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Abstract

We consider theoretical models of learning from noisy data. Specifically, we focus on learning
in the proDobility approximately cor'recl model as defined by Valiant. Two of the most widely
studied models of noise in this setting have been classification noise and rnalicious errors.
However, a more realistic model combining the two types of noise has not been formalized.
We define a learning environment based on a natural combination of these two noise models.
We first show that hypothesis testing is possible in this model. We next describe a simple
technique for learning in this model, and then describe a more powerful technique based on
statistical query learning. We show that the noise tolerance of this improved technique is
roughly optimal with respect to the tolerance of the statistical query algorithm and that it
provides a smooth tradeofl between the tolerable amounts of the two types of noise. Finally, we
show that statistical query simulation yields learning algorithms for other combinations of noise
models, thus demonstrating that statistical query specificatiou truly captures the generic fault
tolerance of a learning algorithm.

1 Introduction
An important goal of research in machine learning is to determine which tasks can be automated,
and for those which can, to determine their information and computation requirements. One way
to answer these questions is through the development and investigation of formal models of machine
Iearning which capture the task of learning under plausible assumptions.

In this work, we consider the formal model of learning from exa,rrples called "probably approx-
imately correct" (PAC) lea"rning as defined by Valiant [14]. In this setting, a learner attempts to
approximate an unknown ta^rget concept simply by viewing positive and negative examples of the
concept. An adversary chooses, from some specified function class, a hidden {0,J.}-valued target
function defined over some specified domain of examples and chooses a distribution over this do-
main. The goal of the Iearner is to output in both polynomial time and with high probability,
an hypothesis which is "close" to the ta,rget function with respect to the distribution of examples.
The learner gains information about the target function and distribution by interacting with an
example oracle. At each request by the learner, this oracle draws an example randomly according
to the hidden distribution, labeis it according to the hidden target function, and returns the ia-
belled example to the learner. A class of functions f is said to be PAC learnable if there exists an
algorithm which works for every target function in f.

Whereas previous models required the learner to exactly determine the hidden concept but
allowed the learner to use unbounded time, the PAC model requires the learner to work in efficient
time, yet only requires the hypothesis returned by the learner to be "close" to the target concept.
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These differences found in the PAC model seem to better reflect the requirements of learning in
the real world. The PAC model has been widely adopted and there has been extensive research in
providing algorithms and showing hardness results for this model [1].

However, one criticism of the PAC model is that the data used for learning is assumed to
be noise free. In order to combat this deficiency, variations of PAC learning have been introduced
which formalize the types of noise that might occur in a real training environment. Two of the most
widely studied models of noise in computational learning theory have been classifi,cation noise 12)
and, mali,cious ernors [15]. The classification noise model allows for common random occurrences
(approaching 50% the time) of mislabelled examples, while the malicious error model allows fo3

rare occurrences of adversarial corruption of the entire labelled exa,mple.
A useful tool for the development of algorithms in each of the above noise models has been

another learning model, the statistical query (SQ) learning model [11]. A statistical query algorithm
for a class can be very useful since it has been shown that it yields both a classffication noise tolerant
algorithm for the class [11] and a malicious error tolerant algorithm for the class [8]. In the SQ
model, the learner may no longer view labell"6 s(amples, but instead may ask for estimates of
the values of various statistics based on the distribution of labelled sxamples. Since such statistics
could be accurately estimated with high probability by a large sa,mple of labelled examples, one can
view this model as restricting the way in which the learner may use the exa,rrple oracle. Yet this
restriction has been found to be quite mild, in 1[af a]most all classes which have PAC algorithms
also have SQ algorithms [11]. F\rthermore, these SQ algorithms can be easily derived from the
corresponding PAC algorithms. Therefore, for all of these classes, noise tolerant algorithms exist
in each of the two noise models described above.

Although many algorithms have been constructed to learn in the presence of each type of noise
sepa,rately, a more realistic model combining classification noise and malicious errors has not been
formalized. In this hybrid model, occasionally entire labelled examples would be corrupted, while
the the remaining examples would have some fixed probability of being randomly misclassified. A
noise model which combines these two types of data corruption is at least as hard to learn in as

each separate noise model. In this paper, we define a learning environment based on a natural
combination of these two noise models called classificati,on and malicious error (CAM).

