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Abstract
We present two algorithms for inducing structural equation models ftom data. Assuming
no latent variables, these models have a causal interpretation and their pa^ra'"eters may
be estirnated by linear multiple regression. Our algorithms are compa,rable with PC [15]
and IC [12,11], which rely on conditional independence. We present the algorithms and
empirical comparisons with PC and IC.

L Structural Equation Models

Given a dependent rrariable os and a set of predictor variables P = {cr, ozt . . ., a1}, multiple
regression algorithms find subsets p C P that account for "much" of the variance in as. These
are search algorithms, and they are not guaranteed to find the "best" 5the one that makes
.E2 as big as possible, especially when p is a proper subset of P [t0,3,2]. The question arises,
what should be done with the variables in ? = P - p, the ones that aren't selected as predictors
of ao? In many data analysis tasks, the variables in 7 are used to predict the variables in p.
For insta,nce, we might select t1 :rnd ca as predictors of c6i and aztvsta6 as predictors of c1;
and za as a predictor of 22 and c3i and so on. We can write stnrcturol eEtations:

?o=
21 :

t2:
23:

1o,fir*1o,sts*u
|r,zaz * /t,scs * lt3ae * a

!z,qa+ * as

1s,saa, * z

The principal task for any modeling algorithm is to decide, for a given "predictee," which
variables should be in p and which should be in 7. Informally, we must decide where in a
structural equation model a variable does most good. For example, parents' education (PE)
and child's education (CE) could be used as predictors of a child's satisfaction when he or she
takes a job (JS), but we might prefer a model in which PE predicts CE, and CE predicts JS
(or a model in which PE predicts CE anil JS). This paper presents two algorithms that build
structural equation models.

There are clear parallels between building structural equation models and building causal
models. Indeed, path analysis refers to the business of interpreting structural equation models
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as causal models [9,16]. Path analysis has been heavily criticized (u.9., [13,8]) in part be'
cause latent variables can produce large errors in estimated regression coefficients throughout a

model [15]. Recent causal induction algorithms rely not on regression coefficients but on condi-
tional independence [11,15]. These algorithms use covariance information only to infer boolean
conditional independence constraints; they do not estimate strengths of causal relationships,
and, most importantly from our perspective, they don't use these strengths to guide the search
for causal models.

Our algorithms, called ngp and FTc, use covariance information, in the form of estimated
standardized regression coefficients, to direct the construction of structural equation models
and to estimate the parameters of the models. Because latent variables can result in biased
estimates, our algorithms might be misled when latent nariables are at work. In practice, rBo
and rtc are more robust than, say, stepwise multiple regression. They often discard predictors
that are related to the predictee only through the presence of a latent variable [2]. We haven't
yet shown analytically why the algorithms have this advantage. Until we do, our only claim
for rso and rtc is this: when latent variables are at work, our algorithms build multilevel
regression models of heuristic value to analysts, just as ordinary regression algorithms build
useful (but suspect) single'level models. If we can assume coasal sufi,ciency [15]--essentially,
no latent variables-these models may be interpreted as causal models [5].1

2 FBD and FTC

Structural equation models can be represented by directed acyclic graphs (DAGs) in which a
link o1 -t cs is interpreted to mean c1 is a predictor of cq. rao and rtc rely on statisticalflter
conditions to remove insignificant links from the model being constructed. The two algorithms
use the same filter conditions, differing only in how they are applied. The most important filter
(and the only novel one) is the ca statistic:

tvel=|,_yl
''o=l ,tr r 

'tlrGiven a predictee, say oi, and a set of predictors P, we first regress ci on all the predictors
in P. This yields a standardized regression coefrcient p;5 for each predictor z;. Now, p;;
is partial-it represents the effect of c; on o; when the influences of all the other variables
are fixed. Following [9,14] we'll cell p;1 an estimate of the dhect influence of a1 on a;. The
correlation rdi represents the total influence of z1 on cd, so 

";i - 9;; estimates the influence of a;
that is due to its relationships with other predictors-its indircctinfluence. Thus, r.r;1 estimates
the fraction of a;'s total influmc€ or u; that is indirect. If c; has little direct influence on o;
relative to its indirect influence through, say, c&, then o1, not a1, is heuristically more apt to
be a direct carse of z;. Thus we filter c; when t.lij e,cceeds a threshold ?r.

