
Truncated Gaussians as Tolerance Sets*

Fabio Cozman Eric Krotkov
Robotics Institute, Carnegie Mellon University

Pittsburgh, PA - 15213

e-mail: fgcozman@cs. cmu.edu

October 74, L994

1- Introduction

This work presents a new class of statistical models that are well suited for several Robotics applications.
such as object recognition or computer vision. Our approach deals with bounded data: measurements that
are constrained to appear in a bounded region in the measurement space. The literature refers to the set
where the measurement can appear as the lolerance sel for the measurement.

To date, few statistical models for bounded rariables are used in Artificial Intelligence. The most common
model is the uniform distribution, but this approach has several drawbacks: summation of uniform variabies
does not yield a uniform variable and application of Bayes rule is computationally intensive [9]. Another
approach is to use the Gaussian distribution and model bounds through an ad hoc selection mechanism [1, 2].

In short, even though bounds contain significant information, they have not yet received proper attention.

Our work uses a class of distributions in the truncated Gaussian family to model bounded data. Such
models have been used in Statistics in order to implement selection mechanisms [7]. Instead, we propose
truncated models not only as models of selected data but also as models for bounded noise, e.g., disturbances
that appear in object recognition and computer vision [6]. We derive a complete set of novel algorithms
for these models: calculation of moments, approximation methods for Bayes rule and summation and noise

filtering. Overall, our results make the truncated Gaussian family an operational tool, more powerful than
the uniform or the Gaussian distributions. Our analysis complements results scattered in the literature of
Statistics, Information Theory and Control Theory. We contribute to Artificial Intelligence by indicating a

proper model of bounded measurements and by deriving tractable algorithms to handle them.

2 The Tluncated Gaussian Family

Our basic model is the elliptically truncated Gaussian family. A distribution in this family is proportional
to a Gaussian inside an ellipsoid and is zero outside the ellipsoid. The truncated Gaussian model has been
proposed in a variety of contexts in Statistics [7] as models of selection mechanisms. In this work we focus on
the truncated Gaussian as a model for measurement noise, not so much as a model for selected measurements.
The first explicit mention of this possibility in Robotics appears to be by Erdmaun [4].

'This resea^rch is supported in part by NASA under Gra.nt NAGW-I 175. Fabio Cozman is supported under a scholarship
from CNPq, Brazil.
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Figure 1: Distributions in the truncated Gaussian family: No,r,o.or(0,1) (left) and N1.5,1,1(0,1) (right)

A truncated Gaussian distribution for an n-dimensional random vector c is referred to as N,,u,r(p,P);
its mathematical expression is:

Nu,u,*(P,e1= @-"*, (-]1, - tir P-'( \
l(2ur)"det(p)lr - \ 2\' r' - 

"-'))Ip:p-u1rM-'1"-';<*1(')' 
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where 1(') is the indicator function and q(p,P,v,M,k) is a normalizing constant. The set {x : (x -
v)r M-t(c - v) <,t) defines an ellipsoid in n-dimensional space. Call & the radius of the distribution.

As a special case, note that if p, = v and M = P, then the normalizing constant depends only on &. In
this case, q(p,P,l.r,P,k)= Pr(y2. <,t) (chi-square distribution). Due to the importance of this sub-family,
we call it the radially lrtrncated Gaassian family.

The truncated Gaussian is a suitable model for bounded data, even more powerful than the usual Gaussian
since it can represent nearly flat and highly skewed distributions. Figure I illustrates this claim.

Suppose we know a random vector e has mean p, covariance matrix 8, and Pr(c) = 0 for all c outside

{c : (x - t )TQ-'(, - p) S e}. In other words, possible values of c concentrate around the mean in a
symmetric fashion, up to the distance & in the metric induced by Q. We can strengthen the parallel between
truncated and unbounded Gaussians by proving that (all proofs can be found in [3]):

Theorem I A maximum entrcpy distribution, uhen the etpected oalue is p, lhe cooariance rnalrir is Q and,

the rlistributionis zero oulside {c: (a -p)TQ-l(r-li Skl, is alruncaled Gaassian Np,cq,x,(p,cQ), where
c= Pr(y2^ < k)(Pr(yf,+2 S &))-r and b' - kPr(y!,*2 ! k)(Pr(yl" S t))-1.

