be tempted to conclude that the predictive accuracy is improved whenever a pruning method does not produce
trees with significant difference in size from the corresponding optimally pruned tree. However, this is not true for two
reasons. First of all, it is not always true that an optimally pruned tree is more accurate than the corresponding grown/
trained tree. In other words, pruning may help to simplify trees without improving its predictive accuracy. Secondly, tree
size is a global feature that can provide us with an idea of what is happening, but it is not detailed enough to guarantee
that only over or underpruning occurred. For instance, if a method overprunes a branch but underprunes another one,
then it is actually increasing the error rate with respect to the optimal tree, but not necessarily the size. This problem can
be observed with the database Glass and the method CV-0SE. Indeed, in this case there is a decrease in accuracy (see
Table 2) but the size of pruned trees is close to the optimal value (see Table 3).

By ideally superimposing Tables 2 and 3 it is also possible to draw some other interesting conclusion. For instance,
in some databases, such as Hungary and Heart, overpruning produces better trees than underpruning. This latter
surprising result confirms Holte's observation that even simple rules perform well on most commonly used data sets in
the machine learning community (1993). In any case, we have also indications that overpruning may have undesirable
effects when too extremist, as in the case of the application of the rule 1SE.
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4. Conclusions

In this paper, a comparative study of six well-known post-pruning methods has been presented. Each method is briefly
described and its weaknesses and strengths are pointed out. Moreover, some results concerning a redesigned
experimentation on pruning methods have beenreported. By comparing error rates of pruned trees with the corresponding
grown/trained trees we have found no clue supporting Mingers' claim that pruning methods exploiting an independent
pruning set perform better than the others. On the contrary, our results confirm Holte's observation that even simple rules
perform well on most commonly used data sets in the machine learning community. Indeed, in several cases we noticed
that a moderate overpruning is better than not pruning at all. Future work should consider a more extensive
experimentation in which more databases as well as several selection measures are considered.

Pruning methods have been implemented as an extension of C4.5, a system distributed by Morgan Kaufmann. Only
additional source files developed at the Department of Informatics of the University of Bari are available upon request

by sending an e-mail at malerbad@vm.csata.it.
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