
Tailoring rulesets to misclassification costs

Jason Catlett

Room 2T-412, AT&T Bell Laboratories
600 Mountain Ave, Murray Hill, NJ 07974, USA

Email: catlett@research.att.com

Abstract

This paper studies the capabilities obtained by modifying Quinlan's [9] C4.5 programs for inducing
decision trees and rules to permit the specification of unequal misclassification costs for binary classification
tasks. Setting this cost value allows important pa.rameters such as the percentage classified as a given class

to be moved over their complete range. In some applications such parameters require precise control, but
a considerable degree of variation appears difficult to suppress, particularly with rules: it is present even in
the unmodified versions that treat all errors as equal. Crossvalidation over a range of cost values seems the
appropriate way to tune such parameters. Independent of misclassifications costs, the ability to explore
a spectrum of classifiers can considerably assist orploratory data analysis, delivering clearer rules than
the sta.ndard version may provide. These conclusions are illustrated on a simulated version of the game

Blackjack.

1 Introduction and motivation
Most classifiers in machine learning (Mt) a,re built with the aim of minimizing the number of errors on

unseen examples from the same distribution as the training set [6], but statisticians have long taken for
granted the situation where the misclassification costs differ [1], and where the number of a certain type
of error must be limited [a]. In the tweclass case the relative costs of the two types of error may be

summarized as a single positive real which I will call the loss ralio (LR). A LR of 1 expresses equal costs.

This paper examines modifications to programs for inducing rules that accept a specific loss ratio.
In many ML applications one class is comparatively ra,re and of special interest: in manufacturing and

medicine, periods during which a system is behaving abnormally; in information retrieval (IR), pieces of
text relevant to some pa,rticular category; in marketing, customers who take certain actions (desirable or
undesirable). The misclassification costs may not be known and it may be difficult even to estimate them
beyond identifying which is the more serious, but the minimum acceptable certainty factor of a rule for the
ra,re class can be well below the 50% level, where standard ML algorithms will cease to generate rules for
that class. The goal of induction during data analysis may be simply to explore the areas of the attribute
space where the ra"re class is comparatively more common, even if it nowhere reaches a majority.

The next section describes a domain and the common basis for the experiments. Section 3 exhibits
three rulesek built from the same training set with various values of the loss ratio parameter, to illustrate
its benefit to exploratory data analysis [11]. Section 4 uses ROC analysis to show the high variance in
parameters such as the false alarm rate. The implementation is sketched briefly in [7].

2 Description of domain and experiments
The domain this paper uses as an illustration is based on the popular casino game Blackjaci, also called

luenty-one l8). This was chosen because the induced rulesets are small and comprehensible to a wide
audience. For a case study of the method's application to large IR tasks, see [4. Several departures from
the real garne are made for convenience. Cards are dealt from a notionally infinite deck; initially two to
the player and one to the dealer, which the player can also see. Kings, queens and jacks count as 10 points;

88

Class Rule # Vo Coverage To Dttor ptc pha duc phs
p 1 6.1 0.0 1t- v
p 6.1 0.0
d 2 85.9 33.4 n
d E5.9 33.4
d def 8.0 40.2 ptc pha duc phs

all 100.0 32.0

Table 1: A ruleset with low falsepositive rate

aces asr 1 or ll at the holder's choice; all other cards as their numeric value. With a total of less than 21 the
player may choose either to sit or hit (to decline or request an additional card). If the player ever exceeds

21, the dealer wins. If the player sits with less than 21, a dealer with a total below 17 is required to take
extra cards to attain this minimum; if the dealer exceeds 2l or reaches 17 with less than the player's total,
the player wins.

To keep the number of classes to two, the following simplifications are made: with blackjack (21 with
only two ca.rds) the player wins even if the dealer has the same, but in all other draws the dealer wins. We

exclude complicated player options such as splitting, doubling, and insurance.
In this simulation the class we aim to predict is whether the player or dealer will win, given the following

four attributes, each preceded by their abbreviated names: ptc: the total of the player's first two cards
(counting aces as 1); pha: whether the player has at least one ace; duc: the dealer's "up" card; phs: which
of the following two equiprobable strategies the player follows: to sit immediately, or to hit and continue
doing so until the hand totals 17 or more. We do not attempt to predict whether the player will hit or
sit, although some guidelines can be extracted from the rules as to which would be more advantageous in
certain situations.

All the experiments in this paper use this domain, on training sets of size 1,000 except where otherwise
specified. Most of the experiments use the original C4.5, but where a loss ratio other than I is specified, a
version modified as was used, as sketched in [7]. A single independent test set of 10,000 examples was used

across all experiments; training sets were generated independently. The class p (player wins) is considered

the positive class. The test set contained 6,480 negative examples, so the default error from a classifier

that always gives the majority class is 35.2To.

