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Abstract

We discuss Bayesian approaches for learn-
ing Bayesian networks from data. First, we

review a metric for computing the relative
posterior probability of a network structure
given data developed by Heckerman et al.
(1994a,b,c). We see that the metric has a
property useful for inferring causation from
data. Next, we describe search methods
for identifying network structures with high
posterior probabilities. We describe poly-
nomial algorithms for finding the highest-
scoring network structures in the special case

where every node has at most & = 1 par-
ent. We show that the general case (k > 1)

is NP-hard, and review heuristic search al-
gorithms for this general case. Finally, we

describe a methodology for evaluating learn-
ing algorithms, and use this methodology to
evaluate various scoring metrics and search
procedures.

1 Introduction

Recently, many researchers have begun to investigate
methods for learning Bayesian networks, including
Bayesian methods [Cooper and Herskovits, 1991, Bun-
tine, 1991, York 1.992, Spiegelhalter et al., 1993, Madi-
gan and Raferty, 1994, Heckerman et al., 1994], quasi-
Bayesian methods [Lam and Bacchus, 1993, Suzuki,
1993], and nonBayesian methods [Pearl and Verma,
1991, Spirtes et al., 1993]. Many of these approaches
have the same basic components: a scoring metric and
a search procedure. The scoring metric takes data
and a network structure and returus a score reflect-
ing the goodness-of-fit of the data to the structure.
A search procedure generates networls for evaluation

'Author's primary a,ffliation: Computer Science De-
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by the scoring metric. These approaches use the two
compouents to identify a network structure or set of
structures that can be used to predict future events or
infer causal relationships.

The Bayesian approach can be understood as follows.
Suppose we have a domain of variables {rr, . . .,sn} =
U , and a set of cases {G, . . . , C^} where each case is
an instance of some or of all the variables in U. We
sometimes refer to D as a database. Further, sup-
pose that we wish to determine the joint distribution
p(ClD,()-the probability distribution of a new case

C, given the database and our current state of infor-
mation (. Rather than reason about this distribution
directly, we imagine that the data is a random sample
from some Bayesian network structure Bs with un-
known parameters. Using B! to denote the hypoth-
esis that the data is generated by network structure
Bs, and assuming the hypotheses corresponding to all
possible network structures form a mutually exclusive
and collectively exhaustive set, we have

pep,q= t pplB!,D,0.p@!\D,il (1)

"u 
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In practice, it is impossibleto sum over all possible net-
work structures. Consequeutly, we attempt to identify
a small subset If of network-structure hypotheses that
account for a large fraction ofthe posterior probability
of the hypotheses. Rewriting Equation 1, we obtain

p(ClD,€) = , I n(cla!, D,e) .p(BblD,il Q\
B!eH

where c is the normalization constant given by
lllDl|enp(B3lD,€)1. From Equation 2, we

see that only the relative posterior probability
of hypotheses matter. Thus, rather than com-
pute posterior probability, one typically computes
p(B! , Dl) = p(^B} l€) p(DlB!,O , or a Bayes' factor-
p(BllD, €) I p(B3o 

I 
D, ()-where Bso is some reference

structure such as the empty graph.
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The approach is not only an approximation for
p(ClD,{) but a method for Iearning network structure,
where relative posterior probability plays the role of
scoring metric. For example, when ll/l = 1, we learn
a single network structure: the MAP (marimum a pos-

teriori) structure of U. When lI/l > i, we learn a col-
lection of network structures weighted by the relative
posterior probability of their corresponding hypothe-
ses. As we discuss in Section 3, Iearning about struc-
ture is useful, because we can sometimes infer causal

relationships in a domain and consequently predict the
effects of interventions.

In this paper, we review a scoring metric described
by Heckerman et al. (1994a,b,c). The metric has

the property of likelihood equivalence, which says that
any two isomorphic network structures must have the
same likelihood p(DlB!,{). In Section 3, we argue
that this property is desirable for inferring causation
from data. In addition, we examine search methods in
detail. We describe polynomial algorithms for finding
the highest-scoring networks in the special case where
every node has at most /c = 1 parent. Also, we show
that the general case (l > 1) is NP-hard, even for a

score-equivalent metric, and review heuristic search al-
gorithms for this general case. Finally, we describe a
methodology for evaluating learning algorithms, and
use this methodology to evaluate various scoring met-
rics and search procedures.

2 Review of Bayesian Scoring Metrics

In this section, we review a Bayesian scoring metric
for learning Bayesian networks containing ouly discrete
variables described by Heckerman et al. (1994a,b,c)-
herein referred to as HGC. The metric is closely re-

lated to the metrics described by Cooper and Her-
skovits (1991, 1992)-herein referred to as CH-and
Buntine (1991). Although we limit our discussion to
domains containing only discrete variables, many of
the basic points translate to the more general case

[Geiger and Heckerman, 1994].

CH derive a Bayesian scoring metric under the follow-
ing assumptions:

1. The database D is a multinomial sample from some
(possibly uncertain) structure Bs with (possibly un-
certain) parameters Osr. We use B! to denote the
hypothesis that the database is a multinomial sample
from structure Bs.l Given a belief-network structure
.B5, we use fI; to denote the parents of ci. We use

r; to denote the number of states of variable re;, ard
gi = flrren. r1 to denote the number of instances of

lThere are some subtleties about the definition of B!
which are explored in HGC.

II;. We use the integer j to index these instances.
That is, we write fl; = j to denote the observation of
the jth instance of the parents of c;. We use d,';r to
denote the parameter associated with the /cth state of
variable od, given the jth state of II;. (We can think
of 0;ip as the long-run fraction of cases where c; = /c,

in those cases where II; = l.) We use O;3 to denote
the union of 0;ip over &. The parameters of Bs (Or, )
are the union of O;3 for all instances j of all variables
Xi.

2. For all belief-network structures 85, p(Oe"lB3) =
ILIIi p@;ilB!). (Throughout the paper, we use

p(.1.) to denote a conditional probability density.) The
assumption corresponds to the local and global inde-
pendence assumptions made by Spiegelhalter and Lau-
ritzen (1990). W" refer to this assumption simply as

parameter independence.

3. If ri has the same parents in any two belief-network
structures .B51 and ,B52, then for j = l, . . . , g;,

p(O;ilB!1) = p(O;1lB!). We call this assumption
parameter modularity. This assumption was made im-
plicitly by CH and was made explicit by HGC.

4. For every belief-network structure .B5, and for all
O;i e Os, , p(O;ilB!) has the Dirichlet distribution

p(otilB!) o IIo dr{['-'.
Given these four assumptions, the prior densities of
Os" for all structure Bs are determined by the Dirich-
let exponentr NIio. To derive their metric, CH also

make the following assumption:

5. All databases are complete. That is, every variable
in every case in the database is observed.

Given this assumption, the parameters Op, for any
network structure Bs remain independent and mod-
ular (in the sense of Assumptions 2 and 3) after the
database has been observed. Consequently, CH obtain
the following result:

p(D,B!|il =

p(Bsr€) IIII#
i-l j-r \ tJ 'J '

I1
/c=1

(3)

f (Niio + N;i*)
r(Nii)

where N;r'1, is the number of cases in D where c; = k
and flr = j, N;i = Dl=, N,7r, and Nt, = l'r;=, Nlro,
and f(.) is the Gamrno function. We call this ex-

pression or any expression proportional to it the BD
(Bayesian Dirichlet) metric. We discuss the specifica-
tion of p(B!l() later in this section.

