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Abstract

Probabilistic graphical models are being used
widely in artificial intelligence and statistics, for in-
stance, in diagnosis and expert systems, as a frame-
work for representing and reasoning with probabil-
ities and independencies. They come with corre-
sponding algorithms for performing statistical in-
ference. This offers a unifying framework for proto-
typing and/or generating data analysis algorithms
from graphical specifications. This paper illustrates
the framework with an example and then presents
some basic techniques for the task: problem decom-
position and the calculation of exact Bayes factors.
Other tools already developed, such as automatic
differentiation, Gibbs sampling, and use of the EM
algorithm, make this a broad basis for the genera-
tion of data analysis software.

Introduction

This paper argues that the data analysis tasks of
learning and knowledge discovery can be handled
using graphical models. This meta-level use of
graphical models was first suggested by Spiegelhal-
ter and Lauritzen [41] in the context of learning
probabilities for Bayesian networks. An extension
of the standard graphical model is used here that
allows this kind of learning to be represented. The
extension is the notion of a plate introduced by
Spiegelhalter!. Plates allow samples to be repre-
sented explicitly on the graphical model, and thus
reasoned about. This makes data analysis problems
explicit in much the same way that utility and de-
cision nodes are used for decision analysis problems
[38].

Consider, for instance, Figure 1. This presents a
situation where a mixture model with hidden vari-
able class is used for subsequent prediction of var;
from vars and varz. The part to the left of the
parameters ¢ and 6 is the graphical representation
of a sample. The contents of the plate (the box

!Personal communication. The notion of a “repli-
cated node” was my version of this developed indepen-
dently. I have adopted the notation used by Spiegelhal-
ter and others for uniformity.
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Figure 1: Simple unsupervised learning, with gen-
eral prediction

around the nodes for class, var;, var, and vars)
on the left indicates that a sample of N cases with
variables var,, var; and vars are given, while class
is hidden, being unshaded. The plate indicates that
its contained subgraph is replicated N times. The
part on the graph to the right of the parameters
¢ and 6 represents the prediction task. The value
node on the right, the diamond, indicates that sub-
sequent prediction accuracy is the goal of learning.
Together, this graph indicates that the utility for
the problem is (var, — var;(vars,vars)), and the
joint distribution of the parameters takes the form

o(#, 61,02, 03, class, var;, vars, vars,
class;,var, ;,vary;,vars; : i=1,...,N) =

P(4) p(61) p(62) p(63) p(class|$)

p(vari|class, 6,) p(vars|class, ;) p(vars|class, 65)

N
H p(class;|¢) p(var, i|class;,6,)
i=1
p(var, ;|class;, 0;) p(vars ;|class;, 63) .

There has been a recent push within the ma-
chine learning and neural network communities to
dispel the magic and art from the various learn-
ing fields and present them more as engineering
disciplines. Decision tree methods [5] and feed-
forward networks [30, 8] are some examples that
show how already popular algorithms can be re-
engineered from well understood principles of prob-
ability in combination with the knowledge repre-
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sentation and standard search methods. A simple
connectionist feed-forward network (using the no-
tation of Hertz, Krogh and Palmer [23]) and its
corresponding Bayesian network is given in Fig-
ure 2(a) and (b) respectively. Similarly, other neu-

(@

Figure 2: A simple feed-forward network: (a) in
native form (b) as a DAG.

ral networks can be modeled with graphical models
(“probabilistic networks™).

This general approach, engineering using princi-
ples of probability, is now becoming widespread.
The basic tools of probabilistic (Bayesian) infer-
ence used for this process are reviewed, for instance,
by Tanner [42], Press [36], Kass and Raftery [28],
Neal [34], and Bretthorst [2], and Madigan et al.
[32]: various exact methods, Markov chain Monte
Carlo methods such as Gibbs sampling, the EM al-
gorithm, and the Laplace approximation. With cre-
ative combination, these are able to address a wide
range of data analysis problems. Gilks, Spiegelhal-
ter and Thomas have taken this process a step fur-
ther by developing a compiler that generates Gibbs
samplers from graphical specifications [19]. This
handles a surprisingly broad number of statistical
tasks [18].

