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Abstractl
Modern "machine learrfng" techniques can often discover useful pattems in high-dimensional

data in a nearly automated fashion. These adaptive statistical algorithms - including decision trees,

regression networks, projection pursuit models, and additive network methods -- incrementally

build up the model structure (inputs, interconnections, and terms) as well as set parameter values.

That is, they sequentially add the component, from the set of candidates, which works best with
the existing collection. This model expansion typically ceases when the structure is judged to

optimally trade off l) training accuracy and 2) simplicity (of model form or function surface).

Complexity is regulated in order to protect against the serious danger of overfit, and thus lead to

greater success on new data

The heuristic search procedures employed by these methods are all "greedy" to some degree,

as a consequence of making workable choices in an open or combinatorially huge domain of
possible models. This procedure basically works well in practice, though it is known that,

theoretically, greedy searches can result in arbitrarily worse models than optimal ones (when such

are possible) on finite data sets. Some real and artificial examples of this witl be shown for
regression subset selection, decision trees, and artificial neural networks.2

It is useful then, to explore what restraining greed, or "lengthening the scoring horizon", can

do for the methods. Toward this end, a recent decision tree algoritlm, "Texas 2-Step", is

described which looks two steps ahead to choose threshold variables and values, rather than one.

(That is, it judges a split not by the purity of the resulting child nodes, but how the grandchildren

turn out.) Preliminary results for some of these inductive methods are compared on a recent field

application: identifying a bat's species by its chirps.

In practice, greedily-constructed models sometimes outperform more optimal ones when tested

on new data. We conclude by making preliminary suggestions about when this inversion is most

likely to occur, and outline ways to improve the robustness of inductive procedures.

lThis work was partially suppoiled by aa NSF Research Associateship in Computational Science and Engineering.
2Io th" full paper (L,ord willing)! The complete resultsis are not available at draft time.
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1. Automated fnduction

Inductive algorithms are, at one level, 'black boxes" for developing classification, estimation,
or control models from sample data- They automatically search a vast space of potential models for
the best inputs, structure (terms and interconnections), and parameter values. The models are
pieced together in a stepwise manner into a feed-fonvard network (e.g., tree) of simple nodes.

The better methods also prune unnecessary terms or nodes from the model, thereby regulating
complexity to reduce the chance of oveffit. Overfit models are over-speciatizpdto the training data

and generalize poorly (fail on new data). This is widely held to be the chief danger of using
inductive methods.

Complexity is regulated either through

l) term penalties, as with model selection criteria such as Cp (Mallows, 1973) and Minimum
Description Length, MDL (Rissanen, 1978),

2) roughness penalties (integrated second derivatives of the estimation surface), or
3) tests on withheld data (e.g., V-fold cross-validation).

The penalties add to an elror measure, and models having the lowest combined score are judged

the best candidates for use.

Stepwise regression can be considered a low-level automated induction algorithm. Though the
set of possible models (linear combinations of a subset of original candidate inputs) is quite
constrained, the procedure does identify which variables to employ and can increase or reduce the
size of the set under consideration.

In contrast, Artificial Neural Networl<s (ANNs) are not inductive methods by the definition
used here, as their structure is fixed a priori.3 They can more precisely be viewed as a class of
nonlinear models whose parameters are typically set through a local gradient search called back-
propagation.4 lOne suspects that ANNs, which can perform well even when they appear over-
parameterized, may avoid overfit partly because of the wealmess of this search algorithm! It is
possible that improvement of the search procedure without simplification of the model structure
may result in better training but worse out-of-sample performance.)5

Leading automated induction methods, using "building blocks" consisting of logistic functions,
splines, polynomials, planes, non-parametric smoothes of weighted sums, etc. -- are briefly

3Removing small terms within ANN nodes does not address over-parameterization, where useless terms can appear
significant though their coefficients collectively cancel. (The dangers of 66llin6s1 variables in regression are anatog6ris.l
41hi, it"."tire search conver€es relatively slowly to a local minimrrm in parameter space, and it has recently been shown
(Mulier aad Cherkassky, L993) that the presentation order of the data affects the particular minim,rm found.
5If tUi, danger is real, then the "greedy" nature of the gradient search may have benefits as well.
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described in (Elder, 1993) along with their chief strengths and weaknesses. Here, we focus on

one of the latter: greediness, and look briefly at its effect on regression and decision trees.