Small values of ar are necessary but not sufficient to consider one nariable a cause of another.
This is because a5; will be very small if both 4i ard 9;i are small, but in this case the predictor
c; has little influence on c;, direct or indirect, and should be filtered. Even if the p coefrcients

lrsp and FTc run in cr,n/cr,.l.sr [1], a Common Lisp statistical package developed at UMass. For more
inform.ation on cr,rr/cr.l,sr, pleaac contact clasp.support@cs.umaes.edu.
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are relatively high, the regression of ai on ai and other variables might account for very little
varia.nce in c;, so we filter al if it doesn't contribute enough (perhaps with other variables) to
R2 for c;. Currently, the only other filter used by nno and rtc is a test for simple conditional
ind,epend,ence using the partial correlation coefficient. If ep renders a; and c; independent, the
partial correlation r;r.1 will be approximately 0, and we remove the link between a; and a;.

2.L The FBD Algorithm

The rno algorithm is told os, the sink variable, a^nd works backwards, finding predictors
for as, then predictors for those predictors, and so on.

1. Enqueue zs into an empty queue, Q.

2. Create M, an empty model (with n nodes and no links).

3. While Q is not emptS do:

(a) Dequeue a variable ai ftom Q
(b) Find a set of predictors P - {r, I ,; * e; and ai -+ ti passes all filter conditions

and e; -+ a, will not cause a cycle)

(c) For each a; € P, add the link D,; -+ ?,i into M
(d) For each a; € P, enqueue z; into Q

rno performs well (see below) but it has two drawbacks: First, we must identify the sink
variable o6i most model induction algorithms do not require this information. Second, pre.
dictors of a single variable are enqueued on Q in an arbitrary order, yet the order in which
rrariables are dequeued can a,ffect the structure of the resulting model. For example, the link
D; -+ zi will be reversed if c; is dequeued before a;. These issues led to the development of a
second algorithm, called rtc.

2.2 The FTC Algorithm

rtc deals with these problems by inserting links into the model in order of precedence,
rather than in order of selection. Precedence is determined by a sorting function S(a; -+ a;).
The rrc algorithm is as follows:

1. Let L: {ai-+ D;:i* j,l(-i1n;L < i < z}; i.e. L is the set of all potential links in a
model with z variables.

2. For each link xi 1a; € tr, test each filter condition for ai ) ai. lf any condition fails,
remove zi ) 2,; from.L.

3. Sort the links remaining in .L by some precedence function S(ai -> a;).

4. Create M, an empty model (with z nodes and no links) to build on.

5. While -t is not empty, do:
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(a) Remove the link ui + ai, of the highest precedence, from .L.

(b) If Di + c; does not cause a cycle in M, add ai -+ z,; to M. Otherwise, discard
{Di + t;.

Experiments with different sorting functions led us to the following simple procedure: for
a link ai -+ ai, its score for sorting is .E2 from the regression of c; on all the other variables.
Thus, a link's precedence is the R2 of its dependent variable. We justify this policy with the
following observation: variables with high values of .E2 are less likely to have latent influences,
so they are preferred as dependent variables.

The complexity of these algorithms is O(rn), where n is the number of nariables. Most of
this is attributed to the linear regressions, which have complexity O(23) in our implementation.

3 Empirical Results

We have tested rao and Ftc under many conditions: on artificial data (using our own
data generator and the TETRAD generator), on published data [15], and on data generated by
running an AI pla,nning system called PsonNrx [6]. We tested how well the r.r heuristic selects
predictors, measured in terms of variance accounted for in the dependent variable [4]. Also,
we have compared rnp a,nd rtc with other algorithms-pc for rno [15] and rc for FTc [L1].2
Finally, to assess how latent nariables a,ffected its performance, we compared rso with stepwise
linear regression as implemented in MINITAB [2].

3.1 Artiffcial Models and Data

We worked with a set of 60 artificially generated data sets: 20 data sets for each of 6, 9,
and 12 measured va,riables. These were generated from the structural equations of 60 randomly
selected target moilels. The advantage of this approach is that the model constructed by each
algorithm can be evaluated against a known target.

The target models were constructed by ra,ndomly selecting rz links from the set of potential
links .D : {a; + ai I i # i}. For eac}r model of z nariables, rz is chosen from the range
1.0(z - 1) . . .3.0(z - 1); thus the target models have an a:uen ge branching factor between L and
3. As each link is selected, it is inserted into the ta^rget model. With probability 0.3, the link
will be a conzlation link, indicating the presence of a latent variable.

Once the structure of each target model has been determined, the strucf urul equ,atiozs are
created for each dependent variable er'. For directed links a; 1 a jt a path coefficient is randomly
selected from the range -1.0...1.0. For correlation links, a latent nariable I;; is created (these
variables are not included in the final data set), and a path coefficient is selected for the links
l;1 + x; and I;; + ai.