2.L Moment Generating f\rnction, Mean and Variance of a Tluncated Gaussian

The central problem in the characterization of a truncated Gaussian is the determination of q(p, P,u, M ,k).
In this section, we consider a linear transformation on the initial random variable such that:

N.,p,r(0,n=W.*o(_f,,,,)I{,,r,-.),o-,1,--;<r1(,),

where D isadiagonalmatrix, usingalineartransformation: z = rDTr,6-'VT(r-p), where: A isthe
eigenvalue matrix of. P, V is the corresponding eigenvector matrix of P and O is the eigenvector matrix of
(rfr-rvryla(v,,trtJt). Details can be found in [z] or [3].

We work with the transformed variable z, since q(u,D,k)=qjt,P,v,M,,t). Then (d; the inverse of the
ith element in the diagonal of D): q(,.t,D,k) - Pr (DL, d;(rt-rr)'1t). Kotz, Johnson and Boyd [7]
give a numerical method for the evaluation of this integral based on its Laguerre expansion. We have:
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where-1"(e)=Di=of$F[+#++i,c,=(2r)-tDjIi""-;.i , co= lands, =(-rlODi=r"?d;(t-
d;lg),-L + Dt,(1 - di /0)' .

Convergence is uniform for B > maxi(d;). In general, large values of p yield slow convergence. If we

truncate the evaluation of the series at
2-Nexp (klQil + (, - 1)los2 * 4uro

= N, the truncation error is always smaller thanJ

)

The moment generating function of a truncated Gaussian N.,p,t(0,I) is /(r) = ffi*p (+)
For a proof, refer to [3].

The mean and covariance can be obtained by successive differentiationsof d(r) t8]. Since Kotz, Johnson
and Boyd recursious for /(t) are uniformly convergent we can differentiate these expressions term by term.
We use p for the mean and P for the covariance of a truncated Gaussian. Direct differentiation of the
moment generating function yields:

Theorem 2 We haoe: F=k,DTrkiCi andF - I -Tlf +&,D[, kiGl, where (k, are scalars, g, and
h, are oeclors, G, and. H, are rnitrices and I is an idenlily rnalrir):
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For a distribution Np,r,* (p, P) in the radially truncated Gaussian family, the mean is p and the covariance

matrix is (Pr(y2^*, ! k)(Pr(y'?" S t))-1P) [7].

2.2 . Linear Tlansformation and Summation of Truncated Gaussians

A non-singular linear transformation applied to a random vector with truncated Gaussian distribution pro.
duces another truncated Gaussian random vector, so if o - Ny,u,r(p,P) and y -- Ax (where .4 is any

non-singular square matrix) then y - Ner,nMar,t(Ap,APAT).

On the other hand, the sum of truncated Gaussian random variables is not a truncated Gaussian. We

canderivesomeresultsforparticularcases. Suppose z=s*ywhere x- Nr,,M.,*,(pr,Pr)andg -
Nr",u",x"(py,Py), c and y independent. Under these conditions:

Theorem 3 The distribulion of z has ezpecteil oalue P" = V, *Fu and couarianceP, = P, tPy; the

ilistibution of z ts positioe onlg inside the ellipsoid defined by {z : (z - v,)T M;'(, - r,) (.7\ uhere

vz = ua * uy M, = krM, * kyMv
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Therefore, a reasonable approximation to the distribution of z is Nr,,M,,r(F, P r).

A special but important case is represented,by v, = pr, Mc -- P", us = lty, My = Py, k, = /cy. In
this special case we can make statements about the distance between the approimation and the correct
distribution. Call G, the correct distribution for z; then:

Theorem 4 For pz = lb * pc, M, - M, * Ms, k, = k, = ky, sup" lG, - Nr,,M,,*,(vr,Mr)l is
o(exp(-k/2)).

In this case, the indicated approximation is fairly good.

In the most general case, we can expect that the summation of truncated Gaussian can be well approxi-
mated by a Gaussian, by invoking the Central Limit Theorem. So we can expect a good approximation in
terms of truncated Gaussians. This problem is discussed in [3], but no provably good approximationfor all
cases w:rs found yet.