2. Subset Selection in Regression

Due to the combinatorial explosion of a trial-and-error search process (the methods are at least

polynomial in the inputs and often exponential), a greedy heuristic is often employed: models are

constructed in stages, and only the current step is optimized at a given titme. Forward selection

finds the single best term, then adds to it ttre term which works best with the first, then the one

which best assists the pair, and so on. (Note that this is very much more useful than a "first
impression" model, which ranks the candidate tenns according to their individual performance and

employs the top K.) Reverse elimination begins with a "full" model and sequentially removes the

least useful term.

A combined method, stepwise selection (e.g., Draper and Smith, 1966) considers removing

variables after each new variable is introduced. The standard selection mechanism, checking "F-

to-enter" and "F-to-exit" significance values, is a kind of heuristic term penalty method, but not a

colrect use of F-tests. (The static significance measure is invalid in the dynamic modeling situation

and can lead to highly inflated confidences in the resulting parameter values (Miller, 1990).

This greedy growth strategy makes the search feasible and often discovers useful features, but

can miss "reachable" structure in ttre data; that is, within the form of the basis functions employed.

For example, given f= {1,1,1,1}, X7={1,1,1,0}, X2={ 1,1,0,0}, X3={0,0,1,1}, a stepwise
procedure would first choose 17 with which to estimate I, and then seek to add another r.
However, an exact model, Y = x2 + 13, would not include that single best input. Surprisingly,

even if there is agreement betrveen the fonvard and backward procedtres on the best model of each

size, they can differ by an arbitrarily large amount from some of the best subsets @erk, ly78).

For example, Desroachers and Mohseni (1984) presented a purportedly optimal algorithm for
model selection, and demonstrated it on a problem of estimating rocket engine temperature (from

Lloyd and Lipow, 1962), where their small set results agreed with earlier analyses by Draper and

Smith (1966). However, the approach turned out to be a version of forward selection. To com-
pare these models with optimal subsets (of the candidate set defined by Desroachers and Mohseni),

a new technique for term elimination had to be developed @lder, 1990). Figure I shows the SSE

of the greedy and optimal models of each size. The former leveled off at a limit of 40, while the

latter were able to reach nearly the minimum eror possible for the data (approximated by the f axis

base). Clearly, greedy methods can be improved upon significantly, in training, on real
applications.
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Figure 1: Greedy vs. Optimal Subset Selection

For regression model building, a logical extension of the greedy growth strategy (while

stopping short of the hope of "optimal" models) is to add chmks of terms at a time, rather ttran just

one. This is the heart the approach taken in GMDH-like techniques, such as ASPN (Algorithm for
the Synthesis of Polynomial Networks, Elder, 1985). There, sets of several terms, emptoying a

few independent variables, are considered for inclusion simultaneously, then pared down by
reverse elimination. Nodes of such equations are built up until the added complexity cannot be

justffied, according to a penalty criterion -- either Predicted Squared Error (A. Barron, 1984) or
MDL. An ASPN regression network, such as that shown in Figure 2, can have multiple layers of
diverse nodes, each with several terms, resulting in a flexible compound function form.
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Figure 2: Sample Regression Netrvork

zl

k

f
d

h

z9

z6

z4

e

Double 16

Single 14

Triple 21Multi-
Linear 15

Tfiple 17

Double 19

Double20

z5

202



Extensive comparison with more greedy algorithms has yet to be performed, but several

researchers have successfully employed such regression networks on applications which had

proven very difficult by other methods, including automatic pipe inspection (Mucciardi, 1982),

fish stock classification (Prager, 1988), reconfigurable flight control (Elder and Barron, 1988),

tactical weapon guidance (Barron and Abbott, 1988), and temperature distribution forecasting
(Fulcher and Brown, 1991). Though several areas of possible improvement have been identified

@lder and Brown,IW4), its success suggests that taking complex, rather than simple, steps might

improve other corstructive algorithms for induction, such as those used to build decision tees.

3. Constructing Decision Trees

Though there are other and earlier decision tree algorithms (e.9., ID3 and CHAID), CART
(Classification and Regression Trees, Breiman, Friedman, Olshen and Stone, 1984) is perhaps the

best known and, arguably, most powerful. Some of its nicer features include built-in cross-valida-

tion, the ability to handle categorical variables and missing data and a good presentation of the

output. (Versions are also appearing which tie into commercial statistical packages and improve

the interface.) Still, the basic classification algorithm is very simple: try to discriminate between

classes by recursively bifurcating ttre data until the resulting groups are as pure as can be sustained.