HGC derive a special case of the BD metric. First,
they argue for the property of. hypothesis equiualence:

6. Hypotheses B$, and B!, are equivalent whenever
,B51 and Bs2 are isomorphic.
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Two network structures are said to be isomorphic if
they represent the same assertions of conditional inde.
pendence. For example, in the three variable domain

|rr,rr,ca), the network structures fi1 ) c2 ) 03
and o1 ? fr2 ) 03 represent the same independence
assertion-c1 and o3 are independent given c2-and
are therefore isomorphic. We discuss the assumption
of hypothesis equivalence further in the following sec-

tion.

Next, HGC examine complete belief-
network stractures-trhose containing no missing arcs.

Under the assumption of hypothesis equivalence, the
hypotheses corresponding to any two such structures
are the same, and are denoted B!". They introduce
the following assumptions:

t. p(B!"|€) > o

8. p(O,,,...,, ^lB!",€) = II,,,..., ,^e!!,:;.:,:;:"-'
In words, Assumption 7 says that the data may be

a random sample from a complete network structure.
Assumption 8 says that the probability density of the
parameters of the joint space of [/ conditioned on B!"
is Dirichlet. HGC (1994a,b) show that Assumptions
6 through 8 are consistent with CH's Assumptions
1 through 4. Namely, they show that the random-
sample assumption (Assumption 1) and Assumptions
6 through 8 imply the assumption of parameter inde.
pendence (Assumption 2) and the Dirichlet assump
tion (Assumption 4) for all complete network struc-
tures. As a consequence, they show that the Dirichlet
exponents NJ3* in the BD metric are constrained by
the relation

Nlix = N' .p(", - &,II; = ilB!") (4)

where N' is the user's equiualent sample size for the
domain.

HGC show that the BD metric so constraiued has
the property of likelihood equiaalence, which says that
the likelihoodsp(DlB!1,0 and p(DlBBz,() are equal
whenever Bs1 and Bsz arc isomorphic. They call this
special case the BDe metric ("e" for equivalence). In
the next section, we argue that the property of hy-
pothesis equivalence is useful for inferriug causation
from data. We note that Buntine (1991) proposed a

special case of the BDe metric, which can be obtained
by computing p(r; = rt,II; = jlB!") in Equation 4
from a uniform joint distribution. In addition, Bun-
tine stated that this metric satisfies the property which
we call likelihood equivalence.

HGC show that the probabilities in Equation 4 may
be computed from a prior Bayesian networle provided
by the expert: a Bayesian network tor p(UlB!",€).
This prior network encodes the user's beliefs about

what will happen in the next case, given B!". As we
shall see, a prior network also can be used to facilitate
the assessment of the prior probabilities of network
structure as well as initialize search.

HGC (199ac) demonstrate a much stronger result than
that of HGC (1994a,b). Namely, under weak regu-
larity conditions, they show that the random-sample
assumption and the assumption of parameter indepen-
dence, when combined with the assumption of hypoth-
esis equivalence and the assumption that p(B!.|€) > 0

imply that the probability density of the joint-space
parameters of [/ conditioned on B]" must be Dirichlet
(Assumption 8). In essence, they show that parameter
independence in the context of learning Bayesian net-
works provides a new characterization of the Dirichlet
distribution. As a result, they show that CH's basic
assumptions for learning (Assumptions 1,2,3, and 5)
when combined with hypothesis equivalence and the
assumption p(B!"|() > 0 imply the BDe metric.

To complete the specification of a Bayesian scoring
metric, we need the prior probabilities of network
structures p(B|l).'z HGC suggest a simple paramet-
ric formula for these probabilities. This formula pun-
ishes B! for every arc that differs from those in the
prior network used in the computations of Equation 4.

Namely, let n;(B!) and II;(P) denote the parents of
x; in Bs and the prior network, respectively. Let d; de-
note the number of nodes in the symmetric diference
of II;(.B5) and II;(P). They set

p(B3l€) ="1]nr, (b)
i=1

where 0 < rc ! 1 is the penalty factor, and c is a nor-
malization constant. Buntine (1991) suggests a similar
approach where penalty factors are different for differ-
ent arcs.

We say that a metric is prior equiualent when the prior
probabilities of any two isomorphic network structures
are equal. We say a metric is score equiaalent if it is

both prior equivalent and likelihood equivalent. The
parametric formula given in the previous paragraph
is not prior equivalent. HGC (1994c) describe other
parameterizations that are prior equivalent.

3 Inferring Causation

Bayesian networks were first described as a representa-
tion of conditional independence [Howard and Math-
eson, 1981, Pearl, 1988]. Recently, however, several
researchers have begun to explore an additional causal

'F"r th" r"l* of brevity, we refer to the probability of a
network structure rather than the probability of a network-
structure hypothesis.
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semantics for these networks. They argue that the rep
resentation of causal knowledge is important, because
such knowledge-unlike statistical knowledge-allows
one to derive beliefs about a domain after intervention.
For example, most of us believe that smoking causes

Iung cancer. From this knowledge, we infer that if we
stop smoking, then we decrease our chances of getting
lung cancer. In contrast, if we knew only that there
was a statistical correlation between smoking and lung
cancer, then we could not make this inference.

Causal networks, described by-for example-Pearl
and Verma (1991), Spirtes et al. (1993), Druzdzel and
Simon (1993), and Heckerman and Shachter (1994),
represent such causal relationships among variables.
In particular, a causal network for [/ is a Bayesian net-
work for U, wherein it is asserted that each nonroot
node c is caused by its parents. The precise meaning
of cause and effect is not important for this discussion.
The interested reader should consult the previous ref-

Given the distinction between statistical and causal
dependence, it would seem impossible to Iearn causal
networks from data produced by observation alone and
without intervention. For example, consider the sim-
ple three-variable domain [/ = {a1,c2,xs}. If we
find through the observation of data that the network
structure t1 1 ts F c2 is very likely, then we cannot
conclude that o1 and x2 are causes for ca. Rather, it
may be the case that there is a hidden common cause
of e1 and ca as well as a hidden common cause of c2
and ca. If, however, we assume that every statistical
association derives from causal interaction, and that
there are no hidden common causes, then we can in-
terpret learned networks as causal networks. In our
example, under these assumptions, we cau infer that
c1 and t2 ?,te causes for ca. In our remaining discus-
sion, we take these assumptions as given.

When learning Bayesian networks having only the tra-
ditional conditional-independence semantics, the as-

sumption of hypothesis equivalence is reasonable, be-
cause two isomorphic network structures are identical
by definition of isomorphism. If we want to interpret
Iearned networks as being causal, however, the situ-
ation is not so straightforward. For purposes of this
discussion, it is useful to decompose a scoring metric
into two components: (1) determination of the prior
probability of network structure p(B3l() and (2) de-
termination of the likelihood p(DlB!,().

For most real-world problems that we have encoun-
tered, we have found that it is unreasonable to apply
the assumption of hypothesis equivalence to the deter-
mination of the prior probabilities of causal-network
structures. That is, we have found the assumption of

prior equivalence to be unreasonable. For example, it
is not unusual for one to believe that the proposition
c1 causes c2 is more likely than the proposition o2
causes c1. Such a belief would be excluded by prior
equivalence applied to the network structures c1 ? c2
and 11 + 12.

In contrast, for most problems we have considered, we
have found it reasonable to apply hypothesis equiv-
alence to the determination of likelihood. That is,
we have expected likelihood equivalence to hold. Of
course) for any given problem, it is up to the deci-
sion maker to make this judgment. As a example of
where the use of likelihood equivalence is unreason-
able, imagine that a doctor may be uncertain as to
which of two possible causal mechanisms are responsi-
ble for an observed correlation between two diseases,

but certain that the existence of the first mechanism
implies the hypothesis disease d1 causes disease d2

(B3r), and the existence of the second mechanism im-
plies the hypothesis disease d2 causes il (B!).In this
scenario, the probability densities p(@a,,arlB\, €) and
p(@a,,a"lBlz,0 may not be the same, in which case,

likelihood equivalence will not hold. Without specific
knowledge of competing causal mechanisms, however,
we typically have no reason to believe that data will
discriminate between two isomorphic network struc-
tures.