Finally, data are generated from the structural equations. For each independent and latent
variable, a set of 50 data points is sampled from a Gaussian distribution with mean of 0 and
standard deviation of 1 (we have also run experiments with variates selected from uniform

2We are very grateful to Professors Spirtes, Glymour and Scheiaes, alld Professor Pea.rl, for maling the code
for their algorithms ar"aitrable.
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distributions). Sample values for the dependent rrariables are computed from the structural
equations, and a Gaussian error term is added to each (with mean 0 and standard deviation 1).

3.2 How Good Is a.r at Selecting Predictors?

Suppose we have a dataset with one dependent variable cs and a set P ofpredictor variables,
and we want to find the best subset ybest(k) of & predictors. Here, "best" means no other
subset pt of k predictors accounts for more variance in as than ybest(k) does. We can find
ybest(k) by exhaustive search of all subsets of /c predictors. Or, we can regress c6 on all the
predictors in P, and select the Ic predictors with the lowest &, scores. How well does the latter
method perform in comparison with the former, exhaustive method?

For each of the 60 target models described in the previous section, we found by exhaustive
search the best subsets of k:3,4,5 predictors of the "sink" variable, cs. Next we selected
subsets of Ic predictors using c.l scores. The botch discording method regresses oe orr rtt z2t . . .t

calculates ar for each of these predictors, and selects the & predictors with the best @ scores.
This set is denoted ybotch(k). The iteru,tiae discarding method repeatedly regresses os on a set
of predictors, disca,rding the predictor with the worst @' score, until only /c predictors remain,
denoted p'iter.(k). We chose to try both methods since one can expect B coefficients to change
substantially even if one predictor is removed from a regression.

If ar scores select good predictors, then ybest(k), p-batch(k), and p-iter.(&) should contain
the same predictors;if they don't, we would hkep-batch(,t) and yiter.(k) to account for nearly
as much of the variance in o6 as p-best(k).

Table 1 shows how many predictors p-botch(k) ard yiter.(&) have in common with p
best(k). For 12-variable models and Ic = 5, the mean number of predictors shared by ybatch(k)
and p6est(&) is 3.L5, and, for V'ite{k) and p-best(Ic) this number is 3.375. Thus, when batch
discarding selects five variables, roughly two ofthem (on average) are not the best variables to
select.

k Vcra np - bat & p - iter. k)np-berr(&
5 t2 3.15 I 3.375
5 9 3.65 .49 3.7 .52
5 6 5.0 5.0
4 12 2.3 67 2.3 74
4 I 3.05 .36 3.0E .53

4 6 3.33 .23 3.33 .23
3 L2 1.48 .61 1.6E 58
3 I 2.LE .46 2.18 .51
3 6 2.2E .36 2.33 .33

Table 1: Means and (Standard Deviations) of the size of the intersections

On the other hand, Table 2 shows that the variables in ybatch(Ic) and yiter.(k) account
for almost as much of the nariance in cs as those in p-best(k). Let R2o_urt(/.) be the variance
in ao that is "available" to predictors in ybotch(k) arrdyiter.(,t). For instance, if the best &

predictors account for only 50% of the variance in cs, then we want to express the predictive
power of ybatch(fr) as a fraction of 50Vo, not 100%. Table 2 therefore contains the ratios
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n'o-urulry/R'r_urr(r) atd, Rzr_;t*.@l/R2r_t n1r;. For example, for l2-yariable models and & : E,

the predictors selected by batch discarding account for 85% ofthe available variance in oo, on
average, and those selected by iterative discarding account for 86%.

& Vana.

5 L2 .845 .03 .86
5 I .94 .006 .94 .005
5 6 1.0 1.0
4 L2 .80 .04 -82 .03
4 9 .94 .008 .94 .005
4 6 .91 .01 .91 .01
3 L2 73 .06 .80 .M
3 I .91 .o2 -92 .01
3 6 .88 .03 .89 .03

Table 2: Means and (Standard Deviations) of the .E2 ratios

Batch and iterative disca,rding do not find exactly the same predictors as exhaustive search
for the best predictors, but the ones they find account for much ofthe available variance in the
dependent variable. Bear in mind that exhaustive search for the best & of N variables requires
N-chooseft multiple regressions with & predictors, whereas iterative discarding requires N - k
multiple regressions with between lV and & + 1 predictors, and batch discarding requires just
one regression with N predictors. Thus, batch discarding finds predictors that are nea,rly as
good as exhaustive search, with a fraction of the effort.