3 Varying the LR for exploratory data analysis

To exhibit the benefit to exploratory data analysis ofvarying the LR, I have chosen three rulesets built from
the same training set using different values for the loss ratio. They have been automatically reformatted
from C4.5's output into the form of ilecision lables, which many people find easier to understand as a whole
than textual rules. Table 1 is the simplest; this ruleset is delivered by very small values for LR, such as

1/32. Attribute names are listed in the rightmost four columns. The columns indicate (left to right)

o the class of the rule's conclusiou (p for player, d for dealer),

o the rule's identifying uumber (which in this case happens to be 1, but in general the ordering is

a,rbitrary),

o the percentage of examples that the rule cooers (i.e. those examples whose attribute values satisfy
all the rule's conditions),

o the error rate on thooe examples matchingthe rule (Rule one is "sure.bet" at0.0To errors), and

89

Class Rule # 7o Coverage 7o Error ptc pha duc phs
p
p
p

P
p
p
p
p
p
p

I
47

7
5

62
43
I

31

95
61

6.5
1.2
2.8
1.3
2.8
1.2

0.2
0.9
4.7
2.3

7.6
50.0
37.9
76.9
37.9
75.0
50.0
44.4
25.0
45.8

9-
11-11
7-
5-6

-15l&14

-2
10-10
20-
16-19

v

v

v

5-
6-8

-4
-9&6
o-/

5-8.)-
+5

s

h
h
s

s

23.9 32.8
d
d
d
d
d
d
d
d
d

75
3

68
27
42
87
64

8
10

2.6
0.8
0.7
0.9

31.9
t7.5
10.0
0.4
1.1

29.6
62.5
42.9
44.4
22.4
28.5
37.3
25.0
18.2

r2-19
3-3

-59-9
t2-
&19

7-8

-8

n

n
n
v
v

8-8

7-
-8
9-
s9
10-

S

h
s
h
h

65.9 27.5
d def 10.4 6t.t ptc pha duc phs

all 100.0 29.8

Table 2: A ruleset built by the unmodified C4.5

Table 3: A ruleset with low falsenegative rate

Class Rule # Vo Coverage To Error Ptc pha duc phs
d
d
d
d
d
d

28
22
20

3
9
6

2.7
1.8

1.0
0.4
0.8
0.7

r4.3
16.7
20.0
25.0
12.5
28.6

17-19
1418

-948
15-19

-8

n
v

n

9-
9-9
9-9
10-
-1
-1

h

h
s

7.4 L7.4
p
p
p
p
p

2

10

29
t2
27

t3.7
4.9
7.8

37.1
22.4

32.9
26.0
62.5
61.8
73.4

20-
t7-
-19
-16

v

2-
2-8

E5.9 58.2
d def o.(13.0 ptc pha duc phs

all 100.0 52.2

90

o the rule conditions: a blank slot indicates the attribute did not appear in any condition of the rule
(this is sometimes called a don't care); a numeric range indicates the attribute value must be in that
rauge (this is actually two conditions except in the case of ranges open at one end); and a discrete
value indicates the condition is a test ofequality for that value.

Thus the first rule could be read as "if the player's total is ll or more and the player has an ace, then the
player will win," reflecting the simplification assumed above. The class p (player will win) is given in the
first column of the next line. The next line, Rule 2, simply states that if the player has no ace, then the
dealer will win (the class is again given in the subsequent line). This rule is wrong in about a third of the
cases. The second last line specifies defailt closs as d. This defaall rzle is used in the 8% of cases where
neither ofthe above rules holds; it has a higher error rate. The last line specifies the total error rate ofthe
classifier in the third column of the header line; in this case it is 32.0%.

The repetition of information iu columns three and four is due to the fact that only one rule appears for
each class in this ruleset. Table 2 (which was produced by the unmodified C4.5, notionally a LR of 1.0) has

ten rules for class p; the figures to the right of the p give the total coverage of the rules for that cla,ss and
the error rate on those examples covered. Where rules are not mutually exclusive, and example is counted
under the first rule it satisfies. C4.5 groups all rules for a class together (with the possible exception of the
default rule, as in Table 3 (LR=4)), so it effectively orders the classes: the rules for the second class are
considered only if none of the rules for the first class is satisfied.

The error rates and coverage figures are based on an independent test set, which shows some rules to
be performing very badly; Holte, Acker & Porter [5] call this the problem of small disjancls. In this case

all the rules with error rate above 40Vo have a coverage of less that 2.5Y0. Changing the value of LR seems
to eradicate them (almost all the disjuncts in Table 3 covered less than this percentage, but are much more
accurate), at the expense of a greatly increased error rate in the rules for the other class. Still, as argued
by Segal, Etzioni, & Riddle [10], some applications are best served by a few accurate rules, even if their
coverage is small.