That is, start with all the training data and choose the univariate threshold split (e.9., xj < 1.14)

which divides the sample into trro maximally pure parts (i.e., minimizes the sample variance of the

sum). (Multi-linear splits (e.g., xI + 2x2 < 3) are possible, but do not seem to work well in
practice, perhaps because of a poor internal search algorithm.) Then, continue with each of the

parts (child nodes) until either no splits are possible, or the leaves (terminal nodes of the tree) are

pure (represent only one class) or have some minimum size. Then, CART prunes back
(simplifies) the tree, typically using cross-validation, to avoid overfit. This over-training followed

by pruning was found by CART's authors to lead to better trees than under the competing method

of trying to select the growth stopping poinr

Table 1: Greedy Counter-Example for CART

Y a b c
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0
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Figure 3: Example Decision Tree Surface
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Figure 4a: Inaccurate Greedy Decision Tree Figure 4b: Correct Decision Tree

For estimation, the leaves are set to the mean or median value of the cases contained, forming a

piecewise-constant surface, as shown in Figure 3 for a 4-node tree.

This simple splitting approach is nevertheless powerful, as a sequence of threshold questions

quickly conditions an individual case. Each path down the tree can have its own important

variables and outliers have no special influence. Also, as with other methods which implicifly
select variables, a user can feel free to try more candidates than otherwise, since CART will sift

through them unfettered by concerns about multicollinearity, which can hurt regression methods.

However, if the candidate variables are jointly useful, relatively independent, and not beset by

many oufliers, othermethods of discrimination can outperform CART.

Here, we wonder simply if CARTs strategy of choosing the greedy split cannot be improved.

As a motivating example, consider the XOR-like data of Table 1. CART forms the approximation

tree of Figure 4a (using a leaf size limit of S 2 cases). Its greedy search does not find the simpler,

exact tree ofFigure 4b.

To explore whether an extension of the horizon to two steps ahead would be beneficial, a

decision tree algorithm called "Texas Two-Step" was written.

4 Texas Two-Step (TX2step)

The algorithm TX2step is a slimmed-down version of CART for classification which is not

able to handle missing data" perform internal cross-validation, set misclassification costs, or adjust

priors, and so on. Yet it can look two steps ahead to choose the current split, and thereby finds the

tree of Figure 4b given the data of Table l. TX2step has one other new feature:: given more than

one split which results in the same score, it uses the split with the l,argest relative gap between

border taining cases. That is, the tie-breaker to choose the dimension d of ttre split depends on

I

1
0
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< min Right Xd - maxLeftXdgapldl = 0 max Xd - min Xd

The algorithm can optionally be greedy as well; in that mode, and ignoring gaps, it was

validated on several test problems to reproduce the sarne tree as CART without cross-validation.

Therefore, to focus solely on the greediness issue, TX2step-l (with gap measurement) was

actually run in place of CART on the example application shown next. Training was performed

until all nodes were pure, but those leaves with a majority class having <3 cases were pruned back

(i.e., re-absorbed into their parent node). 
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Figure 5: Example Projection of BatClasses

5 Example: Identifying Bat Species

Researchers from the University of Illinois, Urbana/ Champaign6 have measured bat

echolocation calls and extracted time-frequency features from the signals, toward developing an

automated classifying system to track species of bats - especially those considered endangered.

After visualization of projections of the data by the author, and analysis of correlations,

multicollinearity, redundancy, and outliers (for suggested techniques see e.g., Elder, 1993), some

variables were eliminated and other new ones tried at UIUC, resulting in a database of 93 cases,

each with 15 candidate input features, representing 5 different species (classes) of bats.7'8 One of
the better projections of the data is shown in Figure 5, where the classes are noted by different

symbols. Note that the groups do tend to cluster but that a fair amount of overlap is evident in this

(and all low-d) views.

foiologists Ken White, Curtis Condon, and Al Feng, and Electrical Engineers Oliver Kaefer and Doug Jones.
7A tiogl" bat from a sixth "L,ong-Earcd" species contributed 5 signals originally, but was removed since it could be easily
distinguished by its low-frequency signals and since having only one representative did not allow proper evaluation
testing.
8It t.k", less than a second on a SPARC-2 to run the l-step algorithm on this problem, but about 75 seconds for 2 steps.
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Figure 6: CART (l-step) Tree (using all data) Figure 7: lX2stepTree (using all data)

Trained on all the data, ttre l-step tree, shown in Figure 6, had 5 splits (17 prior to pruning)
and made 13 Eaining elTors. (In the trees, "Yes" answers travel to the left child; "No' to the righl)
The 2-step tree of Figure 7 started out simpler, with 14 splits, but pruned less, ending with 10

splits and only 5 training elrors. The best root node split happened to be greedy but several other
splits were not. For example, ttre data in the right child node of the root, shown in Figures 8 and

9, are those 58 of 93 cases where rl > 101.5. The greedy tree was drawn to sptt first on x20
<3.59, then on x4 <44.5, and it missed 6 cases on that branch. The 2-step tree instead first chose
xI I < 0.39 -- a seemingly worse split, but when followed by x4 < 43.5 on one branch, one which
allowed it to corrertly classify 4 more cases. (The difficulties the split caused its sibling branch
were cleared up by subsequent splits.) The 2-step cuts were often more appealing visually; that is,
they accorded more with what an analyst would do when viewing two dimensions of data
simultaneously, rather than one.