We first show that one can perform hypothesis testing in the presence of CAM error, f.e. use
only noisy data to detect which hypothesis from a set of hypotheses has the smallest error on no'ise-

frce data. We then show how one can use existing techniques to construct algorithms for learning
in this noise model. Specificallg we show how to take an algorithm which tolerates classification
noise and add to it the ability to also tolerate malicious errors. We then derive the limits of this
technique in terms of the amount of noise tolerance and note that optimal noise tolerance cannot
be achieved by these methods.

We next show a diferent technique for generating CAM-tolerant learning algorithms which
tolerate strictly more noise. This technique is based on simulating statistical query algorithms. We
show that for any SQ algorithm, the classification noise tolerance achieved is optimal while the
malicious error tolerance is within a logarithmic factor of optimal. In fact, many SQ algorithms
yield optimal malicious error tolerance. Fhrthermore, this technique provides a smooth tradeoff
between the amount of tolerable classification noise and malicious error.

Finally, we describe how the definition of a hybrid noise environment can be extended to combine
various other types of noise. Lea,rnability in these new hybrid noise models may also be achieved
through the simulation of statistical query algorithms. This generality of the usefulness of statistical
query specification demonstrates its ability to capture the fault tolerance intrinsic to a learning
problem.
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2 Learning Models

In Valiant's PAC model of learning from labelled examples [14], an adversary selects both the hidden
target {0, l}-valued function / from a known class of functions f and the hidden distribution D
which is defined over the domain of /. The domain of / constitutes the set of possible examples.

This set is often the Boolean hypercube {0,1}", in which case ?? is the common length of all
examples. The learner is given access to an exampie oracle EX(f ,D) which, when polled by the
learner, returns (rrf(r)), an o(a.mple c drawn randomly according to D and its correct labelling
with respect to f . The learner is also given accuracy parameter e € (0, 1) and confidence parameter
6 e (0,1). In time polynomial in n,lf e, an.d Lf 6,, the learner must output an hypothesis Iz which,
with probability at least 1 - 6, has the following property: given an example a drawn randomly
according to D, the probability that /(o) * h(r) is at most €. If h has this property, we say that
it is e-close to f on D.

We next describe two variants of PAC learning which model noise in the learning process.

These learning models, in addition to the statistical query model described below, all differ from
the standard PAC model in which oracle they use to interact with / and D. Yet, all models still
require the learner to output, with probability at least L - 6, an hypothesis h which is e-close to /
on D, f.e. with respect to noise.free labelled exa,mples.

Angluin and Laird [2] introduced the model of PAC learning with closse.flcation noise,, in which
the learner has access to a noisy example oracle EXZ"U,D). When a labelled example is requested
from this oracle, an exa,mple is chosen according to the hidden distribution D, and returned. With
probabiJity 1- 4, the correct labelling of the example according / is returned, while with probability

4, the incorrect classification is returned. The learner is given Tb, an upper bound on the noise rate,
such that 0 < Z S nu < 112. The running time of a learning algorithm is allowed to be polynomial
in # in addition to the usual parameters. We say that a class is learnable with classification
noisb if it is learnable for every classification noise rate q less than the information theoretic limit
of t12.

The PAC model with malicious enors was introduced by Valiant [15] and studied further by

Kearns and Li [12]. In this model, the learner has access to an example oracle EXfl^LU,D).
When a labelled example is requested from this oracle, with probability 1 - 0, at example is chosen

according to the hidden distribution D, correctly labelled according to the hidden ta,rget concept /,
and returned to the learner. However, with probability B, a malicious adversa,ry seiects any example

it chooses and labels it either positive or negative. Kearns and Li [12] showed that for "distinct"
classes (virtually all interesting classes are distinct), it is impossible to tolerate a malicious error
rateofA>+., _ rf€

The statistical query (SQ) model [11], afurther variant of the noise-free PAC model, has been a

useful tool in the construction of noise-tolerant PAC algorithms. While learning in the PAC model
may be based on specific properties of individual examples, learning in the SQ model is based on

statistical properties of large sets of examples. In the SQ model, the PAC example oracle E X (f , D)
is replaced by a statistics oracle STAT(f ,D). The learner interacts with ^977?(f ,D) by asking it
queries of the form [1, r] where 1 is a {0, l}-valued function on labelled examples and r € (0, 1) is

the tolemnce of the query. The query is a request for the value P1, the probability that y(r,l) = 1

when (o,l) is alabelled example drawn randomly from EX(/,D). Thus, P* is the probability of
drawing a labelled exa,mple that has *property" 1. The statistics oracle returns an approximation
P, such that lP, - Prl S r.