The main point of this section is that varying the LR parameter can yield useful, enlightening rules
that may otherwise be missed. The clearest example is the rule for blackjack (Rule 1, the only pclass rule
in Table l): on many training sets it does not appear in the ruleset built by the standard C4.5; in its stead
is a less accurate rule of slightly wider coverage with a lower threshold for the player's total count and a
condition on the dealer's count (Rule 9 in Table 2). (Its appearance becomes more frequent as training sets
become la.rger.) Another example is the first rule in Table 3, which predicts that if a player hits with high
total when the dealer is showing a 9 or 10 (making it unlikely his hand will exceed 21), then the dealer is
very likely to win. This rule is extremely obvious and intuitive to anyone who has played the game, yet
no comparable rule appears in the original C4.5 ruleset. Because of the "masking" effect of higher-priority
rules, the conjecture that the original ruleset may nonetheless be getting these cases right could not be
dismissed at a glance, but this only highlights the point: altering the loss ratio can make some rules clearer,
in both senses: easier to understand, and more accurate and clea^r-cut. This capability can be very helpful
in exploratory data analysis.

The simplicity of these rulesets is bought at the expense of less specific information on the class-
probability value assigned to an unseen example: a more complex classifier can choose from a larger set

of values. For example, Table 1 pa,rtitions the attribute space into three regions, each covered by one of
the three rules (the blackjack rule, the rule that an aceless player will lose, and the default rule), whereas
Table 2 has many more rules for each class. Each rule is associated with a class-probability value, just as a
decision tree gives a separate clase.probability at each leaf. A large set of possible class-probability values
will be important in applications requiring an accurate estimate of each example's class-probability, but
not iu thoee where the only question ofinterest is whether the value is above or below a certain threshold.
In the latter case the clarity offered by the simpler model may make them attractive. If the former case is

attacked with decision trees, modifications along the lines of those in Section 6 are needed, as illustrated
by the following case. Suppose the ideal decision tree has a probability value for the positive class of 0.4
at one leaf a'nd 0.2 at its only sibling leaf. Pruning methods typically collapse these into the pa,rent node,
making it a leaf with a value of 0.3 (assuming the leaves were equally populated). The critical value here is

91

normally 0.5; this can be adjusted by ch"nging LR, but the question of whether it is desirable to simplify
the model by merging pa,rts of it on either side of the critical value is a separate question whose answer
depends on the application.

4 ROC Analysis
For applications where it is necessary to limit the number of a certain type of error, we use methods from
ROC analysds [4]. The theory of Receioer Operating Characteristicsoriginated in WWII research on radar
detectors, aimed at finding the best tradeoff between false ala,rms and missed siguals.

When classes are restricted to two values, called say positive and negative, a classifier's performance on a
set of data can be summa,rized by counting each element as one of four possible cases: the true positives (TP)
and true negatives (TN), where the classifier is correct, the false positives (F P), where a negative example is
erroneously classified as positive, and false negatives (FN), where a positive example is erroneously classified
as negative. The traditional ML measure of error rate is of course (FP+FN)/(TP+TN+FP+FN). The
expression TP/(TP + FN), which is the fraction of positive examples that the classifier judges positive, is
called the Trae Positioc Bate (TPR), also called the lit ralein ROC theory, recall in IR, and sensitiaity
in medicine. The expression FP/(FP + TN) which is the fraction of negative examples that the classifier
judges poeitive, is called the False Positioe.Eate (FPR), also called the false alarm rate in ROC, falloutin
IR, and is equal to 1 - specificitg in medicine.

ROC a,nalysis plots a classifier's performance as a point on the unit square with the FPR on the x-a.xis
and TPR on the y-axis, as shown in Figure 1. The data for this figure is for rulesets from 20 independently
generated training sets of 1,000 blackjack examples each, with each of eleven powers of twol as the loss
ratio parameter, for a total of 220 classifiers. The letters in Figure 1 correspond to the following points.

(A) A classifier that deems everything negative sits at (0,0); one that always says positive is at (1,1);
a classifier that ma.kes guess€s unrelated to its input sits on the diagonal line between these extremes at a
point determined by the frequency with with it says positive. Classifiers below this line are doing worse
than guesswork.

(B) A family of nea,r-perfect classifiers inhabits the curve that encompasses all but the top left corner
of the unit square. Obviously such levels of accuracy are unattainable in noisy domains such as blackjack.

(T) The classifier in Table 1 is represented by the point above the T1; Table 2 is somewhere below T2,
similarly with T3.