Under the assumption of likelihood equivalence, the
ratio of posterior probabilities of two isomorphic net-
work structures must be equal to the ratio of their
prior probabilities. Consequently, if the priors on
network structures are not too different, then typi-
cally, learning will produce many isomorphic network
structures each having a large relative posterior prob-
ability. Furthermore, even for domains where the
assumption of likelihood equivalence does not hold,
there is a good chance that more than one hypoth-
esis will have a Iarge relative posterior probability. In
such situations) we find it ;easonable to average the
causal assertions contained in individual learned net-
works. For example, in our three-variable domain, let
us suppose that the data supports only the network
structure t1 ) x2 -| ca and its isomorphic cousins
c1 *- c2 (- ca and x1 *- c2 1 ts. If each of the
hypotheses corresponding to these structures have the
same prior probability, then the posterior probability
of each hypothesis will be 1/3, and we infer that the
proposition 02 cos€s 13 has probability 2/3. Under
these same conditions, the proposition that both c1

and ca are causes of c2 has probability 0.
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4 Search Methods

In this section, we examine methods for finding net-
work structures with high scores. Although our meth-
ods are presented in the context of Bayesian scoring
metrics, they may be used in conjunction with other
nonBayesian metrics as well.

Many search methods for learning network structure-
including those that we describe-make use of a prop
erty of scoring metrics that we call decomposability.
Given a network structure for domain [/, we say that
a measure on that structure is decomposoble if it can
be written as a product of measures, each of which
is a function only of one node and its parents. From
Equation 3, we see that the likelihood p( DIB!,{) given
by the BD metric is decomposable. Consequently, if
the prior probabilities of network structures are de-
composable, then so is the BD metric. Thus, we can
write 

n

p(D,BbE) = fl s(c;lr;) (6)
i=1

where s(o; l[I;) is only a function of o; and its parents.
Most Bayesian and nonBayesian metrics to date are
decomposable. Given a decomposable metric, we cau
compare the score for two network structures that dif-
fer by the addition or deletion ofarcs pointing to c;, by
computing only the term s(e;lll;) for both structures.

4,L Special-Case Pol5rnomial Algorithms

We first consider the special case of finding the I net-
work structures with the highest score ilnong all struc-
tures in which every node has at most one parent.

For each arc aj + o; (including cases where ci is
null), we associate a weight w(o;,ci) = logs(c;lo;) -
logs(c;10). From Equation 6, we have

togp(D, B!) = i.*s(c;lzq) (7)
d=1
nn

D.@n,?rd) + t log s(o; l0)
i=l i=1

where zq is the (possibly) null parent of c;. The last
term in Equation 7 is the same for all network struc-
tures. Thus, among the network structures in which
each node has at most one parent, ranking network
structures by sum of weights L?=r-(rr,zq) or by score
has the same result.

Finding the network structure with the highest weight
(, = 1) is a special case of a well-known problem of
finding masimum branchings, described as follows. A
tree-like network is a connected directed acyclic graph
in which no two edges are directed into the same node.

The root of a tree.like network is a unique node that
has no edges directed into it. A branching is a di-
rected forest that consists of disjoint tree-like net-
works. A spanning branching is any branching that
includes all nodes in the graph. A masimum brsnch-
ing is any spanning branching which maximizes the
sum of arc weights (in our case, !l=, w(x;,r;)). An
efficient polynomial algorithm for finding a maximum
branching was first described by Edmonds (1967). The
general case (l > 1) was treated by Camerini et al.
(1e80).

These algorithms can be used to find the I brauchings
with the highest weights regardless of the metric we
use, as long as one can associate a weight with every
edge. Therefore, this algorithm is appropriate for any
decomposable metric. When using metrics that are
score equivalent, however, we have

s(o; lo3)s(o; l0) = s(c3 p;)s(c;l[)

Thus, for any two edges c; ) xj and c; <- tj)
the weights w(c;,oi) and w(oi,c;) are equal. Conse-
quently, the directionality of the arcs plays no role for
score-equivalent metrics, and the problem reduces to
finding the / undirected forests for which lw(o;,ai)
is a maximum. For the case I = l, we can apply a
maximum spanning tree algorithm (with arc weights
w(c;,a)) to identify an undirected forest F having the
highest score. The set of network structures that are
formed from F by adding any directionality to the arcs
of F such that the resulting network is a branching,
yields a collection of isomorphic network structures
each having the same maximal score. This algorithm
is identical to the tree learning algorithm described
by Chow and Liu (1968), except that we use a score-
equivalent Bayesian metric rather than the mutual-
information metric. For the general case (/ > 2), we
can use the algorithm of Gabow (1977) to identify the
/ undirected forests having the highest score, and then
determine the I equivalence classes of network struc-
tures with the highest score.

4.2 Heuristic Search

A generalization of the problem described in the pre-
vious section is to find the / best networks from the set
of all networks in which each node has no more than &

parents. Unfortunately, even when I = 1, the problem
for & > 1 is NP-hard. Furthermore, let us consider the
following decision problem, which corresponds to our
optimization problem with / = 1.

K-LEARN
INSTANCE: Set of variables [/, database D =
{Cr, . . . ,C^}, where each G is an instance of all vari-
ables in [/, scoring metric M(D,B1) and real value

Pt
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QUESTION: Does there exist a network structure 85
defined over the variables in U, where each node in ,B5

has at most } pareuts, such that M(D,Bs) > p?

Hcifgen (1993) shows that a similar problem for PAC
learning is NP-complete. His results can be translated
easily to show that *-LEARN is NP-complete for * > 1

when the BD metric is used. In the Appendix, we show
that /c-LEARN is NP-complete, even when we use the
likelihood-equivalent BDe metric and the constraint of
prior equivalence.

Therefore, unless P = N P, it is appropriate to use

heuristic search algorithms for the general case i > 1.

In this section, we review several such algorithms.

As is the case with essentially all search methods, the
methods that we examine have two components: an
initialization phase and a search phase. For example,
let us consider the K2 search method described by CH.
The initialization phase consists of choosing an order-
ing over the variables in [/. In the search phase, for
each node ct in the ordering provided, the node from
{rr,..., oi-r} that most increases the network score is
added to the parent set of r;, until no node increases
the score or the size of f[; exceeds a predetermined
constant.

The search algorithms we consider make successive arc
changes to the network, and employ the property of
decomposability to evaluate the merit of each change.
The possible changes that can be made are easy to
identify. For any pair of variables, if there is an arc
connecting them, then this arc can either be reversed
or removed. If there is no arc counecting them, then
an arc can be added in either direction. All changes
are subject to the constraint that the resulting network
contain no directed cycles. We use E to denote the set
of eligible changes to a graph, and A(e) to denote the
change in log score of the network resulting from the
modification e e E. Given a decomposable metric, if
an arc to ci is added or deleted, only s(c;lII;) need be
evaluated to determine A(e). If an arc between o; and
,j is reversed, then only s(c;lII;) and s(oiltIT) need
be evaluated.

One simple heuristic search algorithm is local search

[Johnson, 1985]. First, we choose a graph. Then, we

evaluate A(e) for all e € E, and make the change e

for which A(e) is a maximum, provided it is positive.
We terminate search when there is no e with a posi-
tive value for A(e). As we visit network structures, we

retain I of them with the highest overall score. Using
decomposable metrics, we can avoid recomputing all
terms A(e) after every change. In particular, if nei-
ther o;, oJi , nor their parents are changed, then A(e)
remains unchanged for all changes e involving these
nodes as long as the resulting network is acyclic. Can-

didates for the initial graph include the empty graph,
a random graph, a graph determined by one of the
polynomial algorithms described in the previous sec-
tion, and the prior network.

