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Abstract
The mean shift process repeatedly moves each data
point to the mean of data points in its neighbor-
hood. This process is generalized and analyzed. Its
relation with maximum-entropy and K-means clus-
tering methods is studied. Its nature of gradient
mapping is revealed. Its applications in clustering,
Eough transform, and overfitting relaxation are ex-
amined.

1 Introduction
The traditional pa,radigm of partitioning clustering
is optimization. The problem is often formulated
as partitioning the data set into & groups such that
some global measure is optimized. An old a,ud pop
ular example is the &-mea,ns clustering, in which the
data is divided into & (a system parameter) grcups
and the within-group sum of sqaareil enors is mini-
mized [11]. A more recent example isthe rnarimum-
enlropg clusteriug algorithm [10], where the within-
group sum ofsqua,red errors is given and the entropy
is the one to morimize.

It has been known that problems like these are
NP-ha^rd [1]. Practical algorithms for pa.rtitioning
clustering are thus often hill-climbing ones that finds
only a local optimum that depends on some ran-
domized or calculated initialization. Clustering al-
gorithms become probabilistic, and the outcomes
may be quite diferent from the suggested globally
optimal solution to the formulated problem.

Similar situations arise in other a"reas of computa-
tional self-organization that include genetical algo-
rithms, decision tree learning, and neural networks.
Some of these algorithms a,re formulated as means
attacking global optimization problems which are
essentially intractible, and in reality settle down at
certain local optima. Because it is unlikely for na-
ture to solve intractible problerns, some of these
models may have idealized the netural mechanisms

they were intended to mimic.
A recent example of nature vs. global optimiza-

tion is the protein folding problem. The traditional
formulation of the problem is to find the folded com-
formation having the minimum energy based on the
protein's amino sequence. It has been shown that
both this problem and the so-called inverse protein
folding problem are NP-hard t6] t5]. The current
scheme is to reformulate the problem into findiug a
pronounced local energy minimum based on a fold-
ing procedure [12], which is confirmed by many na-
tive protein configurations.

In this paper, we address an iterative self-organizing
process called "mean-shift", and show its clustering
behavior and some of its potential applications. Sec-
tion 2 contains definitions of the mean shift process.
In Section 3, it is proved that mean shift is gradi-
ent ascent. Section 4 considers the convergence and
termination of the algorithm. Section 5 contains
application examples in clustering.

2 The Mean-Shift Process
Let X be a Euclidean space and S C X a finite
subset called the dota. Let ) be a positive number.
A. flal kerael is the following characteristic function
for a )-ball in X.

K(r) - A
0i

if lal < .\
if lcl > .\ (1)

A. sample nean in the l-neighborhood of r € X is

!,.s K(s - c)s
rn(c) - (2)

rhe dineren"" *(,)-::f:;: sriTr by Fuku-
naga and Hostetler [a] and is used as an estimate of
the density gradient at c.

Fukunaga and Hostetler also propose a mean shifi
clastering algorilhrt. that is the repeated replace-
ment of each data point s € .9 with the sample mean
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of data in its neighborhood.

s-rn(s), s€S (3)

This process transforms the data set ,S generation by
generatiou, and data points in S eventually merge
into several clusters. This process is also discussed
in Silverman[13]. This mean shift clustering alge
rithm also occurs in Cheng and Fu[2], where cate-
gorical data are embedded into a Euclidean space
and qua^ntization is used.

The flat kernel weights all data points in the )-
neighborhood evenly during the computation of the
sample mean, m(c). This boundary is rather arbi-
tra,ry and abrupt. A generalization is to allow other
kernels to be used in (2). The kernels considered in
this paper are limited to those satisfying the follow-
ing properties. First, a iernelmust be a nonnegative
real function K on X in the form of

K(e) = t(llrll') (4)

where t is a piecewise continuous a,nd non-increasing
function defined over [0,oo): e(o) > f(b) if o < 6.

We also require that Jfl h(r)dr ( oo. Let o ) 0 be

a constant. When K is a kernel, so are Ko, where
K"(r) = K(xla), Ko, where K"(r) - (K(r))",
and cK, where (aK)(x) = aK(x). When used in
mean shift, (2), K and. o,K generate the same result.

