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ABSTRACT

This paper is devoted to applying the genetic programming paradigm to the
test of the captial market efficiency hypothesis. How this paradigm is distin-
guished from the existing statistical approaches is briefly reviewed. Instead of
using the large-sample analysis prevailing in the literature, this research rests
on a small-sample analysis to inquire the existence of short-term non-linear reg-
ularities. By Rissanen’s MDLP (Minimum Description Length Principle), the
sample period with the highest complexity is chosen. Since our simulation re-
sults, which are based on Koza’s genetic programming paradigm (KGP) and
its Bayesian modification (BGP), show that it is not easy to outperform AR(1)
and is extremely difficult to beat random walk, the nonlinear regularities, while
might exist, is very difficult to be found. Therefore, the capital market efficiency
hypothesis can, at least, sustain from this perspective.

1 Rethinking Predictability via Genetic Pro-
gramming

The purpose of this paper is to apply the genetic programming paradigm devel-
oped by Holland(1975) and Koza(1992) to testing the capital market efficiency
hypothesis by using the data of Taiwan’s stock market. Traditionally, the test of
this hypothesis is based on the concept of probabilistic independence, that is, to
prove that the o-algebra generated by the history of the rates of return will tell
us nothing about the present or future rates of return. Therefore, technically,
the rate of return R; should be independent of any Borel functions of R, (s <
t)!. However, the major problem behind this idea is that there is no way we can
effectively construct the evidence of independence by trying all Borel functions
of R:. So, in practice, only limited sets of function are included as the candi-
dates, and the test gradually proceeds from linear independence to non-linear
independence.

1In the literature, this is the so-called weak-form efficiency.
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In this paper, we shall show that genetic programming provides us with
a new framework to revisit this issue. While it agrees with the definition of
market efficiency based on probabilistic independence in some essential aspects
such as the unpredictability of the future rates of return, genetic programming
captures the meaning of unpredictability in a more natural way, i.e., instead
of asking whether or not the future rates of return are predictable, the genetic
programming (GP) approach asks how difficult it is to predict; instead of asking
whether the capital market is efficient, GP asks how efficient or inefficient the
capital market is. Thus, the genetic programming approach transforms an in-
tractable (and undecidable) yes-or-no issue into a more-or-less one. The reasons
why genetic programming enables us to do so are stated as follows.

The intuitive meaning of hard to predict or very hard to predict can be con-
sidered equivalent to (very) hard to find a rule under intensive search from past
ezperiences which can help predict the future. However, a fruitless intensive
search does not imply there is no rule, nor does it mean that it is difficult to
find one given the fact that it exists. Rather, it depends on how the search is
implemented. Blind random search might not be qualified to decide whether
the rules are hard to find. Highly organized search has its problems too, be-
cause to implement organized search, we must know something about the world
which we have not started to explore yet. Fruitless intensive search can evidence
“hard-to-predictness” only if the implementation of search is neither too random
nor too organized. But it is very difficult to pinpoint the balance point. The
relevant concern here is not “Is the search structure optimal?’ but rather “Is
the search structure acceptable??. This is where genetic programming comes
into play.

By following Darwin’s evolutionary principle and the operations of reproduc-
tion, crossover and mutation, GP can be considered an effective search principle.
First of all, it makes a compromise between blind random search and organized
selective search. Initially (Generation 0) , it can start from a totally random
search. Then, generation after generation, the operation of reproduction and
crossover based on the fitness criterion makes the search more selective and
organized®. Secondly, it starts from simple forecasting rules and, unless neces-
sary, the chance of jumping into complex forecasting rules is rare. In the spirit
of Occam’s razor or the information theoretic Minimum Description Length
Criterion®, this is certainly a very desirable feature. Thus, GP can effectively®
find better forecasting rules. This explains why GP can serve as an effective
search structure and as a foundation upon which one may judge whether it is
hard to predict the rates of return.

In the literature of financial economics, the efficient market hypothesis can
be translated as

E[Rt I 2:-1] = 0 (1)

where T;_; is the o — algebra generated by all past publicly available informa-
tion. One of the tests of this hypothesis is based on the model

E[Rt I Et—l] g(Rt—la""Rt—k)

E
Bo +ZﬁiRt—i+¢(Rt—1;"‘th-k) (2)

=1

2This is especially true under the influence of Godel’s incompleteness theorem in mathe-
matical logic.

31t shares some similar features with the simulated annealing in the numerical analysis.

4See Rissanen (1989).

51.e., in the sense of both time complexity and algorithmic complexity. However, the
mathematics that underlies GP is not easy. Some work has been done by Holland(1986), but
we need more contribution in this aspect.
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with the null hypothesis

HoiB:=0; 1=10;1:55;k (3)

and
(Ri-1,-++, Re—k) =0 4
where ¢() is a nonlinear Borel function of R;_1,---, Ri—;. While it is easy to

test (3) by restricting the model to a linear version of Model (2), a general test
of both (3) and (4) under Model (2) is difficult. We therefore use the following
two-stage procedure to perform this test.