A potential problem with local search is getting stuck
at a local maximum. Methods for avoiding local max-
ima include iterated hill-climbing and simulated an-
nealing. In iterated hill-climbing, we apply local search
until we hit a local maximum. Then, we randomly
perturb the cunent network structure, and repeat the
process for some manageable number of iterations. At
all stages we retain the top I networks structures.

In one variant of simulated annealing described by
Metropolis et al. (1953), we initialize the system
at some temperature 7q. Then, we pick some eligi-
ble change e at random, and evaluate the expression
p - exp(A(e)lTo). lf p ) 1, then we make the change
e; otherwise, we make the change with probability p.
We repeat this selection and evaluation process a times
or until we make B changes. If we make no changes in
o repetitions, then we stop searching. Otherwise, we
Iower the temperature by multiplying the current tem-
perature ?o by a decay factor 0 < 7 < 1, and continue
the search process. We stop searching if we have low-
ered the temperature more than d times. Thus, this
algorithm is controlled by five parameters: To,a,0,l
and d. Throughout the process, we retain the top I
structures. To initialize this algorithm, we can start
with the empty graph, and make ?s large enough so

that almost every eligible change is made, thus creat-
ing a random graph. Alternatively, we may start with
a lower temperature, and use one of the iuitialization
methods described for local search.

5 EvaluationMethodology

Our methodology for measuring the learning accuracy
of scoring metrics and search procedures is as follows.
We start with a given network, which we call lhe gold-
standard network. Next, we generate a database by
repeated sampling from the given network. Then, we
use a scoring metric and search procedure to identify
one or more high-scoring network structures. Next,
we use the database and prior kuowledge to popu-
late the probabilities in the new networks, called the
learned networks. In particular, we set each proba-
bility p(c; - &l[r - j) t" be the posterior mean of
O;ip given the database, computed under the assump-
tions of the scoring metric. Finally, we quantitate
learning accuracy by measuring the difference between
the joint probability distributions ofthe gold-standard
and learned networks. An advantage of our method
is that there exists a clear correct answer: the gold-
standard uetwork. One argument against using our
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method is that, by generating a database from a net-
work, we guarantee that the assumption of exchange.
ability (time invariance) holds, and thereby bias re.
sults in favor of our scoring metrics. We can, however,
simulate time varying databases in order to measure
the sensitivity of our methods to the assumption of ex-
changeability (although we do not do so in this paper).

A principled candidate for a measure of learning accu-
racy is expected utility. Namely, given a utility func-
tion, a series of decisions to be made under uncertainty,
and a model of that uncertainty (i.e., one ore more
Bayesian networks for 7), we evaluate the expected
utility of these decisions using the gold-standard and
learned networks, and note the difference. This utility
function may include not only domain utility, but the
costs of probabilistic inference as well [Horvitz, 1987].
Unfortunately, it is diffcult if not impossible to con-
struct utility functions and decision scenarios in prac-
tice. For example, a particular set of learned network
structures may be used for a collection of decisions
problems, some of which cannot be anticipated. Con-
sequently, researchers have used surrogates for difer-
euces in utility, such as the mean square error, cross
entropy, and differences in structure.

In this paper, we use two surrogate measures: cross-

entropy and a structural difference. The cross-entropy
measure [Kullback and Leibler, 1951] reflects how well
the learned structures will predict the next case,

whereas structural difference reflects the degree to
which the learned structures have captured causal in-
teractions.

Our cross-entropy measure is as follows. Let q(U) and
p(I/) denote the probability of an instance of [/ ob-
tained from the gold-standard network and learned
networks, respectively. We compute p(U) using Equa-
tion 2. The cross entropy H(C,d is given by

H(q,p) = D q(x;,. .., c,,) log
al'"''ct

q(a;,...,r,n)
P(c;,.-.,rn)

(8)

Low values of cross entropy correspond to a learned
distribution that is close to the gold standard. In HGC
(1994a,c), we describe a relatively efficient method
for computing the cross entropy of two networks that
makes use of the network structures.

Our structural-difference measure is as follows. For
a single learned network, the structural difference we
use is ![, d;, where d; is the symmetric diflerence of
the parents ofo; in the gold-standard network and the
parents of ot in the learned network. For multiple net-
works, we take the average ofthe structural-differeuce
scores, weighted by the relative posterior probabilities
of the learned networks.

In several of our experimeuts described in the next

section, we require a prior network. For these investi-
gations, we construct prior networks by adding noise
to the gold-standard network. We control the amount
of noise with a parameter 4. When q = 0, the prior
network is identical to the gold-standard network, and
as 4 increases, the prior network diverges from the
gold-standard network. When 17 is large enough, the
prior network and gold-standard networks are unre-
lated. Let (Bs,Bp) deuote a Bayesian network with
structure Bs and probabilities Bp. To generate the
prior network, we first add2r1 arcs to the gold-standard
network, creating network structure Bg1. When we
add an arc, we copy the probabilities in Bp1 so as to
maintain the same joint probability distribution for U.
Next, we perturb each conditional probability in Bpr
with noise. In particular, we convert each probability
to log odds, add to it a sample from a normal distribu-
tion with mean zero and staudard deviation q, convert
the result back to a probability, and renormalize the
probabilities. Then, we create another network struc-
ture .B52 by deleting 2q arcs and reversin g 2r1 arcs lhat
were present in the original gold-standard network.
Next, we perform inference using the joint distribu-
tion determined by network (Bsr, Bpt) to populate
the conditional probabilities for network (Bsz,Bpz).
For example, if o has parents Y in .B51, but r is a root
node in Bs2, then we compute the marginal proba-
bility for e in Bs1, and store it with node o in Bsz-
Finally, we return (Bsz, Bpz) as the prior network.

6 Experimental Results

We have implemented the metrics and search algo-
rithms described in this paper. Our implementation
is in the C++ programming language, and runs un-
der Windows NTTM with a Pentium processor. We
have tested our algorithms on small networks (" S 5)
as well as the 35-node Alarm network for the domain
of ICU ventilator management [Beinlich et al., 1989].
Here, we describe some of the more interesting results
that we obtained using the Alarm network. In these
preliminary experiments, we have learned only single
network structures (/ = 1).

To examine the effects of metric on learning accuracy,
rse measured the cross entropy aud structural differ-
ence of learned networks with respect to the Alarm
network for several variants of the BDe metric as well
as a non-likelihood-equivalent variant of the BD met-
ric. The results are shown in Figure 1. The metrics
labeled BDe0, BDe2, and BDe4 correspond to the BDe
metric with prior networks geuerated from the Alarm
network with noise n = 0,2,4, respectively. The BDeu
metric is the special case of the BDe metric described
by Buntine (1991) where all instances ofthejoint space
are equally likely. (The prior-network structure in this
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Figure 1: Metric comparisons.

case is the empty graph). The K2 metric (not to be
confused with the K2 search algorithm) is the spe-
cial case of the BD metric described bv CH where all
Nlir = 1. This metric is not likelihood equivalent.

In this comparison, we used local search initialized
with a maximum branching and 10,000-case databases
sampled from the Alarm network. For each value
of equivalent sample size .ly'' in the graph, the cross-
entropy and structural-difference values shown in the
figure represent an average across five learuing in-
stances, where in each instance we used a different
database and (for the BDe2 and BDe4 metrics) a dif-
ferent prior network. We made the prior parameter rc

a function of N/-namely, rc = ll(Nt + l)-so that
it would take on reasonable values at the extremes of
N'. (When N'= 0, reflecting complete ignorance, all
network structures receive the same prior probability.
Whereas, when N' is large, reflecting a high degree of
confidence, the prior network structure receives a high
prior probability.) When computing the prior proba-
bilities of network structure for the K2 metric, we used
an empty prior network.