A further step to generalize mean shift is to al-
low a weight independent to the kernel to be associ-
ated with each data point. This weight can be used
to indicate the relative significance of a data point
or any local context effect. In density estimation
literature[13], this is considered u adaptioe kernel
eslimation. With this weight, u,, the keruel term
K(" - c) in (2) is replaced by K(s - a)ur(s) and the
sample mean becomes

r,65 K(s - a)ro(s)sm(t)-* (5)"-\-" 
Dres K(s - c)ro(s) '

Finally, mean shift can be performed on a subset
T C X and the data set S may remain unchanged.

,*ffit -r, (6)

The original mean shift algorithm is a special case

of this when ? is ,S. However, in general, ? can be
different from 5. One choice is that ? is initialized
to 5 and then goes its own way. A more cornmon
choice is to have a randomly initialized ?, with a size
much smaller than .9. This is what a large group of
iterative clusteriug algorithms do.

This group of clustering algorithms also use a very
special local weight:

u,(s)-,*+l=r, s€s. (i)

When the kernel is a Gaussian one,

K(x)="-lllxll2, p>0, (8)

the iteration (6) is the maximum entropy cluster-
ing algorithm of Rose, Gurewitz, and Fox[9]. When
0 - q, the product K(t - t)ur(s) degenerates to

,1,, "l = { l, :1k;,:t"-tryls 
- tl2 

(e)

the iteration degenerates to the ordiuary K-means
clustering[10]. Indeed, when K is any strictly de-
creasing kernel, where K(c) < K(y) if lrl > lyl, KP
when p + oo as the kernel will make (6) and (7)
approach K-means clustering.

3 Mode Seeking Properties
In this section, we iuvestigate the mode-seeking prop
erties of mean-shift steps, and in the next section,
we study the convergence properties of iteration of
these steps. The first result is that mean shift is
hill climbing on a surface defined with a "shadow"
kernel, which is related to the kernel used in mean
shift by Theorem 1.

Theorem 1. From each kernel K(a) = i(lrl'),
we can construct a kernel (called a shadow of K)
K{r) - }r(lrl2) such that

l.* (10)er(r) - k(t)dt.

The mean shift rn(c) - r using kernel K is in the
direction of the gradient of the data density estimate
using kernel K1 :

c@)=I"r("-a)u(s). (11)
r€5

Proof. The mean shift using kernel K can be
rewritten as

*(x) -, = *tI*,,,"- cll2)to(s)(s - c) (12)

with p(c) = Dres K(" - e)tu(s), the density esti-
mate using K. The gradient of (11) at r is

vc(a) = -2 t ri(ll, - ,ll'X" - c)u,(s). (13)
s€S

To have (12) and (13) point to the same direction,
we need [i(r) = -c[(r) for all r and some c >
0. By the fundamental theorem of calculus and the
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requirement that Jfl t1(r)dr < oo, (10) is the only
solution. In this case, we have

n(t)' - - Vc(c)-r-ffi, (14)

log&(r) - logh(0) = -9r, which leads to &(r) -
k(0)e-9' ,or the Gaussian kernel. In this casle, mean
shift m(c)-c is equal to the gradient of the function

or, the magnitude of mean shift is in proportion to
the ratio of the gradient and the local density esti- tr
mate using kernel K. g

Using formula (10), we find that mean shift with
a flat kernel (1) is in the gradient direction of the
density estimate using the Epdnechnikoa kernel,

(18)

( 15)

Suppose there is a "perfect" mode in the density
surface, for example,

c(o)= 2-rttt". (19)

Then, m(o) - x = -(t /9)c, which shows that data
around a mode will shift toward the mode at a rate
of 1 - 1/8.

If a few discontinuous points on t are ignored,
then a truncated Gaussian kernel also makes mean
shift a gradient mapping, with the kernel being its
own shadow.

The mode seeking mechanism of mean shift can
be viewed as adaptive gradient ascent. The differ-
ence between this mechanism and gradient ascent
with a fixed or ad hoc step size is important. When
VC(o) is small, gradient ascent with a fixed step
size will stall. logq(c) magnifies the difference in
flat low density areas and thus avoids the plateau
phenomenon.