The query space Q of an SQ algorithm is the set of all possible queries 1 which the algorithm
asks the statistics oracle on all possible runs. The tolerance of an SQ algorithm is the lower bound
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on the tolerances of the queries the algorithm makes to the oracle. A class is said to be SQ learnable
if: (1) there exists an SQ algorithm which mahes only a poiynomial number of queries, (2) there
exists a polynomial bound on the time required to evaluate every 1 used by the algorithm, and
(3) there exists a polynomial bound on the inverse of the tolerance of every query made by the
algorithm.

Kearns [11] has shown that if a class has an SQ algorithm, then it is learnable with any amount of
classification noise q < L12. Decatur [8] has shown that if a class has an SQ atgorithm with tolerance
r, then it is learnable with malicious error p = O(r).1 Both results are based on simulations of SQ
algorithms in the respective noise models. Despite the noise in the examples, the simulations a,re

able to effectively reproduce a noise-free statistics oracle. The sample complexities of the noise-
tolerant PAC algorithms depend on the number of queries, the tolerance and the query space of
the SQ algorithm.

We next examine a hybrid model of noise based on classification noise and malicious errors.

3 Learning with Classification Noise and Malicious Errors

We first define the new lea,rning model which combines the two noise types and describe how to
perform hypothesis testing in it. We then give a simple construction to learn in this model. Next,
we give an improved technique for CAM learning based on simulating statistical queries. We prove
that the noise tolerance of this technique is roughly optimal and observe that it provides a smooth
tradeoff in tolerance between the two types of errors.

3.1 The Hybrid Noise Model

We formally define classification and mali,cious error (CAM) m . PAC variant using an exa;nple
oracle with the following behavior:

ax!,!*11,o1-

The learner is told r/6 such that 2 1 To < | and given EX!'fi*U, D). In time polynomial in. Lf e,

EX(f ,D)
EX(-t, D)
Adversary

t-q-F
rl

B

Lf 6, n, and,

is e-close to
1#nb, the learner must output an hypothesis h which with probability at least 1- 6

fonD.

3.2 Hypothesis Testing using a CAM Example Oracle

In this section, we show how to use the EXZ'fl* oracle to perform so called "hypothesis testing" in
order to determine which hypotheses of a given set have relatively small error with respect to the
noise-trce exa,mple oracle. We first prove a theorem which states an upper bound on the number of
labelled gxamples from a CAM oracle sufrcient to rank two hypotheses with different error rates.

lWe often use O, O, @, o,t t when cha,racterizing the asymptotic behavior of functions of variables which approach
0 as opposed to the standa^rd usage in which variables approach oo. For insta,nce, since r approaches 0, we use O(r)
to denote a function 9 for which there exists constants Ic a,nd ro such that for all r t h, g(r) I tr. We also make use
of "soft' order notation when we are not concerned with lower order logarithmic factors. Specifically, when D > 1,
we define O1A1 to mean O(Dlog"!) fo. some constant c ) 0. When D < 1, we define 6(D) to.mean O(Dlq"(l/D)) for
some constant c 2 0. We define Q similarly for some consta,nt c I 0 and analogously define 0,6,6. When discussing
asymptotics related to 7, we consider q - ll2, or correspondingly OIZ - ?)-r * oo.

178



Theorem L Let h1 and h2 be two hypotheses with error mtes e1 and e2 such that €z - €r = 7 ) 0.

If P < tQl2-ri12, then a sampte S of size o (W)ry) a*r" from EX['fy(f , D) i,s sufi,cient

to guaruntee, with prcfubi.lity at least I - 6, that h1 di,sagrees with fewer labelled etamples than h2

in the sample S.

