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ABSTR,ACT

This paper is devoted to applying the genetic progamming paradigrn to the
test of the captial ma,rket efficiency hypothesis. Eow this paradigm is distiu-
guished from the existiug statistical approaches is briefly reviewed. Instead of
using the largesample analysis prevailing in the literature, this resea,rch rests
on a small-sample analysis to inquire the existence of short-term non-linear reg-
ularities. By Rissanen's MDLP (Minimum Description Length Principle), the
sample period with the highest complexity is chosen. Since our simulation re
sults, which are based on Koza's genetic programming paradigm (KGP) aud
its Bayesian modification (BGP), show that it is not easy to outperform AR(l)
and is extremely difrcult to beat random walk, the nonlinear regularities, while
might exist, is very difficult to be found. Therefore, the capital ma,rket efficiency
hypothesis can, at least, sustain from this perspective.

1 Rethinking Predictability via Genetic Pro-
gramming

The purpose of this paper is to apply the genetic programming paradigm devel-
oped by Holland(1975) and Koza(1992) to testing the capital market eficiency
hypothesis by using the data of Taiwan's stock market. Tladitionally, the test of
this hypothesis is based on the concept of, probabilistic inilependence, that is, to
prove that the a-algebra geuerated by the history of the rates of return will tell
us uothing about the present or future rates of return. Therefore, technically,
the rate of return .Q should be independent of any Borel functious of .r?" (s <
t)I. Eowever, the major problem behiud this idea is that there is no way we can
effectively construct the evidence of independence by trying all Borel functions
of r?t. So, in practice, only limited sets of functiou are included as the candi-
dates, and the test gradually proceeds from linear independence to non-linear
independence.

1In the literaturc, this is the socdled ucok-Jortn eficicncg.
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In this paper, we shall show that genetic programming provides us with
a new framework to revisit this issue. While it agrees with the definition of
market efrciency based on probabilistic independeuce in some essential aspects

sud as the unpredictability of the future rates of return, genetic programming
captures the meaning of unpredictabilitg in a more natural way, i.e., instead
of asking whether or not the future rates of return a.re predictable, the genetic

programming (GP) approach asks how difficult it is to predict; instead of asking
whether the capital market is efficient, GP asks how efficient or inefrcient the
capital market is. Thus, the genetic programming approach transforms an in-
tractable (aud undecidable) yes-or-no issue into a moreor-less one. The reasons

why genetic programming enables us to do so are stated as follows.
The intuitive meaning of hard to predict ot oerA hard to predict can be con-

sidered equivalent to (uery) hard lo find a nile under intensioe seorch frorn past

expertences which can help predict the falure. Eowever, a fruitless intensive
sea,rch does not imply there is no rule, nor does it mean that it is difficult to
find one given the fact that it exists. Rather, it depends on how the search is
implemented. Blind random search might not be qualified to decide whether
the rules are hard to find. Highly organized search has its problems too, be-

cause to implement organized search, we must know something about the world
which we have not started to explore yet. Fruitless intensive search can evidence

"hard-tepredictness" only if the implementation of search is neither too raudom
nor too organized. But it is very difEcult to pinpoint the balance point. The
relevant cotrcern here is not "Is lhe search slntcture optimal?' but rather "Is
the search straclare acceptable?'2. This is where genetic programming comes

into play.
By following Darwin's evolutionary principle and the operations of reproduc-

tion, crossover and mutation, GP can be considered an effective search principle.
First of all, it makes a compromise between blind random search and organized
selective search. Initially (Generation 0) , it can sta,rt from a totally random
search. Then, generation after generation, the operation of reproduction and
crossover based on the fitness criterion makes the search more selective aad
organizeds. Secondly, it starts from simple forecasting nrles and, unless neces-

sa,ry, the chance of jumping into complex forecasting rules is rare. In the spirit
of Occam's razor or the information theoretic Minimam Description Length
Crileriona, this is certainly a very desirable feature. Thus, GP can effectivelys
find better forecasting rules. This explains why GP can serve as an effective
search structure and as a foundatioD upon which one may judge whether it is
hard to predict the rates of return.