4 Convergence
Mean shift can be repeated in various ways. In gen-
eral, it can be applied to a set of cluster centers,
?, such that ? * m(T) is the iteration. The algo-
rithm terminates when T - m(T), or for all t eT,
t - m(t). When .9, the data, aad u, the weight,
do not change, the data density estimate q(o) (U)
remains the same, and each ? point moves indepen-
dently and settles at a local maximum of q(e). Over-
all, the cluster centers, ?, evolve to a fixed point
that is a local ma:rimum of the function

u(T) = Ic(t) = DD xrQ - s)u(s), (20)
teT ,€? s€S

where I(r is a shadow of K.
One particular case is when ? is initialized as .9.

Mean shift iterates will settle on a local maximum
(1?) of U(f) that can be reached via hill climbing from

the initial [/ value

t/(s) = rD x{t - s)u,(s). (21)
,€S r€S

When ? is .S, and when ur(s) does not change,
the process 5 - m(,S) has stable fixed points that

K(a) =
1- lrl2
0

s€S

,€s

iflelll
if lrl > .\

and mean shift with the Epanechnikov kernel is in
the gradient direction of the density estimate using
the biweight kernel ll}j,

K(c\ _ { \, - lrlr), if lcl < }
LU iflcl>) (16)

Theorem 1 characterizes mean shift as gradient
ascent over a tthadow" surface. Mean shift is pro-
portional to the gradient of the surface. It would be
called a gradient mapping if mean shift were exactly
the gradient. Theorem 2 below shows that Gaussian
kernels a,re unique because they ma,ke mean shift a
gradient mapping.

Theorem 2. Mean shift is a gradient mapping if
and only if the kernel is Gaussian (8).

Proof. The "symmetry principle' says that a con-
tinuously differentiable mapping F : ff * E" is a
gradient mapping if and only if the Jacobien matrix
of .F is symmetric [7]. Let r, be identified with mean
shift (12). Then for i I j,

0F;(o)W 1

(, I t'(ll" - ,ll2)(ri - s1)ro(s)
p2(x\

("i - r;) D tttt, - oll2)w(t)

-2I r'(ll" - cll2)@i - si)ro(s)
s€5

I rttr - cll2)u,(t)(t; - x;)
,€s

The first term in the sum is symmetric with respect
to the subscripts i and j. The second term is sym-
metric for all c values if and only if B'(r) = -ph(r)
with some constant p. Using the method of sep
aration of variables, we have I dklk - - ! 9d, o,
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are the local ma:rima of

Y(S) = I "r("-t)u,(s)u,(t). 
(22)

,,t€s

We will call mean shift with T = S the blarring
process.

In these two cases, that is, when 7 is ^9 or is
initialized to S, the initial ,S and the chosen kernel
completely determine the final fixed point and also
the particular local maximum of U or 7 the process

will reach.
When ,5 is fixed, each ? point converges to a mode

(local maximun) of q(c). This mode seeking process

is completely local aud the limited precision in real
execution of the process will make the fixed point
reachable in finite time. The rest of the computa-
tion burden is the performance of each mean shift
step. If the kernel has an infinite support, then the
time required to complete a mean shift step is O(n2)
where n is the data size. The number of iterations
before termination is not a function of data size and
can be considered as a constant. When the kernel
has a limited support, that is, when it vanishes out-
side a neighborhood, data may be organized so that
finding one's neighbors requires only O(loga) time
and thus the overall time will be between O(n log z)
and O(n2).

In the case of the blurring process, the use of a
kernel with infinite support will result in a trivial
outcome: all data points converge to a single point.
This is also the case when the kernel support is finite
but still large enough to cover the data set. When
the kernel support is smaller than a critical volumn,
data points converge to multiple "cluster centers".
When the kernel support is even smaller, the initial
data set will be a fixed point of the process and no
clustering will take place.

The following theorem shows that, the blurring
process terminates in finitely many steps, provided
that data points are not infinitely close to each other.

Theorem 3. Suppose there is a minimum distance
6 > 0 between data points during the blurring pre
cess and there is a r ) 0 such that when K(c) > 0,

K(r) > ri(0). Then the blurring process reaches
its fixed point within finite number of iterations.

Proof. In a blurring process, the convex hull of
data is shrinking. When it stops shrinking, the bor-
der data points cau be eliminated from considera-
tion because they are no longer influenced by other
points and thus no longer influence others. The
same argument then can be applied to the rest of
the data set.