Proof: By generalizing a technique of Laird [13], Aslam and Decatur [5] show that two important
pa,rameters determine the number of labelled examples sufficient to perform hypothesis testing by
any type of example oracle. These parameters are (1) I - the probability of drawing a labelled
example on which the two hypotheses disagree; and (2) q' - the conditional probabiJity, given
the hypotheses disagree with each other, that the hypothesis with smaller error disagrees with the
label. They show that it is suffi.cient to draw a sample 

^9 
of O(lo9(116)-f1(1-2n)-') labelled

o(amples to ensure with probability at least 1 - 6 that h2 disagrees with more labelled examples
in ^9 than h1 does. We simply derive the values of t and q' for EX!'!*.

Let d be the probability (with respect to D and any randomization in h1 or h2) of. drawing an
o(ample o according to D in which h1(c) = hz(a)# /(o). Let t1 be the probability (with respect
to D and any randomization in h1 or h2) of drawing a labelled example (o,I) from EXZ'!MU,D)
in which hr@) * h2(z) = 1.2 Similarly, let t2 be the probability (with respect to D and any
randomization in h1 or h2) of drawing a iabelled example (c,I) from EXZ'!*U,D) in which hz(r) *
h1(r) = /. Then we have

9 + G, - d)(L - q - 0) + G, - d)rr

(e2 - d)(1, - tt - 0) + (e, - d)rt

and since t = h *t2, we have
t= fr*(et+ez-zd)(r- p).

The value of 4'is simpiy t1f t and. therefore

^, _ 0 * (er - dxl - q - P) + (e2 - d)r1
,l - .

From the above values for t and q', al;.d by our assumption that B S f (1 - 2q)1a,, we have

0+1er*ez-2d)(L- P)

t1 :
t2:

l(ez-erX1 - 0-2rr)-012
1Q - 2q)la* (er + ez)

lr(t - 2q)12)2

10-2q)la*(t *2er)
'Y2(112 - q)2

( et*t \t-t

\t2(U2 - q)2 )o

tr

A standard application of a result such as Theorem 1 is that it allows one to select, v/ith high
probability, an hypothesis with error at most e from a set of hypotheses containing at least one with
error at most ef2. Specifically, consider a set of /[ hypothesis, in which one of these hypotheses,

2since this probability actually depends on a dynamically playing adversary, we consider the worst possible case
in which the adversary, at every opportunity, returns alabelled example (z,l) such that l: hz(c)1fu(r).
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Corollrary2Letht,...,hNfuhypotheseswithertprmtesq<...<
9 3 e(tlz - q)14, then a sample S of si.ze o (ffi) a*r" lrom EX!'fyU,D) is suficient to
guarantee, with prcbability at least I - 6, that the hypothesi,s wi,th the fewest d,isagrcements on S has

ernor no morc than e,

say h1, is guaranteed to have error rate at most el2. By selecting the hypothesis from this set

which has the smallest empirical error on a suff.ciently large sample, we can be confident that the
error rate of this hypothesis is no more than e. For this procedure to work, it is enough for h1 to
have smaller empirical error than any hypothesis with true error more than e. Thus, we a.llocate

6 l@ - 1) probability of failure to each comparison of h1 with the other hypotheses and note that
for each hypothesis of error more than e, the corresponding gap is 1> elZ.

3.3 Simple Strategies for CAM Learning

We next examine how existing tools for both classffication noise and malicious error learning may
be combined to achieve CAM lea,rning. Specifically, we consider the strategy of starting with an
algorithm which tolerates one type of noise, and transforming it so that it additionally tolerates
the second type of noise.

Given an algorithm which tolerates malicious errors, we know of no transformation which adds
the ability to tolerate classification noise. This is illustrated by the class of parity functions. The
class of parity functions has a malicious error tolerant algorithm (yielded by the technique of
"multiple-runs" [1,2] discussed below, on the noise-free algorithm for learning parity functions [10]),
yet it is not known how to learn pa,rity functions even in the presence of classification noise alone.