(C) The gala:ry of points through C (each representing the performance of at least one of the 220
rulesets), has been fitted with a smooth curve (using the S function locess with a parameter of f=0.1) [2].
Note that the curve spans the entire range and is continuously populated, except for a gap between (0,0)
and (0, 0.139), the latter being the "surebet' rule for blackjack. This rule is dropped only for the smallest
values of LR.

(D) The points with diamonds are those rulesets built with a value of 1 for LR: the original C4.5
algorithm. Note the considerable range along the curve this encompasses: (0.052, 0.284) to (0.225,0.503).

(E4) Those points surrounded by triangles are from a value of 2 for LR. Note the even wider range,
with outliers at E5 and E6.

On both trees and rules, the method a,ffords the full range required over the curve. (An exception
is the natur"l g.p due to the blackjack rule, which is desirable given the domain.) Performa,nce appears
consisteut with the original version. I compared this method with the method of duplicating examples of
one class in proportion to the loss ratio, which gives poor range and control, and performance is starkly
dominated by the LR method. This loss of accuracy may be due to duplication confounding the pruning
mechanism.

The major concern revealed by this graph is the large variance observed in the key parameters of TPR
and FPR. It is surprisingly la,rge even with the original algorithm, where misclassification costs are assumed

lThe valuca used were 32, 16, 8, 4,2.82843,2, 1.68179, 1.41421,1.18921, 1, 0.707107, 0.5, 0.353553, 0.25, 0.125, O.(Xi25,
and O.03125.

92

q

q
o

Figure 2: ROC Curve for blackiack domain

ns-perfu€t
T3

Rules

o-2 o.1 0.6 0.8

tdslpcilive rab = iiloul r i - spedfidty
Forerplaafpn seebxt

Figure 1: ROC Curve for blackjack

c,

(o
dv

>22
oc8q
l0

E
e
I
o
6
GE:1
oo.
6
=t

(\l
o

o
c;

T2

Ee

q
c,

no

ol
o

o
ci

T1

A

o.o 1.0

93

to be equal. The problem appears possibly greater for rules than trees and greater for values for LR other
than 1, but is still too strong for some purposes in the original version. I believe that it would be very
difficult to alter the algorithm to reduce this variance, and that at least for now we should content ourselves
with using cossvalidation to achieve a desired value.

5 Conclusions
Exploring rulesets acrossi a spectrum of lalues for loss ratio can considerably assist data analysis. An
analysis of the performance of the original and modified versions of C4.5 shows that parameters such as

false-positive rate exhibit considerable variance.

Acknorrledgements
I thank David Lewis and Matthew Pa,rtridge for their comments on drafts, Ross Quinlan for the code for
C4.5, and Alan Skea for assistance with Blac\iack. Donald Michie converted me to the goal of machine
learning as data analysis.

References

[1] T.W. Anderson. Multivariate andysis: classification and discrimination. ln Internalional encyclopeilia
of stotislics, pages 628-635, I\fy, 1978. Ftee Press.

[2] Richard A. Becker, John M. Chambers, and Allan R. Wilks. The new S language: a prcgmmrning
enoironment for data aaalgsis and graphics. Wadsworth and Brooks/Cole, Pacific Grove, CA, 1988.

[3] teo Breiman, Jerome E. Friedman, Richard A. Olshen, and Charles J. Stone. Classificalion and
Regrcssion ?rres. Wadsworth, Belmont, CA, 1984.

[4] J.P. Ega* Signal detection lheorg and ROC analysis. Academic Press, NY, 1975.

[5] R. C. Holte, L. E. Acker, and B. W. Porter. Concept lea^rning and the problem of small disjuncts. In
Proceedings IICAI-9?, pages 813-818, 1989.

[6] Pat La,ngley aud Dennis Kibler. Machine learning as empirical science. In Proceed,ings of the third
eanopearr. working session on learting, London, 1988. Pitman.

[] David D. Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised lea"rning. [n
ML-94, pages 148-156, 1994.

[8] Albert E. Morehead and Geoffrey Mott-smith. froyle's rales of games. Signet, New York, 1959.

[9] J. R.oss Quinlan. C/.5: Programs for machine learding. Morgan Kaufmann, 1993.

[10] Patricia Riddle, Richard Segal, and Oren Etzioni. Rcpresentation design and bruteforce induction in
a boeing manufacturing domain. Applied Artificial Inlelligence, 3:125-147, 1994.

[11] John W. Thkey. Exploralory data analysis. Addison-Wesley, Reading, MA, 1977.

[12] Sholom M. Weiss and Casimir A. Kulikowski. Compaler systems that learn: classificalion and pre-
diclion methods from statistics, neural nets, machine leaming, and erperl syslerns. M. Kaufmann
Publishers, San Mateo, Calif., 1991.

94