Some conditions are necessary to make the border
points reach their final positions in finite number of

steps. Without these conditions, the final configu-
ration may only be approached but never reached.
The purpose of these conditions is to avoid infinites-
imal shifts that will never end. The first condition
is that the distance between data points cannot be
infinitely small. That is, when two data points are
within each other's 6 ball, for a small constant 6,
they merge. The second condition is that the influ-
ence of a data point to another cannot be infinitely
small. The way to guarantee this is to choose a ker-
nel that is truncated, so that either two points are
too far apart and thus do not influence each other,
or their influence is larger than a small lower bound.

Define the radius of data, r(S) as the distance
from the origin (or any reference point) to the data
point farthest from the origin. There exists a h > 0,
which is related to both d and the dimensionality
of the space, such that in any direction a, there
can be at most one data point s € ,S that satis-
fies ro(s) > r(S) - h, where ro is the projection
mapping along the direction o. For any data point
s to have n(s) * s, the kernel centering at s must
cover at least two data points. For any direction o,
one of these data points, u, must have the property
that zro(u) S ,(S) - h, based on the definition of h.
Hence, we must have

,(S) - zr,(rn(s)) =
D,es K(, - s)ro(t)(r(S) - ".(r))

D,es K(, - s)ur(t)

K (" - s)u(u)(r(S) - * 
"(u))l,.s e(0)to(t)

nWh, (23)

w = Tn'es 
ro,(:) 

Q4)
D,es t(s)

is a constant. This shows that the radius of data is
either its final value, when the farthest point does
not have a neighbor, or shrinking by at least a con-
stant rcWh.

After a number of iterations that is less than r(S) I @W h),
the most remote data points reache their destination
and can be removed from consideration and the rest
of the data set is smaller.

If a is the number of data points in .9, then the
previous argument proves that the blurring process

is at worst an O(n3) algorithm. g

5 Clustering
Clustering is the most obvious application of the
mean shift process. Data points can be traced to

where
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their final positions along the mean shift trajecto
ries, if ? is 5 or is initialized to S. A family of
kernels can be chosen to perform mean shift, with
a pa,rameter that can be used :ts a measure of "res-
olution" for the "blurring" effect. For the blurring
process, because kernels with infinite supports will
merge all data points into oue, an appropriate choice
is a truncated Gaussian kernel,

subpatterns are sea,rched in a larger image from which
occurren@s of the template pattern with slight dis-
tortion a,re to be located. When there is an ex-
act match of a subpattern, a location relative to
the subpattern where the center of an occurrence of
the template might be is registered in a pa^rameter
space. Eigh modes of the possible centers in the
parameter space are then detected and considered
as centers of possible occurren@s of the template

K(c\- [ e-lll'lf 9ll*ll2 <1 Os\ pattern in the la,rger image. To allow slightly dis---\-/ [ 0 otherwise ' \--" torted patterns to match the template, the param-

In the case of fixed data set, either a Gaussian or :[ir'ffi:r':,Hti*il}:HA:;*Jf:ff:f
a truncated Gaussian family may be chosen. Wlen The size and the bounda^ry locations of the bins are
the p value is small, the kernel encompasses thedata system parameters to be determined by trial and er-
set, and all merge to one point. When p is large -.. Io ihis example, a generalized Hough transform
euough, the initial data set becomes a fixed point. with the blurringmapping is used for the same pur-
When p takes intermediate values, different merger pose. The bin design is replaced by blurring in the
patterns emerge. The general picture is that the pa^rameter space.
larger p is, the more clusters the mean shift process
will end up with. Those clustering outconies that ^ L270 x 270 image of 225 chinese characters (Fig.