As expected, the less greedy algorithm performed better on training data. The best test, of
course, involves new data. Since there were not many cases, a cross-validation evaluation was
performed, where all 3-8 signals for each bat, in turn, were held out of training and independentty
run down the tree for testing (18 nrns for each method). Tables 2-4 show the resultin g confusion
matrices for CART, TX2step, and a neural network (courtesy of Oliver Kaefer and Doug Jones of
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LJruC) fiained on the variables selected by the two tree methods. Correct classifications are along

the diagonal and the hit percentage is shown in the corner.

CART gets 43 of 93 signals correct (467o), TX2step 54 (58Vo), and the ANN performs best

with 64 (69Vo). The difference in accuracy for the tee methods appears more critical when using a

voting scheme, where several different signals from a single bat are classified and the majoriry

class is assigned. Then, CART misses I I of the 18 bats but TX2step only 6. (The voting ANN

misses just 4.)

hr this experiment (counter to our usual experience), the nee methods were outperformed by an

ANN. However, the variable selection performed by CART and TX2step proved helpful to the

ANN; one trained on all 35 original data feahres got only 527o correrf in bat-wise cross-validation,

and one trained on 17 variables (those given as candidates to the tree methods) was 637o cofiect.

Here, simpler AI.INs performed better on new data. Clearly, an inductive A}{N algorithm, which

adapts the network structure to the data would be a useful tool. The data characteristics -- filtered

features, lack of outliers, clustered classes -- which helped the neural network perform well,

should also be agreeable to exemplar-based statistical techniques, such a.s kernels and nearest

neighbors. (We hope to soon try them, as well as regression networks and other inductive

methods.)

Table 2: CART

True
Class
234

Confusion Marices

Table 3: TX2step

True
Class

7234

Table 4: 8-InputNeural Network
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2 18
1 13

Tot L8 19 L4 26 15 a6t ?ot t8 19 t4 26 15 58t rot L8 !9 L4 26 15 69?

6 Performance on New Data: Remarks

We have seen that regression subsets and decision trees can be sub-optimal if the single best

step is always taken. This is true in other venues as well. Cover (1974) showed an investigation

in which greed hurts, where: If only one experiment is allowed, E7 provides the most

information, but if two are possible, then independent versions of the "worse" experiment E2 are

better.
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But the degree to which greediness generally hurts performance in practice, on new data is an

open question. Berk (1978) sounded a slightly cautionary note in the case of regression subset

selection. Using nine well-shrdied data sets (having from 4 to 15 predictors, 13 to 541 cases, and

often more analysts!), he noted the maximum f:arning error difference between all-subsets

(optimal) models and both 1) forward selection and 2) reverse elimination models. An
improvement of up to 29Vo n SSE was observed. Then, the sample distributions of each data set

were employed to generate synthetic data wittr known population characteristics, and the study

again performed for this new evaluation data. Figure 10 plots the training vs. evaluation data

differences for the forward and reverse models from the (Berk, 1978) study. Most evaluation

differences were smaller and in a tighter range (-2 to 77o, wTth one exception). In two cases, a

greedy method won on the evaluation data by a slight margln.

Note that the differences are somewhat exaggerated, as the maximum disagreement between

methods is shown, not that at some automated stopping point For instance, the two worst reverse

values (one training, one evaluation), are for models of size I and2 -- where the forward method

would clearly be preferable. Still, the greedy training and evaluation rurder-performances are cor-
related, and it can tentatively be concluded ttrat regression differences on new data, while usually
less dramatic than on training data"are still likely to be significant.

This was also shown to be the case for decision trees, where a version of CART was out-
performed on an example problem by TX2step, which looks atread an additional step when
selecting a threshold for the current node. Furttrer research is planned to examine the effects of
greedy model construction srategies in these and other inductive methods, with the hope of
understanding better the trade-offs between complexity (in the algorithm as well as modet) and

accuracy (uaining and evaluation).
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