The qualitative behaviors of the BDe metrics were rea-
sonable. When 4 = 0-that is, when the prior network
was identical to the Alarm network-learning accuracy
increased as the equivalent sample size N/ increased.
Also, learning accuracy decreased as the prior net-
work deviated further from the gold-staudard network,
demonstrating the expected result that prior knowl-
edge is useful. In addition, When 4 f 0, there was a
value of N' associated with optimal accuracy, and this
value decreased as 4 increased (this effect is more pro-
nounced in the graph of structural differences). This
result is not surprising. Namely, if N/ is too large, then
the deviation between the true values of the parame-
ters and their priors degrade performance. On the
other hand, if .l/' is too small, the metric is ignoring
useful prior knowledge. Furthermore, as the deviation
between the prior and gold-standard network struc-
tures increase, Iearning should be optimal for lower

values of equivalent sample size. We speculate that
results of this kind can be used to calibrate users in
the assessment of N/.

Quantitative results show that, for low values of N/, all
metrics perform about equally well, with K2 producing
slightly lower cross entropies and the BDe metrics pro-
ducing slightly lower structural diferences. One ex-
ception is that the BDe metric outperformed all other
metrics for larger values of N/, when the metric used
the gold standard as a prior network. These results
suggest that the expert should pay close attention to
the assessment of equivalent sample size when using
the BDe metric.

To investigate the effects of search initialization on
learning accuracy, we initialized local search with ran-
dom structures, prior networks for different values of
4, a maximum branching, and the empty graph. The
results are shown in Figure 2. In this comparison, we
used the BDeu metric with N' = 16, n = l/77, and a
10,000-case database. We created 100 random struc-
tures by picking orderings at random, and then, for
a given ordering, placing in the structure each pos-
sible arc with probability rc/(I + rc). (This approach
produced a distribution of random network structures
that was consistent with the prior probability of net-
work structures as determined by Equation 5).

The curve in Figure 2 is a histogram of the local
maxima achieved with random-structure initialization.
Prior networks for both 4 = 0 and \ = 4 produced
Iocal maxima that fell at the extreme low end of this
curve. In addition, the maximumbranching led to a lo-
cal maximum with relatively low cross entropy. These
results suggest that initialization with a prior network
can be beneficial, even when the prior network differs
substantially from the gold standard. The results also
suggest that, ifa prior network is not available, then a
maximum branching can be a good starting point for
search.

Finally, we investigated the effects ofsearch algorithm
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on learning accuracy. The results are shown in Ta-
ble 1. In this comparison, we used the BDeu metric
with N' = 16, rc = lll7, and 30 databases of size
10,000. The algorithm K2opt is CH's K2 search al-
gorithm (described in Section 4.2) initialized with an
ordering that is consistent with the Alarm network.
The algorithm K2rev is the same algorithm initial-
ized with the reversed ordering. We included the lat-
ter algorithm to gauge the sensitivity of the K2 algo'
rithm to variable order. Iterative local search used 30
restarts where, at each restart, the current network
structure was modified with 100 random changes. (A
single change was either an arc addition, deletion, or
reversal.) The annealing algorithm used parameters
?o = 100,o = 200, I = 100,7 = 0.9, and d = 60. We
found these parameters for iterative local search and
annealing to yield reasonable learning accuracy after
some experimentation. Local search, iterative local
search, and annealing were initialized with a maximum
brauching.

K2opt obtained the lowest structural difference,
whereas K2rev obtained the highest structural difer-
ence, illustrating the sensitivity of the K2 algorithm
to variable ordering. All search algorithms---except
K2rev-obtained low cross entropies. Overall, local
search appeared to be the best algorithm, because it
was both accurate and fast and did not require a vari-
able ordering from the user. Neither iterative local
search nor annealing offered much (if any) improve-
ment over local search; and both algorithms were con-
siderably slower than local search. Given the distribu-
tion of local maxima in Figure 2, however, we expect
we will be able to increase learning accuracy of iter-
ative local search and annealing after further tuning
their parameters.

7 Summary

We have examined Bayesian approaches for learning
Bayesian networks from data. First, we reviewed the
BDe scoring metric described by HGC. We saw that
this metric has a property useful for inferring cau-
sation called likelihood equivalence, which says that
any two isomorphic network structures must have the
same likelihoodp(DlB!,(). Next, we described search
methods for identifying network structures with high
posterior probabilities. We presented polynomial algo-
rithms for finding the highest-scoring network struc-
tures in the special case where every node has at most
[ = I parent. We showed that the general case ([ > 1)

is NP-hard, even when we use the restrictive BDe met-
ric, and reviewed heuristic search algorithms for this
general case. Finally, we described a methodology for
evaluating learning algorithms. Using this methodol-
ogy, we found that the learning accuracy of the BDe
metric often exceeds that of CH's K2 metric, and that
local search iuitialized with a prior-network structure
or a maximum branching can be an effective search
procedure.
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Appendix: k-LEARN is NP-Complete

As mentioned in Section 4.2, we easily can translate
results in H<iffgen (1993) for PAC learning to show
that /c-LEARN is NP-hard. In this section, we show
that &-LEARN is NP-complete, even when we use the
likelihood-equivalent BDe metric and the constraint of
prior equivalence.

In proving our result, we must be careful in specifying
the inputs to I-LEARN when the BDe metric is used.
These inputs are (1) the relative prior probabilities of
all network structures where each node has no more
than /c parents, (2) a database, and (3) parameters
N/71 for some node-parent pairs and some values of
f, j, and *. The input need only include enough pa-
rameters tr/jr.* so that a score can be computed for all
network structures where each node has no more than

& parents. Consequently, we do not need parameters
for nodes having more than /c parents, nodes with par-
ent configurations that always have zero prior proba-
bilities, and values of ,i, j, and,t for which there is no
corresponding data in the database. Also, we empha-
size that the parameters Nji;, must be derivable from
some joint probability distribution using Equation 4.

Given these inputs, we see from Equation 3, that
the BDe metric for any given network structure and
database can be computed in polynomial time. Con-
sequently, &-LEARN is in NP.

In the following sections, we show that &-LEARN is
NP-hard. In Section 7.7, we give a polynomial time
reduction from a known NP-complete problem to 2-
LEARN. In Section 7.2,we show that 2-LEARN is NP-
hard using the reduction from Section 7.1., and then
show that &-LEARN for ,t > 2 is NP-hard by reducing
2-LEARN to ,I-LEARN. In this discussion, we omit
conditioning on background information { to simplify
the notation.

7.L Reductionfrom DBFAS to 2-LEARN

We show that 2-LEARN is NP-hard when M (D, Bs) is
the BDe metric by using a reduction from a restricted
version of the feedback arc set problem. The general
feedback arc set problem is stated in Garey and John-
son (1979) as follows:

FEEDBACK ARC SET
INSTANCE: Directed graph G = (V,A), positive in-
teger /( < lAl.

QUESTION: Is there a subset A' C A with 1.4'l < K
such that A/ contains at least one arc from every di-
rected cycle in G?

It is shown in Garvill (1977) that FEEDBACK ARC
SET remains NP-complete for directed graphs in
which no vertex has a total in-degree and out-degree
more than three. We refer to this restricted version as

DEGREE BOUNDED FEEDBACK ARC SET,
or DBFAS for short.

Given an instance of DBFAS consisting of G = (V, A)
and K, our task is to specify, in polynomial time, the
following components of the instance of 2-LEARN:

1. A variable set [/

2. A database D

3. The relative prior probabilities of network struc-
tures
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4. The necessary parameters N.i; (see comment at
the beginning of this section)

5. A value p

Note that we need only specify relative prior probabil-
ities because, as discussed in Section 1, the metric is
arbitrary up to a proportionality constant. We then
show that this instance of 2-LEARN has a solution if
and only if the given instance of DBFAS has a solu-
tion. In the instance of DBFAS, we assume that no
vertex has in-degree or out-degree of zero. If such a
node exists, none of the incident edges can participate
in a cycle, and we can remove them all from the graph.