share large ranges of B should be considered more 2a)vas-used in this experiment' A template, shown

stable and morqvalid than those that are essentiallv in Fig.7b with a magnified view was to be found

transient. ' at any location in the image. Subpatterns were

when ? is either ^g (the blurring process) or is 3 " f. windows with the center cell black' There

initialized to ,s (a special case of clusterinj a6e T: 2" = 256 possible subpatterns, but only about

rithms like the ma:rimum-entropy clusterini), ile 2! are present in the template. The probability of

algorithm is deterministic, because there is # need the occurrence of eac[r subpattern in this context

to randomly initialize cluster centers. The num- was estimated by frequency counting. The negative

ber of clusters in the outcome is determined bv 6 logarithm of this probability was used as an addi-

and the nature of the initial data set. By ,e*or- tive veiSht assigned to each subpattern. The im-

ing the probabilistic factor that makes the outcome 3-8: 
i" Fig'. 2a was scanned with a 3 x 3 window'

uncertain, and removing the number of clusters as When a,subpattern matched one in the template,

a system parameter, the clustering result becomes the weight of that subpattern was added to all the

unique and characteristic of the dita set and thus possible centers (pixel locations) that may generate

more meaningful. the subpattern. Fig. 2c is the distribution of pix-

Three mean-shift clustering examples will b" d"*oo- 
$" 

dt 
rt"l'n H"::5 ':#,il:'3H*:;:1ij

strated in this section' 
pixels in this space with the eight highest accumu-

s;6ample 1. Roeder[8] fits the velocitiesof g2 galax- l*:1f::qlts 
were detected and the corresponding

ies with a bimodal normal mixture model ff ff- 19 x.19 cells in the *iq:tlj.-"8: centering at these

cludes that the observable universe contains two su- locarrons. t: ":p'ty:q,rn 'r rg' ze' A Dlurrlig tl:P

perclusters of galaxies surrounded by la^rge voids. A :T :ol'11: 
to rne pD(eE wrtn nonzero \rergnts wrrn

study or the clustering resutt (Figure 1) r,;;";fi 1: *-l-:1:l^t:*::l1l t:j,,n"-::ll:3:,::::'l:
bluriing process withtifferent'p values concludes :tlit:tl"""rron 

or prxeE wrtn nonzero wergn6 rs

that the dominant outcome is three i*t".a"iiilo :ltft,i" IiF; 2d' and 
'1",'T:5,yith 

the eight

clusters. This shows a benefit of the blurrins oro- nrgne$.wergnts were oe[ec[eo wr[n tne correspono-

cess, namerythat thenumberof clustersis,#"re";; :lg::Plt:,t^^t::']:'-"^i:If ^ll .:::::-t^:T:
instead of a system parameter. s :[ffi:l"r:':il:r::: ,"#::":il,f&:;r","Jil1:

ter than that in Fig. 2e, generated before blurring.
Three subimages that do not coutain the template

B;a"'ple 2. In a pattern matching method called were no longer in Fig. 2f, while one subimage that
the generalized Eoagh lransform, subpatterns of a contains the template with considerable distortion
template are listed along with their relative loca- got in the picture. This is because distortion dis.
tions to the center of the template. Then, the same perses the possible centers to several neighboring
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locations, a blurring step merges them and allows
the mode to win the selection. A bin design used

in traditional generalized Hough transform may not
solve the problem, because the boundary of a bin
may cut the mode in halves, and neither half may
win the selection. 6

Example 3. When a training sample with norse ts
to be fitted by a curve, surface, or other functions
as a possible model fot an input-output system, one
of the problems is overfitting. The curve, surface,
or the function chosen by the fitting algorithm may
fit the training sample too well. That is, the curve
fits not only the model underlying the training sam-
ple, but the noise as well. The standa,rd approach
is to run a sequence of fittings with ascending com-
plexity of the curve. Then a testing sample is used

to weed out the effect of the noise. The curve in
the sequence with the best fit for the testing sample
is selected. For example, when a multi-layer feed-
forward neural network [8] is used to fit a sample
using the backpropagation algorithm, it is common
to generate the fitting with the training sample us-
ing increasing number of hidden units. After the
testing sample is tested on each of these trained
networks, the one with the smallest error is cho-
sen. Sometimes, too many hidden units generate an
overly complex network that fits the noise in stead
of the underlying model.

The blurring process can be used on an overfit-
ting network to merge the hidden units, reduce the
complexity and thus smooth out the noise. With
different kernel sizes, various reductions of the hid-
den units will be generated. Because the blurring
process is very efficient, compared to the backprop
agation training for a neural network, one can reach
the same optimal fitting with only one backpropa-
gation training phase aud a sequence of application
of the blurring process.