3 Inferences with the Ttuncated Gaussian

Inferences about a random variable are obtained by application of Bayes rule associated with a decision
rule. Since the truncated Gaussian is not closed under multiplication, we should not expect to apply Bayes
rule and obtain a truncated Gaussian distribution. Fortunately, we can find a good approximation for a
situation relevant to practical applications. We consider a linear set-up, given by z = Hr *arr, where o and
z are vectors, ,4 and H are matrices of appropriate dimensions, c is distributed as a truncated Gaussian
Nr.,M,,r,(pr,Pr); ar, is distributed as a radially truncated Gaussian with zero mean Ns,p,,r.(0,Pr). As a
result, z - NHr,p,,*,(Hx,Pr).

The central question is: gioea lhal ue obserte the oalue of z, what can u)e say aboul x?

there are two issues in finding the posterior distribution: obtaining the analytic expression for the density
cnd obtaining the region of intersection between the positive regions of the prior and the likelihood. We
solve these problems in turn.

3.1 Expression of the Posterior

Theposteriordistributionisproportionalto: exp(-i(r-tt)rP,-L(c-p,)*(r-Ho)rP;t(z-rr)).
Some manipulations reduce it to:

ffi* (-lt' - t')rQ-'@-r)) I.c,ae(c), (2)

where Q - P,- P,HT(HP,HT +P,)-rHP" and p'=Q(P;rp"*PlLHTz), and.4 and I are the regions
where the prior and the likelihood are positive respectively (c is a normalizing constant).

3.2 Intersecting Ellipsoids: Fogel-Huang Algorithm

In order to approximate the posterior, an ellipsoidal approximation can be built so that the approximate
posterior is always a truncated Gaussian. We indicate truncated ellipsoids by Np,*r,*1 in this section.

We make some preliminary approximations:
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. Suppose u, - Np,w,r/a) and a - N1p,r,a;.

o Now take a linear transformation .A such that AW A" = 1 (always possible since W must be positive
definite). So we have Az = AHx * Aur. Now consider B = AH, U = Az and ary = Auy; we have

U = Bc g a.,r. and ,,su - Np;,t1o1.

o We know that ot t! uu ( 1; instead of trying to satisfy this inequality, we will satisfy a set of inequalities
of the form: *?iS l for i = I,...,tu.By reamanging terms we have:

a(y; - B;r)2 11 for f = 1,.. . ,n. (3)

where y; is the ith element of y and 8i is the ith row of B.

Now the problem is how to approximate the following set:

O- = {c, [(r- p)r P-1@ - i SD] n [nfo(s; - B;x)2 S 1] ]

An approximation method was originally proposed by Pogel and Huang in the context of tolerance sets for
ARMA processes. The algorithm finds the minimal enclosing ellipsoid to the intersection. Details can be
found in [5] or [3].

Ihe posterior distribution is a combined result of expression (2) and Fogel/Huang algorithm; we use

N e ^,p^,u^(lt', 8) as the posterior.

Baarnple L Consider {he siluation (uherc c is anknoun):

I q, 1l, = I ; i I "+" c.r - Ne,7,1(0,f) x - No,e,11a(a,B) a tll B= [3 S] ,= [3]
Pigure 2.a shous the initial ellipsoids of lhe problem. The rcgion of possible aalues of x is lhe inlersection

of ellipsoirls. Figure 2.b shows lhe strips generateil al erpression (3). The algonlhm is applied and rcsalts
areshouninfigure2.c. Thelargeslhatchedellipseistheresultof incorporalingzl=2; thesmallesthalched
ellipse is the final result afier incor?oralion of z2 = $. The approtimale poslerior is N",p,r(f ,G) where

e = 0.257 and:

c
0.363
0.547

D= 0.4488

-0.3272
-0.3272
0.7555

0.321
0.7418

0.091

-0.0867
-0.0867
1.8857f- u- tr

The approximations found by the algorithm are correct in that the intersections are always interior to
the successive approximations. Consider a different approximation strategy in the spirit of [1] or [2]. We
would pretend c and cu to be distributed as unbounded Gaussians (with same mean and variance). Now
we find a crucial problem: how to combine the fact that e has an elliptic region with radius 1/4 and ar has
an elliptic region with radius 1? By using Bayes rule in the unbounded Gaussians /{(0,/) and N(o,B), we

obtain an unbounded Gaussian N(LG).The hatched ellipses in figure 2.d shows the results of using these
values of mean and variance with radius ll4,5l8 and 1. All ellipses fail to cover the region where c is known
to lie. The case when the radius is 1/4 is extreme: almost all values of a inferred from this posterior are

inconsistent with prior expectations! Our methods have the advantage that, although approximate, they
never assign probability zero to a possible value of the underlying unknowns.