At the first stage, we use genetic programming to find the possible functional
form g, i.e., g( .), by using the SSE (sum of squared errors) as the criterion of
fitness. This enables us to know whether there is any simple nonlinear function
which can fit the data better than the linear autoregressive models (LARMs).
However, by doing so, we might run the risk of overfitting. Therefore, At the
second stage, we use g(.) to forecast and to see whether it can forecast better
than the LARMs. Only in the case where § can both fit and forecast better, do
we conclude that a nonlinear relationship exists.

Before we can proceed further, however, a few questions need to be ad-
dressed. Firstly, since the search directed by genetic programming is random,
what matters is the probability of finding models better than LARMs. As is
clearly shown in Chen and Yeh (1994a), genetic programming can be mathema-
tized as a random search model parameterized by first-order Markov transition
probabilities which are determined by the design of the evolution operatorsS.
Hence, given a target, a particular LARM for instance, we can ask the proba-
bility, namely, II, of finding the forest” which includes at least one tree whose
performance in terms of both fitting and forecasting is superior to that of the
target®. We propose this II as an objective measure of the difficulty of pre-
diction. The higher the II, the easier it is to predict. Unfortunately, a direct
calculation of II is extremely difficult. Nevertheless, an estimated II can be
obtained by a large-scale simulation.

2 Nonlinearity, Complexity and the Choice of
Data

The second issue concerns the choice of the data set, especially the sample size.
Whide the efficient market hypothesis puts no restriction on the sample size, the
application of GP to different sizes of sample does require lots of thought. This
is because GP aims at finding the potential existence of nonlinear regularities.
The requirement for the sample size varies with different periodicities. For
the time-invariant long-term nonlinear relation, a large sample size is needed.
However, if the stock market encounters a sequence of short-term time-variant
nonlinear relations, a large sample size may average out all these relations. In
this case, 2 smaller sample size is desirable. Thus, lots of combinations need to
be checked before any mature conclusion can be reached. Since this is the very
beginning of our research on the efficient market hypothesis, we would like to
see some preliminary results as soon as possible, and the choice of small sample

6This can be done by using the language LISP (List Programming) to encode functions.

TA forest is a collection of trees. Since in the language of LISP, each function can be
represented by a tree, a forest is, in fact, a collection of functions or models.

8More precisely, II is a function of the length of evolution taken, i.e., the number of gen-
erations, n, and should be denoted by II(n).
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size is justified by this consideration. In this paper, the sample size is set to be
55, and the data are divided into the in-sample period and out-sample period
in accordance with the following ratio®.

g _ #{in — sample period} 10 (5)

"~ #{out — sample period} ~

Furthermore, we use Rissanen’s MDLP (minimun description length princi-
ple) criterion to pick out the most complex 55 observations!® as our data set. A
detailed description of this procedure and its meaning can be found in Chen and
Tan (1994)''. By this criterion, the Taiwan stock market index used is during
the period from 11/27/90 to 2/5/91'2. The in-sample period is from 11/27/90
to 1/30/91 and the out-of-sample from 1/31/91 to 2/5/91.

3 The Emprical Results of Koza’s Genetic Pro-
gramming

To implement genetic programming, the program GP-Pascal is written in terms

of Pascal 4.0 by following the instruction given in Koza (1992)'3. The chosen

parameters to run GP-Pascal are given in Table 1. To derived #, 72 simulations
were run under Table 1.

Table 1: Tableau for Simulation 1a-72a and 1b-50b

Population size 500
The number of tree created by complete growth 50
The number of tree created by partial growth 50
Functional set {+,—, x, sin, cos, %, EX P, RLOG}
Terminal set {Re—1,Re—2,---, Re—10}
The number of tree generated by reproduction 50
The number of new lives 50
The number of trees generated by mutation 100
The probability of mutation 0.2
The maximum length of tree 17
The probability of leaf selection under crossover 0.5
The number of generations 100
The maximum number in the domain of Exp 1700

For each of the simulation, the sum of squared errors (SSE) is calculated for
the in-sample period and the sum of squared prediction errors (SSPE) for the
out-of-sample period under Gen (generation)=0, 50, 100, 150 and 200'4. We

9Since we only consider the capability of GP to learn the possible existence of the short-
term nonlinearity, it is natural not to test its performance by using too many out-sample
observations.

107 e., the sample period with the highest MDL.

1 Briefly speaking, we first transform the orginal sequence of {R:} from 1/5/71 to 1 /27/94
into a 0-and-1 sequence based on the sign of R;. Then MDL is computed for each of the 50
consecutive observations in the 0-and-1 sequence by choosing the Bernoulli class and Markov
class as our model classes.

12The MDL for this period is 37.807. The lowest MDL which is 12.126 is observed in the
period form 5/23/85 to 6/1/85.

137 detailed description of this program can be found in Chen, Lin and Yeh (1994).

1 For details, we refer to Chen and Yeh (1994b). :
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then compared these results with those derived from the best model chosen from
LARMs. The LARMs we consider are composed of Model AR(1) to AR(10) and
random walks. The best model chosen by the AICC criterion is AR(1) whose

SSE and SSPE are 0.06726 and 0.00331 respectively'® and the results of II(n)
are given in Table 2.