We wondered whether something simpler than o scores, such as sorting by beta coefficients,
would perform equally well. In most cases, beta coefficients selected the same predictors as c,r

scores, but sometimes they recommended different sets with bad .R2 scores. We can see why
(and also why ar is preferable) by considering four cases:

Eigh rs;, high psiz ln this case ar is small in absolute value and c; will be accepted as a
predictor of cs. Similarly, B is high, so by this criterion c; will also be accepted as a
predictor. Since c; should be accepted in this case, both c.r and B do the right thing.

Eigh rs;, low p66: Here, cu is large in absolute value and B small, so both statistics will reject
c;, which is the right thing to do.

Low rsn'r high Bs;: Here, ar is large in absolute value so c; will be rejected. Holeever, a;'s
B score suggests accepting it. The correct action is to reject z; because the only way
to get, say, roi = 0 and 9o; = .8 is for a;'s direct influence (.S) to be cancelled by its
indirect influence (-.8) through other predictors. We want predictors that have large
direct influence and small indirect influence, so we ought to discard e;. In this case, p
coefficients ma.ke the wrong recommendation.

Low rsd, low B66: In this case, a, is small but rso and rtc will discard oi as a predictor
because p is small.

134



3.3 ComparativeStudies

Fso and FTc were compared to the rc [15] and rc [12,11] algorithms, respectively. We chose
these algorithms for comparison due to their availability and strong theoretical support. Both
pc and lc build models from constraints imposed by conilitionol independ,encies in the data.

In order to provide a comprehensive evaluation of the algorithms, we used a variety of
performance measures for each model. The measures we used are shown in table 3. See [5,4]
for details of these and other dependent measures.

Measure Meaning
Dependent .fi|' The variance accor:nted for in c6, the sink variable.
AE 'fhe meau of the absolute differences in Rz between all the

predictees in the target modcl and thc model [ci-g ewaluated.
Correct 7o The perceatage of the directed linLs i11 the target

modd that were conectly ideutified.
Wrong/Correct The ratio of wrong linlr< fognd for every correct one.
Wrong Reversed The number sf links ai -+ oi that should have been

reversed, ,ci +- ci.
'Wrong Not Rcversed The number of linLe a; -) ci that should not have

been &awa in either direction.

Table 3: Dependent measures and their meanings.

We compared rso with the nc algorithm [15], because pc can be given exogenous knowledge
about causal order, specifically, it can be told which is the sink variable cs.3 FTc was compared
to the Ic algorithm, since neither uses external knowledge about the data. Both pc and rc
take a least-commitment approach to causal induction, conservatively assigning direction to
very few links in order to avoid misinterpretation of potential latent influences. FBD and FTc,
on the other hand, commit to a direction in all cases. Hence it was necessary to evaluate
statistics like Depend,entR2 for pc and Ic models in two ways-by interpreting undirected links
as directed (choosing the most favorable direction, always), or simply ignoring undirected links.
In Table 4 the last two rows for the .82 measures, denoted w/undirccted, give scores obtained
by interpreting undirected links as directed in the most favorable way.

Fso and Fno attained significantly higher Depend,entR2 and A.B2 scores than pc a,nd rc
(much higher, when we ignore undirected links). This is to be expected: r'no and rtc are driven
by covariance information and pc and Ic use covariance only to find conditional independence
relationships. ( Significance was tested with paired-sample t tests, p < .05.) r.so and rtc
have significantly higher Conzct% scores than pc and tc. FBD has a higher WrongfCorrect
score than rc, although not significantly so, because it commits to more directed links than
PC. As the models become larger, FTC becomes significantly better than lc onWrongf Correct
scores. Although FBD and rtc include more links than the other algorithms, rrc maintains
a low rate of incorrect identifications. Roughly 72% of pc's wrong links are wrong because
they are backwards (i.e.,WrongReaersed); conversely, only 2870 of pc's links should not have
been drawn in either direction. For IC, 44Vo of the wrong links are backwards, and for r,go
and FTc, the numbers are 33% and 30%, respectively. Clearly, when r.BD and r.rc draw an

3We thank Professor Glymour for suggesting this comparison.
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incorrect link, it generally shouldn't be in the model pointing in either direction, whereas pc
and to a lesser extent Ic err by drawing links backwards. Keep in mind, though, that this is a^n

analysis of wrong links, only, and that FTc has better WrungfCorrectperformance than the
other algorithms.