Converselg such a transformation does exist when starting with an algorithm which tolerates
classification noise. Kearns and Li [12] describe a technique which ta,kes a PAC algorithm with sa,m-

ple complexity rn which does not tolerate malicious errors and by running it many times, converts
it into one which tolerates a malicious error rate g = O()#). W" can ta,ke an algorithm which
tolerates classification noise, and use this technique to create one which tolerates CAM error. The
a.mount of CAM error which can be tolerated using these techniques may be upper bounded by
using lower bounds on the sa,mple complexity of classification noise learning. Aslam and Decatur [5]
have shown that any algorithm for function class f which tolerates classification noise must have
sa.mple complexity at least * = A1ffi).t Io fact, most known classification noise algorithms

have sa,mple complexity at least * - A1ffi). Thus, these techniques yield algorithms which

tolerate CAM with any ? <112,, but B at most 0(e(tl2-q)2lvco,^trt). Specifically, the depen-
dence of B on e and 4is at best 6(€(1/2-riz) and often 01e21t12-ri2). We next show a different
technique for deriving algorithms which tolerate more CAM error.

3.4 Simulating Statistical Queries for Improved CAM Learning

We show how to efficiently simulate an SQ algorithm in the PAC model in the presence of CAM
error. The strategy is to perform a simulation similar to that used for dassification noise alone,
but to do so with sharper tolerances in order to also tolerate the malicious errors.

Theorem 3 Gioen an SQ leorning algorithm tor f with minimum tolerance r, one can construct a

PAC leaming algorithm lor f which ean tolemte CAM for all q < 1.12 and B < B* - @(r(l12- ?)).
3The Vapnik-Chervonenkis dimension, or VCDim, of a class f is a combinatorial measure which is commonly

used to characterize the required sarnple complexity for lea^rning .F. Note that VCDim( q > L
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Note: We can tolerate as much classification noise in the CAM model as was possible in the
standard classification noise model. In the case of malicious error, the amount of error tolerable
depends on the tolerance of the SQ aigorithm (as was the case in the model of malicious error
alone) and the classification noise rate. This theorem provides a smooth tradeoff of classification
noise against malicious errors in that as ? approaches 0, the amount of malicious error tolerable
approaches the level tolerable in the model of malicious error alone.

Note: AsiamandDecatur[4] showthedependenceof Toneneedneverbeless thanef log(l/e).
Therefore the dependence of B or e and. r7 need. never be worse than O(6;.)4012- 4)) which
improves upon the noise tolerance achieved in Section 3.3. In fact, the tolerance for many classes

is r = O(e/vcoi-(fl) in which case the malicious error tolerable is B - O(e(L12 - r7)/vcoi-1r1).

Proof: The simulation of the SQ algorithm draws a sample of labelled examples from the CAM
exampie oracle, uses that sample to estimate a.ll of the queries in the SQ algorithm, and outputs
the hypothesis returned by the SQ algorithm. If the simulation of the STAT oracle is correct (f.e.
within proper tolerances) for all queries made, then by the correctness of the SQ algorithm, the
output hypothesis is e-good. Therefore, with probability 1 - 6, the simulation algorithm must
answer all queries accurately.

The strategr to simulate queries is two-fold: bound the fraction of examples on which the ma-
licious adversary plays and ensure that the remaining examples uery accumtely estimate quantities
used to estimate P, in the presence of classification noise. The additional accuracy is required to
accommodate error introduced by the malicious error examples. The quantities used to estimate P,
are based on the classification noise clone simulation of SQ atgorithms of Aslam and Decatur [6].

Por each query lX,r), we wish to estimate P*, the probability that a labelled sxa.mple drawn
from EX(f, D) satisfies 1, to within *r. Let P{ be the probability that a labelled example drawn

ftom EX!'!*U,,D) satisfies l given that the labelled example was not chosen by the malicious
adversary. Let P7 be the probability that alabeiled exa.rnple drawn ftom EX(f,D) satisfies X if
we negate the example's label. Define P{ similarly. These definitions yield the following equations:

Pi: (t-B-q)Px+qPx
L-p (1)

,;=W e)

Solving Equation 2 for Pyand substituting into Equation 1, we get the following expression for Pr:

Px=
(r-P-q)ry-,lry

r-0-2n (3)

Thus, in order to estimate P*, it is enough to have estimates of. P{, P*., n and B. We make use of
the foliowing lemma which states how accurately these quantities must be estimated or *guessed."

The lemma is proven by the use of some simple algebra.