Table 2: The Estimated II(n) Given That the Target Is AR(1)

n II(n) | The simulation which beats AR(1)

50 | 0.3750 | 4, 6, 8,12,14,16,17,21,24,25,26,27,29,30,31,33,37,41,48,49,51,53,55,57,58,62,72

100 | 0.2083 | 4,10,16,27,29,31,41,45,47,48,49,51,52,53,64

150 | 0.1806 | 4,10,15,27,31,35,41,42,45,49,51,52,64

200 | 0.1528 | 4, 6,10,13,27,31,41,42,45,49,63

In terms of both SSE and SSPE, the chance that GP can beat AR(1) is
less than one half; hence, generally speaking, GP does not perform better than
AR(1). This is especially true when we allow the evolution to take longer.
This may reflect that overfitting will become a serious problem when evolu-
tion takes too long. The third column of Table 2 lists all the simulations that
beat AR(1). There are five simulations which perform consistently better than
AR(1), namely, Simulations 4, 27, 31, 41, and 49. The best model selected from
these five simulations are written as Equations (6) to (10).

Simulation 4a :

Ry = ((LogRt—4*(Ri-1* Ri_5))%(((EzpRi—4 * (Ri-10%Ri-g))
—Log(Ri-5 + Ri—1)) * (Ri—10 + (Re—7%(Ri—10 + Ri—g))))) (6)

Simulation 27a :

R: = (Sin(Ri-9* Ri—5)%((((Sin6.51634822 — R;_4) + R:_7)

—R;-1) + SinR._3)) (7)
Simulation 31a :
R: = (Ri-s%Log((Ri-¢ * Ri—6)%R:i-9)) (8)
Simulation 41a :
R, = (LogLogLog(R:—10%R:—9) * (LogR:—1 * (EzpLog(Re—z +
Ri—6)%((Ri—s%R:—s)%R:_3)))) (9)

Simulation 49a :

Ry = (Log((Log((Ri-10* (Rt—9 — Rt-10)) * Ri_7) * ((Log((Ri-1 *
(Rt-10* Ri—4)) * Ri—7) * (Ri—6 * Ri—g)) * Ry_s)) * Ri_6) *
(Ri—4a* Rt—2)) (10)
In order to understand whether the model selected by GP can outperform
random walks (RWs), we now turn to Table 3. It can be seen that the chance

that GP beats RWs is extremely low. While Simulations 4 and 41 can perform
consistently better than RWs, the difference is very limited!®.

15The SSE and SSPE for random walks are 0.0068 and 0.0027.
18See Figure 1 and 2.
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Table 3: The Estimated II(n) Given That the Target Is Random Walks

n TI(n) | The simulation which beats Random Walks
50 0.0416 | 4,16,41
100 | 0.0555 | 4,16,41,45
150 | 0.0555 | 4,10,41,51
200 | 0.0555 | 4,10,13,41,

4 The Emprical Results of Bayesian Genetic
Programming

In our second experiment, we consider a modified version of genetic program-
ming, i.e., Bayesian genetic programming (BGP). BGP modifies the original
version of genetic programming by adding our prior knowledge to Generation 0.
By doing this, we are asking whether GP can enable us to forecast better given
prior knowledge. In this experiment, we include all LARMs, i.e., from AR(1)
to AR(10), into Generation 0. 50 simulations were run under the same chosen
parameters given in Table 1 and the results are summarized in Tables 4 and 5.

Tabel 4 is the average SSE over all simulations under KGP and BGP. We
can see that adding LARMs does enhance our performance of learning from
experience. On average, the SSE has been reduced from 0.055 to 0.046 at
Gen=200. Unfortunately, the nonliear regularities learned in this way have
very poor capability of being generalized. From Table 5, we can see that with
LARMs as the initial knowledge, the forecasting performance of GP deteriorates.
Only Simulation 11 consistently performs better than AR(1), and none of the
simulations forecast better than random walks.

Table 4: The Comparision of Fitness Performance between KGP and BGP

n KGP’s SSE | BGP’s SSE
50 0.059 0.053
100 0.057 0.050
150 0.056 0.048
200 0.055 0.046

Table 5: The Estimated II(n) Given That the Target Is AR(1):BGP
n I1(n) | The simulation which beats AR(1)
50 0.02 11
100 | 0.04 11, 40

150 | 0.02 11

200 | 0.02 11

5 Concluding Remarks: Complex Turning Points
and Long-Term Regularity

The application of genetic programming to the most complex 50-day period
of Taiwan’s stock index shows that, while the short-term nonliearities might
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exist, it is extremely difficult to find them. It is in this sense that the weak-
form efficiecncy hypothesis is accepted. However, to generalize this result, two
questions need to be addressed. First, will the same result hold for other 50-
day periods whose turning point pattern is less complex. Second, are there
any long-term nonlinearities in stock returns series? These issues merit further
studies.
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