Meaeure 6oata 9oana L2oars

Dependcntff FBD* o.7u 0.187 0.787 0.
PC* 0.396 0.403 0.307 0.363 0.320
YTC o.734 0.187 0.7E7 0.146 0.728 0.278
rc o.326 0.389 0.338 0.303 0.363

at fcorrelationa PC* 0.607 0.685 0.266 0.684
IC o.603 0.31 0.811 0.12 0.739 0.216

0.134 o.o77 0.179 0
PC* 0.333 0.151 0.321 0.102 o.372 0
FTC 0.118 r 0.107 0.087 o.147 0.086
IC 0.347 0.128 0.345 0.137 0.348 0.095

uf co*elations PC* 0.185 0.084 0.166 0.101 0.193 0.051
IC 0.199 0.104 0.L24 0.063 o.172 0.063

0.653 0. 0.651 0.184 0.528
PC* 0.284 0. 0.273 0.L72 0.167 0.
T"TC 0.658 0.203 0.6E2 o.223 0.566 0.211
IC 0.293 0.18 0.272 0.19 0.165 0.11

WronglCorrect FBD* 0.6E5 o.542 0.932 0.391 1.396 1.0E2
PC* 0.458 0.534 0.617 0.921 1.276 1.315
vrc 0.467 0.627 0.696 0.496 0.809 0.288
rc 1.48 0.944 1.50 1.11 2.L

WrongReoernd, FBD* 2.200 1 4.100 3.323
PC* 0.650 0.813 0.950 1.146 1.950 1.146
PTC 0.600 0.681 1.450 1.E49 2.650
IC 1.55 1.05 1.35 L.27 2.0 1.30

WrongNotReo. FBD* 1.900 1.165 1 9.100 4.388
PC* 0.250 0.444 0.300 0.470 0.950 0.945
FTC 1.350 0.988 3.500 1.E21 6.400 2.79E
rc L.2 1.06 2.5 2.9 1.8

Table 4: Means and (Standard Deviations) of scores for several causal induction algorithms (*
= uses additional knowledge)

3.4 Performance with Latent Variables

Regression coefficients are unstable, especially when unmeasurd ot latent variables influ-
ence them. Selecting variables by their a, scores lessens this problem. In our lab, Ballesteros
[2] has obtained good results with models Spirtes et al. [15, page 240] show are difficult for
ordinary regression. For these models, regression often chooses predictors whose relationships
to the dependent nariable are mediated by latent rrariables or common causes (we refer to these
variables as proxy nariables). Ballesteros generated 12 different sets of coefficients for the struc-
tural equations for each of the four Spirtes et al. models, and data sets for each having 100 to
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1000 variates. FBD's performance on these data was measured by the number of times it chose

the correct predictors and number of times it incorrectly chose a proxy variable. The data from
these experiments are given in Table 5. rnp correctly chose true predictors 90% of the time,
and correctly rejected proxy variables 80% of the time.

chosen rcjectcd TotaI

Tlue Predictor 108 t2 L20
Proxy Variable t2 48 60

Totd 120 60 180

Table 5: Contingency Table FBD Choices

As a comparison, Ballesteros used Minitab to run stepwise regressions (significance - .05)
on each latent variable dataset to find out how often the algorithm chose a proxy variable as a
predictor. The data are given in Table 6.

chosen rejected Total
Tlrre Predictor 118 2 120

Proxy Va,riable 42 18 60

Table 6: Contingency Table Stepwise Choices

MINITAB correctly selected 98% of the true predictors, but it correctly rejected proxies only
30% of the time. We are trying to understand why stepwise regression performs so poorly in
the presence of latent variables and why FBD is less susceptible. Our best guess is that stepwise
regression is a "step up" procedure that starts with no predictors and adds them one at a time,
whereas FBD starts with all predictors, computes regression coefficients, and then removes some
predictors with filter conditions. We think that a regression coefficient for a predictor is less

likely to be biased when it is one of several variables in a regression 0 , than when it is one
of very few predictors. If so, step up procedures will be more susceptible to bias than, say,

backward elimination and rso. Ballesteros has some evidence to support this conjecture.

4 Conclusions

rao and FTc are simple, polynomial-time algorithms that construct models without search-
ing the entire space of models. Our empirical results show that ar does remarkably well as a
heuristic for selecting predictors. In fact, it performs so well that rso and rtc build models
that are in some respects superior to those constructed by ec and lc. Admittedly, neither rno
nor FTc infers the presence of latent variables, which may be a significant drawback for some
applications. However, we have shown that rso will often avoid predictors that are connected
to the variables they predict via a common but latent cause.

Total 160
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