It is the thesis of this paper that these techniques
are now sufficiently well developed so that software
support can be provided for their use in data anal-
ysis problems. That is, we are now able to generate
components of data analysis algorithms, and even
entire algorithms themselves from high-level spec-
ifications. The paper demonstrates the thesis by
presenting a framework based around the use of
graphical models as a specification language.

We begin with two examples. The first illustrates
the intended use of the software we envisage, and
the second gives some more mathematical detail.
Then we outline in more detail the specification
language we propose. Finally, we present some the-
oretical results necessary for developing the envis-
aged software. More details of these results can
be found in [3], including results for deterministic
nodes and techniques for doing differentiation, both
used in modeling neural networks with probabilistic
graphical models.
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Two examples

The software we envisage is intended to be used in
an iterative prototype-refine cycle using standard
data manipulation and visualization packages such
as Matlab, PV-Wave/IDL, or S-Plus. An impor-
tant observation is that prepackaged data analysis
software such as clustering, linear regression, and
feed-forward neural networks are sometimes inade-
quate for the particular task at hand. While these
packages are often good for exploratory data anal-
ysis, our experience and that of many others indi-
cates that data analysis and knowledge discovery
requires more flexibility in general. The first ex-
ample below illustrates the kind of prototyping our
envisaged software is intended to assist, and the
second example illustrates some more of the math-
ematical detail.

Prototyping data analysis

This example will demonstrate how the system we
propose would operate, reducing a problem that
might require weeks of effort into an afternoon’s
work. Figure 3 plots the raw data for this example.
The data give mean bid-ask prices posted by banks
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Figure 3: The mean bid-ask price for DM/$.

at various time points over the course of a week
for turning dollars into Deutsch marks. The mean
bid-ask price (average of the two) is a more stable
indicator of the bank’s pricing position because the
bid or ask price alone also includes effects due to
the banks policy on the bid-ask spread. Original
data takes the form of a date and time, the bid and
asking price, and the bank code.

Date Bid Ask Bank
Sep 1 13:42:40 1.5737 1.5742 CONY
Sep 1 13:42:45 1.5735 1.5745 MGTX
Sep 1 13:43:14 1.5735 1.5740 BBIX



Our goal is to model the time series and to under-
stand individual differences among the banks. The
data we have at our disposal consists of the tick
data in Figure 3 together with various properties
of the banks, such as their geographical location.
We hypothesize that the tick data is effectively
a random walk, but where the percentage change
at each time point is influenced by the bank post-
ing the price. For example, we might suspect that
some banks tend to post larger differences from the
previous tick than the average change, or that some
banks post more frequently during upswings than
downswings, so that the ticks posted by such a
bank run contrary to the downward trend. Figure 4
shows the kind of thing we are after, plotting the
empirical frequency of percentage changes for all
the ticks, for a bank that only posts large changes
from the previous tick, and for a large bank that
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Figure 4: Frequencies for different relative price
changes.

We sit down at our data analysis system, pull
in the raw data, and set up a quick model to do
an unsupervised clustering of the banks. Our first
pass uses the random so that we can get a basic feel
for the different kinds of banks. For each bank we

have:

e The mean of the bank’s bid-ask spread.

e The bank’s geographical location.

e The average number of posts the bank generates
per day.

o The massaged tick data giving the bank’s rela-
tive price change over the immediately preceding
price (probably posted by a different bank).

The graphical model, shown in Figure 5, is created
using a drawing tool. In this model, the relative

Bank

Figure 5: Basic clustered random work model for
price changes.