In the literature of financial economics, the efficient ma,rket hypothesis can
be translated as

ElRtlEr-rl=O (t)

where Er-r is the c - algebra generated by all past publicly available informa-
tion. One of the tests of this hypothesis is based on the model

E[& I Et-r] = g(&-r, "', &-r)
h

= go +lfiRn-; + d(&-r, . . ., ft,-r) Q)
i=l

2This is especially true under the influence of Godel's incompleteness theorerr in mathe-
matical logic.

3It shares some similar features with the simulated 6sagoling in the numcrical a.nalysis.
asee Rissanen (1989).
sl.e., in the scnse of both time complexity and algorithmic complexity. Howcvcr, the

mathematics that underlies GP is uot easy. Some work has beeu done by Holland(1986), but
wc uccd more contribution in this aspect.
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with the null hypothesrs

Hs P;=Q, i=0, 1,"',,b

aud

6(Rr-r,"',Er-r)=0

(3)

(4)

where /0 is a nonlinear Borel function of Rt-r,...,R -k. While it is easy to
test (3) by restricting the model to a linear version of Model (2), a general test
of both (3) and (4) under Model (2) is difficult. We therefore use the following
twestage procedure to perform this test.

At the first^stage, we use genetic programming to find the possible functional
form g, i.e., g(.), by using the SSE (sum of squared errors) as the criterion of
fitness. This euables us to know whether there is any simple nonlinear function
which can fit the data better than the lins3l a,ufqlegressive models (LARMs).
Eowever, by doing so, we might run the risk of overfitting. Therefore, At the

second stage, we use g(.) to forecast and to see whether it can forecast better
than the LARMs. Only in the case where g can both fit and forecast better, do
we conclude that a nonlinear relationship exists.

Before we can proceed further, however, a few questions need to be ad-
dressed. Firstly, since the search directed by genetic prograrnmingis random,
what matters 'rs the probability of finding models better than LARMs. As is
clearly shown in Chen and Yeh (1994a), genetic progra^rnming can be mathema-
tized as a raudom search model parameterized by first-order Markov transitiou
probabilities which are determiued by the design of the eaolulion operalorso.
Eeuce, given a target, a particular LARM for instauce, we can ask the proba-
bility, namely, [I, of finding the forestT which includes at least one tree whose
performance in terms of both fitting and forecasting is superior to that of the
targetE. We propose this tr as an objective measure of the difrculty of pre.
diction. The higher the II, the easier it is to predict. Unfortunately, a direct
calculation of tr is extremely difrcult. Nevertheless, an estimated II can be
obtained by a large-scale simulation.

2 Nonlinearity, Complexiry and the Choice of
Data

The second issue concerns the choice of the data set, especially the sample size.
While the efficient market hypothesis puts no restriction on the sample size, the
application of GP to different sizes of sample does require lots of thought. This
is because GP aims at finding the potential existence of nonlinear regularities.
The requirement for the sample size varies with different periodicities. For
the time.invariant long-term nonlinear relatiou, a large sample size is needed.
Eowever, if the stock market encounters a sequence of short-term time-variant
nonlinear relations, a large sample size may average out all these relations. In
this case, a smaller sample size is desirable. Thus, lots of combinations need to
be checked before any mature conclusion can be reached. Since this is the very
beginning of our research on the efficieut market hypothesis, we would like to
see some preliminary results as soon as possible, and the choice of small sample

6This can be done by using the langr:.age LISP (List Progra.EEing) to encode frrnctions.
7A fo"*t is a collection of trees. Since ia the laaguage of LISP, each firnction cao be

represented by a trre, a forcst is, in fact, a collection of functions or models.
EMore precisdy, II is a fuaaion of the length of evolution takea, i.e., the number of geu-

eratious, a, a.nd should be dcnoted by II(z).
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size is justified by this consideration. In this paper, the sample size is set to be
55, and the data are divided into the in-sample period and out-sample period
in accordance with the following ratios.