To demonstrate this application of the blurring
process, a two-input and one-output function was to
be learned with backpropagation. 20 points (ci,yi),
- - 1, . . .,20 were randomly selected from the unit
square, with corresponding output values zd's gen-
erated using the following equation.

z - (l+v)e-@2+v2) (26)

where v was a random number uniformly distributed
in [-0.1,0.1], serving as the noise. The values of
these sample points are listed in Fig. 3a. A multi-
layer feed-forward neural network with one hidden
layer was used as the fitting function:

o=t ais(wi&*.ioy+ui). Q7)
i

When there are a hidden units, there axe 4n weights
or unknown system variables, ujlujotwiyruit, i =
1,...,f,, to be solved. The nonlinea,r function g

must be an odd function. In particular, the tanh
function was used.

S(o)-l-e-d= 1;;' (28)

The first 10 sample points were used in trainiug.
The number of hidden units was chosen to be 40,
to ensure overfitting. The weights were randomly
assigned values in the range of [-1, U. Backprop
agation was used to modify them until the square
error for the training set reaches 0.001. (after some
50,000 iterations with step size 0.1). The 10 sam-
ple points not used in training were used in testing,
resulting in a square error of 0.019.

The blurring process with a truncated Gaussian
kernel and squared radius from 0.01 to 0.60 was per-
formed on the input weight vectors (wisrwis,wlc),
j = 1,...,40, while the jth output weight, ?j, was
used as the initial probability of the jth input weight
vector (with necessary normalization). When oi is
negative, the signs of all weights for the jth unit
were reversed. Because g is an odd function, this
will not affect the trained model. On average, after
eight iterations, the blurring process halted when
no change larger than 0.01 in any direction took
place. Shifted input weight vectors within the ker-
nel radius to each other were merged (they should
be very close to each other by the time the blurring
process halted), and the sum of the probabilities (
normalized output weights) of all merging iudividu-
als was used as the new probability for the combined
unit. Fig. 3b shows the number of hidden units af-
ter blurring for different kernel radii.

Thereafter, both the training sample and the test-
ing sample were used to test the reduced network.
The squa.red roots of the square errors for these sam-
ples are displayed in Fig. 3c and Fig. 3d. The lowest
square error for the testing sample occurs when the
squared kernel radius was 0.22. Using the reduced
network generated with this radius, the square er-
ror for the testing sample was 0.009 and that for the
training sample was 0.006 (compa^red with 0.019 and
0.001 before blurring). The new network had only
19 hidden units (compared with 40 in the original
one). The trajectories for the blurring process with
radius 0.22 over two of the three dimensions for the
input weight vectors are shown in Fig. 3e.

The optimally blurred uetwork had a size that
was half the original, but a fitting that was twice
as good. Compared to the scheme of training a
sequence of the networks, blurring is convincingly
more efficient. g
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Figure 1: Clustering of 82 galaxies based on their
velocities. Horizontal dimension is velocity, and ver-
tical dimension is P value.
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Figure 2: Blurring applied to the generalized Eough transform. a. L 270 x 270
imageof 225 chinese characters. b. A template with its magnified version, to be
used in pattern matching. c. The parameter space is the set of possible locations
of the occurrences of the template, which is also 270 x 270- Black pixels are
those locations with nonzero votes from 3 x 3 subpattern matching. d. After
one blurring step with a flat square kernel of size 5 x 5, the new distribution
of pixels with nonzero votes. e. 19 x 19 subimages from the original image at
locations with the eight highest votes are displayed, some containing radicals
similar to the template. f. Subimages from the original image corresponding
to locations with the eight highest votes are displayed. Some locations are very
close and thus only six characters are seen, but all contain parts very similar to
the template. 10g
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Figure 3: Blurring applied to the backpropagation neural network. a. 20 sample

points. The first 10 were used in training and the rest in testing. b. The 40

Lida"o units were bluned using different kernelsize (truncated Gaussian). Some

merged and the final number of hidden units is ploted against the kernel size.

". 
Th" square root of the sum of squares error from the reduced network on the

original training sample is plotted against the kernel size. d. The square root
of ihe sum of squares error from the reduced network on the testing sample is

plotted against the kernel size. e. The trajectory of the blurring process on

ih" hidd"o units when the square of kernel size is 0.22. Only two of the three

dimensions are shown.
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