To help distinguish between the instance of DBFAS
and the instance of 2-LEARN, we adopt the following
convention. We use the term arc to refer to a directed
edge in the instance of DBFAS, and the terrn edge to
refer to a directed edge in the instance of 2-LEARN.

We construct the variable set U as follows. For each
node u; in I/, we include a corresponding binary vari-
able u; in 7. We use V to denote the subset of [/ that
corresponds to I/. For each arc a; e A, we include five
additional binary variables aitt. . ., a;5 in [/. We use

,4; to denote the subset of U containing these five vari-
ables, and define 

"4 
to be ,41 U . . . U,41a1 . We include

no other variables in 7.

The database D consists of a single case C1 =
{1, . ..,1}.

The relative prior probability of every network struc-
ture is one. This assignment satisfies our constraint
of prior equivalence. From Equation 3 with database
D = Cr and relative prior probabilities equal to one,
the BDe metric-denoted M I p 

"(D, 
.B5 )-becomes

MBp"(Cr, ar) = fl
N!ir
wii

(e)

where * is the state of c; equal to one, and j is the
instance of II; such that the state of each variable in
II; is equal to one. The reduction to this point is poly-
nomial.

Max: Tell me again why you need the notation II;
rather than fI;.

To specify the necessary Nlix parameters, we specify a
prior network and then compute the parameters using
Equation 4. From Equation 9, we have

Mno"(Ct, Bs) = fIp(rr = 1lII; - 1, . . ., 1, 83")

' (ro)
To demonstrate that the reduction is polynomial, we
show that the prior network can be constructed in

Figure 3: Subgraph of the prior net B corresponding
to the kth arc in ,4 from u; to ai.

polynomial time, and that Equation 10 can be com-
puted from the prior network in polynomial time when
fli contains no more than two variables. We estaL
lish the time complexity of prior-network construction
in the following paragraphs. Although general prob-
abilistic inference in a Bayesian network is NP-hard,
in Section 7.3 (Theorem 12), we show that each prob.
ability in Equation 10 can be inferred from the prior
network in constant time due to the special structure
of the network.

We denote the prior Bayesian network $ = (Bs,Bp).
The prior network B contains both hidden nodes,
which do not appear in U, and uisible nodes which
do appear in [/. Every variable a; in U has a corre-
sponding visible node in B which is also denoted by
ci. There are no other visible nodes in B. For every
arc a,, from a; to a1 in the given instance of DBFAS,
B contains ten hidden binary nodes and the directed
edges as shown in Figure 3.

In the given instance of DBFAS, we know that each
node u; in I/ is adjacent to either two or three nodes.
For every node o; in V which is adjacent to exactly
two other nodes in G, there is a hidden node h; in B
and an edge from ha l,o x;. There are no other edges

or hidden nodes in B.

Every visible node in B is a sink and has exactly three
hidden node parents, and every hidden node is a source
with either one or two children. We use h;i to denote
the hidden node parent common to visible nodes o;
and c;. We create the parameters Bp as follows. For
every hidden node h;7 we set

p(h;i = 0) = p(h;i - 1) =

Each visible node in B is one of two types. The type of
a node is defined by its conditional probability distri-

1

,
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bution. Every node a;5inB (corresponding to the fifth
variable created in [/ for the zth arc in the instance of
DBFAS) is a type I/ node, and all other nodes are type
.[ nodes. A type I node has the conditional probability
distribution shown in Table 2.

Table 2: Conditional probability distribution for a
type I node.

h;x hu a;=1 , h;*, h;t

We say that two variables in [/ are prior siblings if the
corresponding nodes in the prior network B share a
common hidden parent. We use ,9r, to denote the set
of all variables in [/ which are prior siblings of o;.

For each type II node a;5, we define the distinguished
siblings as the set Do,, = {qs, a;a} C Sor". Table
3 shows the conditional probability distribution of a
type tI node c; with distinguished siblings {ci,r*}.3

Table 3: Conditional probability distribution for a
type II node c; with Dr, = {ci, oxj

h;x h;r *l 1 h;* h;r

There are lyl + 5lr{l visible nodes in B, each visible
node has at most three hidden node parents, and each
probability table has constant size. Thus, the con-
struction of B takes time polynomial in the size of the
instance of DBFAS.

We now derive the value for p. From Equation 10, we
obtain

Moo"(Ct, Bs)

= ff r(ri : lllli - 1,.. ,L,Bb.)

3The type II node ais in Figure l is shaded and has small
markers to indicate that a;3 and aia are its distinguished
siblings.

=6("-D,Inins",l)tI'W
i

= d(.,-D, |u;ns.;r) ff s,(rilrl;, sr) ( 11)

where d ( 1 is a positive constant that we shall fix to
be 15/16 for the remainder of the paper.

Let a be the total number of prior sibling pairs as

defined by B, and let 7 be the number of prior sibling
pairs which are not adjacent in Bs. The sum I; lni n
&, I ir the number of edges in .B5 which connect prior
sibling pairs and is therefore equal to a - 7. Rewriting
Equation 1.1, we get

Mao"(Cr, Bs) 5(an-(o-r)) ff s,(o; ltl;, ^9;)

5@n-o) . d, fI s,(c;l[;, S;)

"' 
. flTIs'(c;l[;,,S;) (12)

: ff ds-lu;ns';l
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We now state 3 lemmas, postponing their proofs to
Section 7.3- A network structure Bs is a prior sibling
gmph if all pairs of adacent nodes are prior siblings.
(Not all pairs of prior siblings in a prior sibling graph,
however, need be adjacent.)

Lemma L Let Bs be a network structure, and let
Bs, be the prior sibling gmph created by remooing
eoery edge in Bs which does not connect a pair of
prior siblings. Then it follows that MBo"(C1,Bs,) )
Mpp"(C1, Bs)

Throughput the remainder of the paper, the symbol a
stands for the constant 24/25.

Lemma 2 If Bs is a prior sibling graph, then for ev-

ery type I node c; in Bs, if II; contains at least one
elernent, then st(x;l[I;,^9;) is marimized and is equal
to m1= 64/1,35. IflI; - 0, then s'(o;l[;, S;) = a'*t.

Lemma 3 If Bs is a prior sibling graph, then for
every type II node c; in Bs, if ll; = D,r, where
D,, is the set of two distinguished siblings of x;, then
s'(c;lII;, S;) is m.aximized and is equal to m2 = 40181,.

If I1; * D,, then s'(c;lll;, S;) 1 a -mz.

Finally, we define p in the instance of 2-LEARN as

p = dmYl (*!*r)lol oK (13)
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where rn1 and m2 are defined by Lemma 2 and 3 re-
spectively, and c is the constant from Equation 12.

The value for p can be derived in polynomial time.
Consequently, the entire reductiou is polynomial.

7.2 Proof of NP-Hardness

In this section, we first prove that 2-LEARN is NP-
hard using the reduction from the previous section.
Then, we prove that K-LEARN is NP-hard for all
f > 1, using a reduction from 2-LEARN.