p_ _ #{in - somple peri.od} _,nq fi{out - sample offi ='o (5)

Furthermore, we use Rissaneu's MDLP (minimun description length princi-
ple) criterion to pi& out the most complex 55 observationslo as our data set. A
detailed description of this procedure and its meaning can be found in Chen and
Tan (1994)11. By this criterion, the Taiwan stock market index used is during
the period fuom lll27/90 to 2/519t 12. The in-sample period is from rr/27/90
to Ll30l9l and the out-of-sample from llStlgl to 2/5lgL.

3 The Emprical Results of Koza,s Genetic Pro-
gramming

To implement genetic programming, the program GP-Pascal is writteu in terms
of Pascal 4.0 by following the instruction given in Koza (1992)13. The chosen
parameters to run GP-Pascal are given in Table 1. To derived, i, T2 simulations
were run under Table 1.

Table 1: Tableau for Simulation L*Z2a and 1b-E0b

For each of the simulation, the sum of squared errors (ssE) is calculated for
the in-sample period and the sum of squared prediction errors (sSpE) for the
out-of-sample period under Gen (generation)=0, b0, 100, lbO and 2001a. We

9since we oaly consider the capability of GP to learn the possible existeace of the short-
tern uonlioearitS it is natural not to test its perforzrance by using too 6,h!, out-emple
observations.

lol.e., the sa,mple pedod with rhe highest MDL.
rrBriefly speaking, we first tra,nsf,ora the orginal sequeDce of {Rs} fi:or-l/S/7t to L/27/g4

into a O'and-l sequet!@ based on the sip of Rr. Then MDL is computed for each of the SO
consecutive obscrvations in thc Gand-l sequence by droosing the Bernoulli class and Ma,rkov
class as our model classes.

r2The lvDL for this period is 37.807. The lowest MDL which is 12.126 is observed in the
pcriod form 5/23185 to 6/l/85.

13A detailed deseiption of ttris progra,n can be fo,nd in chen, Lin and. yeh (1994).
llp6r1 dq6ril", we rcfer to Chen and Yeh (lgglb).

Populatioa size 500
The number of tree created by complete growth 50

I'he number of tree created by pa,rtial growth 50
Functional set {*, -, x, sr'a, cosrTo, EX P, RLOGI
Termiaal set {ftr-r, Rc-2,.. ., ir-ro}

The number of tree generated by reproduction 50
The numbet of new ]ives 50

The number of trees generated by mutation 100
The probability of mutation 0.2

maBmum tree t7
crossover 0.5

The number of generations 100
-fhe maxinum number ia the domain of Exp 1700
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then compared these results with those derived from the best model chosen from
LARMs. The LARMs we consider are composed of Model AR(1) to AR(10) and
random walks. The best model choseu by the AICC criterion is AR(l) whose

SSE and SSPE a,re 0.06726 and 0.00331 respectivelyls and the results of tr(n)
are given in Table 2.

Table 2: The Estimated tr(n) Given That the Target Is AR(l)

In terms of both ,SSE and SSPE, the chance that GP can beat AR(1) is
less than one half; hence, generally speaking, GP does not perform better than
AR(l). This is especially true when we allow the evolution to take longer.
This may reflect that overfitting will become a serious problem when evolu-
tion takes too long. The third column of Table 2 lists all the simulations that
beat AR(1). There are five simulations which perform consistently better than
AR(l), namely, Simulations 4,27,31,41, and 49. The best model selected from
these five simulations are written as Equations (6) to (10).