Lemma 4 Proaided B < B* = @(r(Ll2-rt)), in order to esti,mate P* to wi,thin lr, it is sfficient to
est'i,mate P{ and Pi each to within +r(112-q)18 and to guess an fi such that lq-itl ! r(tlZ-q)18.

Proof: Omitted. tr

We simulate the SQ algorithm multiple times, each with a different *guess" for 4. Each sim-
ulation attempts to achieve error no more than el2. On any of the runs in which the noise rate
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is guessed accurately enough, the hypothesis output is ef?-good. with high probability. By using a
sliding scale for the noise rate guesses, it is possible to construct a set of O(l tog ,2-* ) guesses such

that for at least one of the guesses 4, we have lq - nl ! r(Ll2 - q)lS.Details of this construction
are given in the full paper.

We compare the hypotheses generated by dl of the different runs and output the one with
smallest empirical error on a random sample. Corolla^ry 2 cau be used to show that this hypothesis
is e-good with high probability. Note that we allocate fl2probability of failure to the hypothesis
testing afi 612 probability of failure to the determination of the estimates within each run.

We next determine the sample size sufficient to ensure, with probability 1- 612, that every
P{ and P{ is estimated accurately. If we define r' = r(Lf?-rl)lS and 0 = rt- B, then assuming

B < B* - r(l12-rill6,we have 0 - {l(r(LlZ-ril.Let ,5 be a sample of size m (to be determined

below) labelled examples drawn fiom EX!'fy, let 51 be the subset of S chosen by the malicious
adversa,ry and let Sz = S \,S1, ie. q(e.mples chosen according to the correct distribution but
possibly mislabelled. Let Sx be the subset of S which satisfies X. Define ^9f and S| similarly. Let
our estimatefor $, be l^txl/l^tl. We show that if both Conditions 1 and 2 (grven below) hold, then

for all y € Q,lrl- lstl/lSll 
= 

,'. That is, the fraction of exa,mples in the sa,mple ftom EX['ly
which satisfy X is a good estimate for P{.

conditionl: ffiS 
p**

condition 2: Yy € Q,lE ,rl=*
Condition 1 states that the malicious adversary played on no more than a g + $ fraction of

the rn o(a.mples. Condition 2 states that for all queries, the fraction of non-adversarially labelled
sr(amples satisfying X is within $ of the expected fraction ry. Ia, order to show these two conditions
jointly imply accurate estimates, we simply verify that they imply Yy € Q,l,Srli l,Sl < P{.+ r'and
l.rrlll^rl 2.Q-r':

lsl lsl ' lsl : lsl ' lszl

(u. i)+ (r; +
0

2)

l^9xl

t3t-
, lSzl- lsl

= Pi+ r'.

= ry-BPi-ilr;+1- u-lrl

Condition 1 requires the empirical fraction of a set of independent trials of a Bernoulli random
nariable to be no more than 0f2Latger than its expected value, while Condition 2 requires similar
empirical fractions to be withir *.012 of their expected values. Using standard Chernoff bounds [3]
and uniform convergence results [7], to ensure that (with probability L - 6 12) both conditions hold,
it is sufrcient to use a sa^rrple of size m = O($t g P) if the query space Q is finite or a sa,mple

-B-*'
- T'.
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of size * - O(#Iog| + #toe*) if O is infinite with finite VC Dimension g. Alternatively, one
could use a separate sa.mple for each of the lf queries made by the algorithm, thus using a total of

^=O({rlogf)examples. o

3.5 Optimality of CAM Tolerance

Theorem 3 states that any class which is SQ learnable is PAC iearnable with CAM for a. I < l
and B - O(r(Ll2 - rt)): "l0,(Tl|,). This classification noise tolerance matches the information
theoretic limit of Ll2 afi, is therefore optimal. We next demonstrate the optimality of the depen-
dence of. B on q and r in the following two theorems. Together, these theorems show the error
tolerance of Theorem 3 to be within a log(1/r) factor of optimal.

Theorem 5 There. is no class which is PAC learnable with CAMYTT < Llz and B = g{r)lo(fu)
lor any function g{.).