The following discussion and lemma explain the selec-

tion of p made in Equation 13, which in turn facilitates
the proof that 2-LEARN is NP-hard. Let 7, be the
number of prior sibling pairs {c;,ci} which are not
adjacent in 85, where at least one of {c;, e1} is in,4*.
We now argue that tr 7r - 7, where 7 is the total
number of prior sibling pairs not adjacent in Bs. First
note that, as defined by B, the prior siblings Sr, for ev-
ery node o; €V satisfy Sr, C A, and the prior siblings
&*, for every node qxj e A* satisfy Sori C V U A*
(see Figure 1). Thus, for any prior sibling pair {c; , ci },
there exists an /* such that either both c; and oy are
in A*, or exactly one of {r;,,l} is in "4r and the other
is in V. Consequently, we have Dx"lr = j.
We can now express Equation 12 as

MBp"(Cr, Bs)

Figure 4: Optimal configuration of the edges incident
to the nodes in,4k corresponding to the arc from o; to
I)j.

Suppose there exists another orientation of edges in-
cident to the nodes in,4r such that that t(A*,,y*) >
a .m! .m2. Because 6 < a (i* < #), every pair
of prior siblings must be adjacent in this hypothetical
configuration. Furthermore, every node in .Ar must
achieve its maximum score, else the total score will be
bounded above by a.m!-m2. From Lemma 3, in order
for o65 to achieve its maximum score it must have its
distinguished siblings o*g and ok4 as parents. Because
each node can have at most two parents, ui must have
aes as its parent. Both a;.3 and o7r4 must have ak2 aa a
parent, else they would be root nodes and by Lemma
2 would not attain a maximum score. Repeating this
argument, oyg2 must have ay.1 as a parent aud o/cl must
have tr; as a parent. Because the resulting configura-
tion is identical to Figure 4, the lemmafollows. tr

The next two theorems prove that 2-LEARN is NP-
hard.

Theorem 5 There eri,sts a solution to the 2-
LEARN instance constructed in Section 7.1 with
MBo"(Cr,Bs) 2 p if there erists a solution to the
giuen DBFAS problem with At I K.

Proof: Given a solution to DBFAS, create the so-
lution to 2-IEARN as follows: For every atc ak =
(r;,oi) € -4 such that as f At, insefi the edges in .B5

between the corresponding nodes in ,4r U u; U o3 as de-
scribed in Lemma4. For every arc a6 = (u;,ai) e A',
insert the edges in ,B5 between the corresponding
nodes in A*Uo;Uur' as described in Lemma4, except
for the edge between orr and o7,2 which is reversed and
therefore oriented from ap2 to a6.

To complete the proof, we must first show that Bs is
a solution to the 2-LEARN instance, and then show
that Mspa(Ct, Bs) is greater than or equal to p.

Because each node in Bs has at most two parents, we
know .B5 is a solution as long as it is acyclic. Suppose
.B5 contains a cycle. Because there is no cycle con-

"'[g

"'[g

s'(o;lfI;,s,r] 
[

'Yjt(A'-,] 
[+

Iliti

fIt, fI s'(c;lrli,s;)
j t;€Ai

(14)

where t(,4;, 'li) = 6ti f],;eA; s'(c;l[I;, S;).

Le"'-a 4 Let Bs be a prior sibling graph. If each
node in Ap is adjacent to all of its prior siblings, and
the orientation of the connecting edges are as shown
in Figure l, then t(A*,%) is marimized and is equal
to m| .m2. Otherutise, t(Ay,t) < a .*t .*2.

Proof: In Figure 4, every type I node in ,4r has at
Ieast one prior sibling as a parent, and the single type
II node has its distinguished siblings as parents. Thus,
by Lemmas 2 and 3, the score s'(c;lII;,S;) for each
node c; € "4r is maximized. Furthermore, every pair
of prior siblings are adjacent. Thus, we have

1ti ff s,(c;lrr;,S;)
a;EAi

rnt.rnt.mt.mt.rnz

t(Ai,t)

5o
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, 
Es,(o;rrr;,r,] L,U .,,,(A,,-ri)

| 11 tla*,t*)f
l.AreA1A"r' l

Every uode o; eV has at least one prior sibling node as
a parent because each node in the instance of DBFAS
has an in-degree of at least one. Furthermore, Lemma
4 guaranteeslhat for every,46 in Aqt, t(Ai, U) equals
*t - mz. Thus, we have

MBo"(Ct, Bs) (15)

tained within any set .r4*, there must exist a sequence
of nodes from V contained in this cycle such that for
any pair of consecutive nodes (o;,rl) in the sequence,
there is a directed path from a; lo ui for which every
intermediate node is in "4. However, we created the
instance of 2-LEARN such that a directed path of this
type exists if and only if (o;,oi) ( ,4'. This implies
there is a cycle in G for which none of the edges are
contained in A/, contradicting the fact that we have a
solution to DBFAS.

We now derive Mnp"(Cr,Bs). Let .4oPt be the subset
of .4; sets which correspond to the a.rcs in A \ A/.
Rewriting Equation 14 we get

Mspu(C1, Bs)

the %-LEARN instance constrltcted in Section 7.1 with
Meo"(Cr, Bs) > p.

Proof: Given the solution .B5 to the instance of 2-
LEARN, remove any edges in Bs which do not connect
prior siblings. Lemma 1 guarantees that the BDe score
does not decrease due to this transformation.

Now create the solution to DBFAS as follows. Recall
that each set of nodes .,4l, corresponds to &Il &rc cl1 =
(or,ri) in the instance of DBFAS. Define the solution
arc set .A' to be the set of arcs corresponding to those
sets .,4* for which the edges incident to the nodes in
Ax arc nof configured as described in Lemma 4.

To complete the proof, we first show that .A/ is a solu-
tion to DBFAS, and then show that lA'l < K. Sup
pose that A/ is not a solution to DBFAS. This means
that there exists a cycle in G which does not pass

through an arc in At. For every arc (a;,t5) in this
cycle,'there is a corresponding directed path from u;

to u3 in Bs (see Figure 4). But this implies there
is a cycle in Bs which contradicts the fact that we
have a solution to 2-LEARN. From Lemma 4 we know
that each set Ax which corresponds to a,n arc in A'
ha.s t(Ar,7r) bounded above by a .rnt.rn2. Because
Mao"(Ct,Bs) 2 p, we conclude from Equation 14

that there can be at most K such arcs. E

Theorem 7 b-LEARN with MBp"(p, Bs) satisfying
prior equiaalence is NP-hard for eoery integer ,t > 1.

Proof: Because 2-LEARN is NP-hard, we establish
the theorem by showing that any 2-LEARN problem
can be solved using an instance of &-LEARN.

Given an instance of 2-LEARN, an equivalent instance
of I-LEARN is identical to the instance of 2-LEARN,
except that the relative prior probability is zero for
any structure that contains a node with more than two
parents. Note that no new parameters N/ro need be
specified. It remains to be shown that this assignment
satisfies prior equivalence. We can establish this fact
by showing that no structure containing a node with
more than two parents is isomorphic to a structure for
which no node contains more than two parents.