Simulation 4a :

R. = ((Los&-e* (&-r *nr-s))%(((ErpRr-n* (Et-ro%&-e))

- Los (Rt - s + ftt- r)) + (&- ro + (R, -zYo(&- ro + ftt-s))));

Simulation 27a :

R4 = (Sin(&-s *Ar-s)%((((.9i26.51634822- R4-4)+ fu-z)
-&-r) + SfnEr-r))

Simulation 31a :

Rt = (&-eVolos((Er-s*&-s)%&-s))

Simulation 41a :

Rt = (LogLogLogl4-nToRt-s) * (Log&-1 + (Explog(Rt-z *
Rt - a)Vo(( Rt - s% Rt - g)%n, - s) ) ) )

Simulation 49a :

(6)

(8)

(e)

R" = (Los((Los((ftr-ro * (Er-r - &-ro)) * &-z) * ((Ios((r?1-1 *
(Er-ro *l?,-r)) * Rt-z) * (&-o * &-a)) * &-s)) * .R1-6) *
(Er_+ * r?r_z)) (10)

In order to understand whether the model selected by GP can outperform
random walks (RWs), we now turn to Table 3. It can be seen that the chance
that GP beats RWs is extremely low. While Simulations 4 and 41 cau perform
consistently better than RWs, the difference is very limitedl6.

rsTh. SSE and SSPE for random zralts arc 0.@6E and 0.0027
l6See Figrlre 1 and 2.

(7)

n II(z) The siaulation which beats AR(l)
50 0.3750 4,6,8,12,14,16,17,2L,24,25,26,27,29,30,31,33,37,41,49,49,51,53,55,57,59,62,72

100 0.2083 4,10,16,27,29,31,41,45,47,48,49,51,52,53,64
150 0.1806
200 o.1528
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Table 3: The Estimated tr n Given That the Is Random Walks

4 The Emprical Results of Bayesian Genetic
Programming

In our second experiment, we consider a modified version of genetic program-
ming, i.e., Bayesian genetic progrdmming (BGP). BGP modifies the original
version of genetic programming by adding our prior knowledge to Generation 0.
By doing this, we a,re asking whether GP can enable us to forecast better given
prior knowledge. In this experiment, we include all LARMs, i.e., from AR(l)
to AR(10), into Generation 0. 50 simulatioffi were run under the same chosen
parameters given in Table 1 and the results are surunarized in Tables 4 and 5.

Tabel4 is the average SSE over all simulations under KGP and BGP. We
can see that adding LARMs does enhance our performance of learning from
experieuce. Ou average, the SSE has been reduced from 0.055 to 0.046 at
Gen=200. Unfortunately, the nonliear regula,rities learned in this way have
very poor capability of being generalized. From Table 5, we can see that with
LARMs as the initial knowledge, the forecasting performance of GP deteriorates.
Only Simulation 11 consistently performs better than AR(l), and none of the
simulations forecast better than random walks.

Table 4: The Comparision of Fitness Performauce between KGP and BGP
n KGP'S SS!.; lrc.t"s SSE
50 0.059 0.053
ru) 0.o57 0.050
150 0.056 0.().t8
200 0.055 0.046

Table 5: The Estimated tr n Given That the Is ):BGP

5 Concluding Remarks: Complex Turning Points
and Long-Term Regularity

The application of geuetic programming to the most complex 50-day period
of Taiwan's stock index shows that, while the short-term nonliearities might

n II(z) The simulation which bcats Random Walks
o.04l6 4.16.4150

1fi) 0.0555 4,16,41,45
150 0.0555 4,10.41,51
200 o.0555 4,10.13,41,

n II(n) The simulation whidr beats AR(l)
50 0.02 11

1()(, 0.04 lt, 4()
150 0.02 11

200 0.02 11
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exist, it is extremely dfficult to find them. It is in this sense that the weak-

form efficiecncy hypothesis is accepted. However, to generalize this result, two
questions need to be addressed. First, will the same result hold for other 5G
day periods whose turning point pattern is less complex. Second, are there
any long-term nonliuearities in stock returns series? These issues merit further
studies.
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