Proof: If 9 = gr(r)lo(fu), then for any fixed r (and therefore fixed 9(r)) there exists an

q<Ll2forwhich B>g{r)ll#1=1/2-rl,itwhichcase4* P>t12. Butnoclassislearnable
under such conditions since the malicious adversary is then able to make the CAM oracle simulate
a staadard classification noise oracle with noise rate lf 2, making every label look like a random
bit. tr

Recall that Kea.rns and Li [12] prove an upper bound of ii; on the amount of malicious error
tolerable when learning any ilistinct concept class. We use this result in the next theorem.

Theorem 6 No d,istinct class is PAC learnable with CAM ol 0 = u:(rlog(llr)). gr(tlZ - q) Ior
any function gr(.).

Proof: Aslam and Decatur [4] have shown that if a class is SQ learnable, then it is SQ learnable
withr>_ffi.Therefore,forfixednandfixed7<i,B=r.l(rlog(1/r)).g2(Ll2_q)=a(e).
However, as stated above, no distinct class is learnable with B > tr = O(e). tr

4 Other Hybrid Noise Models

In Section 3.1 we defined a hybrid noise environment in which an example oracle exhibited both
classffication noise and malicious errors. We may instead define hybrid noise environments based on
other types of noise models. Two other such "noise" models are d,istribution shift and. di,stribution
restricted learning [8]. I" both models, the o(amples are labelled correctlS but the distribution
6f o(amples is somehow modified. We show that any combination of these noise models, along
with classification noise and/or malicious errors, define a hybrid noise environment in which we
can effi.ciently simulate any statistical query algorithm. Once again, the statistical query algorithm
quantifies how much error we can tolerate in estimating a query. To each individual type of noise,
we may allocate a part of that fault tolerance. Thus the tolerance of the SQ algorithm quantifies
the generic fault tolerance of the algorithm.

Another result on learning in a hybrid noise environment incorporates both attribute and clas-
sification noise. Specifically, the technique of simulating SQ atgorithms to achieve learnability in
hybrid noise models has also been exploited by Decatur and Gennaro [9] in order to character-
ize learnability in a model combining attribute noise and classification noise. Here again, the SQ
algorithm characterizes the amount of noise tolerance that may be achieved.
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4.1 Individual Noise Models

In the model of distribution shift, the learning algorithm is given access to an example oracle which
draws exa,mples according to a distribution which differs from the distribution on which it will
be tested. Recall that examples drawn a,re always labelled correctly. The only restriction on the
distribution used for training is that it be "close" to the distribution used for testing. A class is
learnable with distribution shift o if there exists an algorithm which can tolerate training on any
distribution which is within distance o from the testing distribution. The distance between two
distributions P and Q over the domain X is defined as follows:

d,(p,e) = f;ff lp(A) _ A@)1.

Note that this definition of distance is equivalent to d(P, Q) = lDoex lP(r) - Q@)|If f is PAC
learnable, then it is learnable with distribution shift o if and only if a = O(e) [8].

In distribution restricted learning, a learner is promised that the distribution of examples be.
longs to a specified class of distributions 2. We can use a distribution restricted SQ algorithm
to learn on distributions outside of the promised class of distributions 2. The la.rger class of dis-
tributions on which learning is possible is determined by the tolerance r of the SQ algorithm.
Specifically the larger class of distributions is composed of distributions within distance O(r) of
some distribution in 2 [8].

4.2 The Hybrid Noise Model
The model which combines all four of these individual noise models is described by the following
learning environment. There is a testing distribution D1 which is close to some distribution D e D
(i.e. , d,(D,Dr) < 7) and there is a training distribution D2 which is close to D1 (i.e. , d,(D1, Dz) 1
o). The example oracle used for training is as follows:

Exl{{"U,Dr) =
EX(f , D2)
EX(-'f , D2)
Adversary

An SQ algorithm for the class f on distributions ?2 can be converted (by simulating statistical
queries) into a PAC algorithm for learning f in this environment. The simulation is valid for all
q<7l2,ar'dp*l*o=O(r(Ll2-d).Oneagain,thereisasmoothtradeoffbetweenallofthe
diferent types of noise and the amount of noise tolerable can be shown roughly optimal in terms
of its dependence on r. The simulations and proofs of optimality are similar to those show earlier
and details are given in the full paper.
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