In HGC (1994c), it is shown that for any two isomor-
phic structures Bg, and B5r, there exists a finite se-
quence of arc reversals in .B5, such that (1) after each

reversal Bsl remains isomorphic lo Bsr, (2) a,fter all
reversals Bs, = Bs, and (3) if the edge u; + u7 is the
next edge to be reversed, then o; and ai have the same
parents with the exception that u; is also a parent of
o;. It follows that after each reversal, o; has the same

number of parents as ui did before the reversal, and
u; has the same number of parents as o; did before the
reversal. Thus, if there exists a node with / parents

oplA4Tllt
t l\)c fni

L-
fl 4-4x,*)m2

m2

€"4\"4orl

"'*lul l*l l il t(Ax,*)lA\^

L- €,A\,4,oPr

Now consider any Ax in A\"4'ct. AI prior sibling
pairs for which at least one node is in this set are

adjacent in .B5, so 7, is zero. Furthermore, every node
in this set attains a maximum score, except for the
type I node op2 which by Lemma 2 attains a score of
q .ntr. Hence we conclude that t(Ap,1) is equal to
*t . *2. o and therefore

MBp"(C1, Bs)

= r'*Yl L*1. *rll4\A'l [,nf . mr. allA\A"o'l

= d*Yl [*t .*r)la\A'l 
[??rf 

. mrllA'l ol,/l

= c'm{l l*t .*rllAl alA'l

Because o ( 1 and 1,4'l ( K we conclude that
Meo"(Ct,Bs) > p. tr

Theorem 6 There etists a solution to the giuen DB-
FAS problem with At 3 K if there eaists a solution to
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(a) (b)

Figure 5: Two portions of B for which Theorem 8

applies. .s1, s2 ond s3 are the elements of Sr,. White
nodes are hidden and black nodes are members of fI6.
In both (a) and (b), ,; is d-separated from any node
outside the dashed line.

in some structure .B5, then there exists a node with /
parents in any structure which is isomorphic to .B5. tr

7.3 Proof of Lemmas

To prove Lemmas 1 through 3, we derive s'(c;lII;, S",)
for every pair {o;,II;}. Let o; be any node. The set
fli must satisfy one of the following mutually exclusive
and collectively exhaustive assertions:

Assertion 1 For every node ci which is both a parent
of c; and a prior sibling of o; (i.e. xi e lI; O &,),
there is no prior sibling of c7 which is also a parent
of x;.

Assertion 2 There exists a node ci which is both a
parent of c; and a prior sibling of ci, such that
one of the prior siblings of r; is also a parent of
Xi.

The following theorem shows
that to derive s'(o;lll;,.9r,) for any pair {c;,[I;] for
which fI; satisfies Assertion 1, we need only compute
the cases for which [I; C ,Sr,. Figure 5 shows two ex-
amples of the relevant portion of a prior network for
which the theorem applies.

Theorem 8 Let x; be any node in Bs. If Il; satisfies
Assertion 1, then s'(c;lfl;, &,) = s'(c;lfl; fl S,,, S,,).

Proof: From Equation 11, we have

s,(o;lrr;,&,)=ffiP (16)

Thus, the theorem follows if we show that o; is d-
separated from all parents which are not prior sib.
Iiugs in B once the parents which are prior siblings
are known.

Suppose there exists a parent c; which is not a prior
sibling of a; and is not d-separated from c; given II; O
5,,. This implies that there is an active trail from
a; to cp in B once we condition on these nodes. Any
path-active or nonactive-from a nonsibling parent
to c; must pass through an element of ,Sr,. Because
each node iu .9r, is a sink, any active path from o1

to o; must pass through some node ti from II; f'l Sr,.
Because fI; satisfies Assertion 1, however, we know
that none of the siblings of xi are in fI;. Hence, no
active path from rr to o; can pass through ci. o
For the next two theorems, we use the following
equalities.a

p(h;j, h;*,h;1) = p(h;i)p(h;x)p(h;t) (17)

p(h;j,h;x,h;tlti) = p(halxi)p(h;*)p(h;t) (18)

p(h;j, h; *, h;1lx i, x y) = p(h;ilo i)p(h;plx p)p(h;1) (19)

p(h;i = Olc; = 11 - (20)

Equation 17 follows because each hidden node is a root
in B. Equation 18 follows because any path from ci to
either ft.ir or h;r must pass through some node a + tj
which is a sink. Equation 19 follows from a similar
argument, noting from the topology of B that x Q

{ri,rr}. Equation 20 follows from Tables 1 and 2,

using the fact that p(h;i = 0) equals 1/2.

Theorem 9 Let o; be any type I node in Bs for which
fl; satisfies Assertion 1.

1. If llli n.9,, | = 0 then s'(c;lll;, 5",) = a .m1

2. If llli n &, | = L then s'(c;lII;, 5,,) = m1

3. If ll[; flSs,l= 2 then s'(o;lII;,S,,) = -r

Proof: Using Equations 17 through 20 and Table 2,

we obtain the following relations:

1. If III; O S", | - 0 then p(o; = 1) = d3 .d -rrl

2. If III;0^94,1 = {ri} then p(c; - 7lq = 7) = 62.mt

3. If ltlinS,,l= lrj,ry,) then p(x; = llri - 1,tp =
1) = d .rn1

aWe &op the conditioning event B!" and ( to simplify

2
;.l
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xk

Figure 6: Portion of B for which Theorem 11 applies.
White nodes are hidden and black nodes are members
ofII;. Node c; has parents ai and ok, where xi €. Ss,
and c;, € Sri. In this case, oi is not d-separated from
its non-sibling parent.

The theorem then follows from Equation 16. tr

Theorem LO Let x; be any type II node in Bs for
whichfl; satisfies assertion 1.

1. If III; o 5s, | = 0 then s/(o;lll;) - d2 .m2

2. If lfii n,S',1 = 7 then s/(c;lJl;) = d .rn2

3. If lfii n.9,,1= 2 andfl; * D,, tien s'(o;ltl;) -
A 'rn2

/r. If tI; = D,, then s'(x;lll;) = m2

Proof: Using Equatious 17 through 20 and Table 3,
we obtain the following relations:

1. If lIId n ,S,,1 = 0 then p(c; = 1) = d3 .a2 . m2

2. If lnd n ,S",1 = {pij then p(c1 - llri = 1) =
62 .a .m2

3. If l[I, n,S',1 = {ai,xx) and {r;, ok} * D,, then
p(x; = llxi - l,rp = 1) = d . a. rnz

4. If II; = 1ai,o3) aud {ci,ax} - D,; then p(c; =
Tlri-\,a1 =L):6'mz

The theorem then follows from Equation 16. tr

Now we show that if Assertion 2 holds for the parents
of some node, then we can remove the edge from the
parent which is not a sibling without decreasing the
score. Once this theorem is established, the lemmas
follow.

Figure 4 shows the prior network B when Assertion 2

holds for a node c;.

Theorem LL Let o; be any node. IffT; = {ti,cx},

s' (x;lai, xr).

Proof: For any node we have

p(xt = llrr : 1, s* - 1;

: p(r;: L\p(ar : Llo; : l)p(at : tlx; : l,r* :1)
P(ax:l)P(ci: llrr:1)

Because c; and ck ate not prior siblings, it follows that
p(cxlc;) = p(ax).Therefore, we have

P(a; = llri - 1, cl = [)

= p(c; = t).
_1
-t

lti=lrAk=t
p(ci=1lay"=1)

Expressing this equality in terms of s'(c; III;, Sr, ) , not-
ing that c6 has only one prior sibling as a parent, and
canceling terms of d, we obtain

s' (c;l{oi, c*}, S,r) = st (x;10, t, lW
(21)

If c7 is a type I node, or if r; is a type II node
and c; and c7, are not its distinguished siblings,
then s' (c7 

| {o ;, o *},S,; ) equals s' (o; 
| {op }, S,, ). Thus,

from Equation 21, we have

s' (c ;l{x i, x r}, 5,,) = st (r ;,,0,S,, ) < s' (c; 
| {oi },,S,, )

(22\
which implies that we can improve the local score of
c; by removing the edge from o;.

If cr' is a type II node, and Dro = {r;,**},
then s' (r; 

| {a ;, a r}, S, ) equals (l I a) . s' (r i I { rr }, S,i ).
Also, from Equation 21, we have

s' (x ;l{a i, t *}, 5,,) = s' (x ;10,"", ) : - s' (r;l{t i}, 5,,)
(23)

Therefore, we can remove the edge from a6 without
afecting the score of c;. tr

The preceding argumeuts also demonstrate the follow-
ing theorem.

Theorem L2 For any pair [r;,lltl;, where lll;l12,
the aalue p(s; = lltl;) con be computed from B in
constant time when the state of each of the oariable in
lI; is equal to one.

xjxi
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