3.3 Decision Rules

Two common estimates can be obtained from the posterior: the posterior mean and the maximum a poste-
riori. The posterior mean can be approximated from the results of last section. We discuss the maximum a
posteriori here.
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Figure 2: Example of lnference Algorithm for Bounded Distributions

Consider c - N,,u,*(p, P). We take the estimate f = arg max,/Vy,M,r (p, P). The optimization problem

is simplified if we perform a double diagonalization. Consequently, we look for dr = arg maxrN6,D,i(0,I).
There are two possible cases:

o If4"D-1((tthen0isinsidethedefiningellipsoid. SincetheGaussianisunimodal,themaximuma
posteriori is O = 0 (it must be transformed back to e).

o Otherwise, the maximum occurs on the boundary of the defining ellipsoid. So we obtain a standard
optimization problem: find the minimum of a quadratic function subject to a quadratic constraint.
Solution by Lagrange multipliers is straightforward; details can be found in [3].

4 Filtering with the Truncated Gaussian

Consider first the simple linear system: ai+r - Axi, zi+r = Bt;+t + trr;. We assume oo distributed as a

truncated Gaussian and c.r distributed as zero mean radially truncated Gaussian. .4 and B are matrices of
appropriate dimensions.

Given this set-up, we are interested in obtaining p(c;+r14,...,2;+r). Since p(a;..tlzr,-.-,2;+t) x
p(z;+tlc;a1) xp(c;+t lz1, . ..,2i), the filtering scheme has the following structure: first, propagate forward the

uncertainty in o;; then use the system model and the Fogel/Huang algorithm in order to fuse the incoming

information z;a1 with o;. If necessary, the best estimate of o can be obtained at any time.

Extension of the filter above to a noisy state problem is straightforward, the result being very similar to
Kalmanfiltering. Consider the system model: ui+r= Ax;+tir;, zi+r = ai+1 {r..rr,. In this case we must

obtain p(a;+r14,...,2i) by calculating p(Ao;121,...,2;) and combining it with p(u,,). Having done this,

we can propagate forward the uncertainty in c; (by properly approximating the summation of Ac; and ru,,)

and fuse it with the incoming information (through the Fogel/Huang algorithm).

5 Using the Tluncated Gaussian: Disparity Constraint

In this section we briefly analyze a practical problem in Computer Vision using truncated Gaussians. The

example will illustrate the power of the method.

Consider two cameras perfectly aligned so that all epipolar lines are parallel. Suppose a feature is detected

in one camera at pixel a2. The correspondence to the feature must lie in the epipolar line in the other camera

in some pixel a1. How much of the epipolar line should we explore in order to find the correspondence ar?
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A powerful constraint that can be used is the fact that the point e1 cannot be arbitrarily far from the given
value of e2. This constraint has not been justified or analyzed with the help of a statistical model. The
validity of the constraint has been justified with biological analogies. But if we exploit the fact that the
depth of field of any lens constraius depth, we can easily derive a statistical distribution for the disparity. In
[3], we derive a truncated Gaussian distribution for the disparity, based on a truncated Gaussian distribution
on the depth. The analysis incorporates the known facts of the problem without any analogies to biology.

6 Conclusion

The central idea of this research is: measurements that are bounded must be properly modeled in order to
be consistently used. Our proposal is to use a family of statistical models (the truncated Gaussian family)
that captures measurement boundedness. We oflered a comprehensive analysis of estimation aspects for the
truncated Gaussian: algorithms for information handling, updating and filtering. An open problem is to
find good approximations for summations of truncated Gaussians.

Algorithms here developed complement existing work in Statistics in the area of selection mechanisms for
data [7]. But our proposal goes beyond that, since we emphasize that many disturbances are, fundamentally,
bounded. We propose truncated Gaussians as a replacement to several concepts generally used to deal with
bounded data: the concept of tolerance sets (where the only source of information is the set of possible
measurements) and the concept of validation gates (where ad hoc tests are used to simulated bounded
distributions [1]). This work presents all the necessary tools to make the truncated Gaussian approach
tractable and superior to these other approaches.
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