change that a bank will offer is assumed to be de-
termined by its class, but is otherwise a random
walk. Notice this model has multiple banks, and
each bank gives multiple prices, so this model has
multiple plates indicated a double product occurs
in the full joint distribution for the data (over banks
and over the bank’s price changes). For the current
problem we simply drag a prefabricated mixture
model and appropriate components from a palette
or component library into the work area, and make
some modifications to it. The model should include
complete specification of all distributions and pa-
rameters (e.g., all parameters of the Dirichlets in
Figure 5 be supplied). For instance, we would have
to set the various parameters for the conjugate pri-
ors appearing in the model. The model of Figure 5
is not a standard clustering model so could not be
obtained from any standard statistical package. In
other problems we could create a free form model
by drawing individual nodes, links, and probability
annotations. The drawing tool contains the neces-
sary hooks to associate variables on the plate with
the fields from the bank database, and the com-
puted fields from the tick database.
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We now press the RUN button. At this point the
system performs all the drudgery such as mathe-
matical calculations, programming, and validation,
previously requiring weeks of effort:

e It performs known symbolic simplifications on
the graphical model. For instance, it knows
about sufficient statistics and some closed form
solutions to expected values.

e It computes all required derivative functions.
e It chooses an optimization algorithm.

e It finds the parameter values of maximum pos-
terior probability, together with the Bayes factor
and the Hessian of the posterior evaluated at the
final parameters.

o It generates optimized C code to evaluate the
model by performing a data flow analysis over
the needed computations.

Now we could provide the system with an algo-
rithm scheme, such as EM or Gibbs sampling (ad-
ditional examples are given later), and have the
system come up with the necessary code for the
derivatives, expected values, probabilities, and so
forth. However, in this case the default algorithm
matching the graph is good enough.

We can now analyze the final model to see what
it tells us, for instance using available visualization
tools. (All this is make believe.) The classes that
it finds are natural ones we might expect. The
banks are broken into different classes according to
whether they are closer to the New York or London
markets. Banks that post infrequently tend to have
a higher bid ask spread than those that post often.
Each of these groupings also has different random
walks for their pricing. Some smaller banks, for
instance, tend to make larger changes.

We now go back to the drawing tool and refine
the model to account for the context of the tick
data. In the previous model, the relative change
that a bank will offer is assumed to be determined
by its class, but is otherwise a random walk. In
this case we also make the price sensitive to the
current average trend which is dependent on pre-
vious prices. This new model is given in Figure 6.
Having drawn the new model, we simply click the
RUN button and let the system re-optimize for the
new configuration. This time, we could use the pre-
vious classification got as the initial values for the
new extended model.

For this more complex model, we would probably
have to modify the default algorithm scheme sug-
gested by the system. This is something we expect
in general, so the system we propose includes both
a graphical model and a general algorithm scheme
as inputs. If the algorithm scheme is missing, the
system can provide a default using general purpose
algorithms such as Gibbs, EM or MAP algorithms.
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Bank

Figure 6: Trend sensitive model for price changes.

A more detailed example

An example of a graphical model for a simple clus-
tering problem is given in Figure 7. To be explicit,

Dirichlet(0.1,0.1,...,0.1)

Gos)at—®)

. BetaDq1,D(1-q1))
1

T e @-' eta(Dqgp,D(1-q2))
efa(Dqs.Dﬁ -3))
v &

Figure 7: A simple unsupervised learning problem.

we also have to give the full distributions for the
variables in the graph. Assume there are 10 classes,
so class € {1,2,...,10}, and the variables var;
are binary. The graphical model is a mnenomic
for the following distributional assumptions for the
j-th case being

var;; ~ Bernoulli with prob. success 6; ciqss I
10-dimensional Multinomial with
probabilities ¢1, ¢2,..., d10;

class; ~

and for the parameters ¢ and 6 being

¢ ~ Dirichlet(0.1,0.1,...,0.1) ;
6;c ~ Beta(Dg;,D(1- g;));



for the hyper-parameters D, g, g2, ¢3s. Using an em-
pirical Bayes approach, we set g; to be the observed
frequency of success for var; and set D = 4 to yield
reasonable prior standard deviation for the possible
values of 6;.

A matching algorithm scheme for this model, an
iterated EM algorithm in pseudo-code, goes as fol-
lows:

1. Repeat, 5 times.
(a) Initialize the parameters ¢, § randomly accord-
ing to their prior.
(b) Repeat until the maximum relative difference
in parameter values ¢, 8 is less than 1.0e — 5.
i. Reassign the sufficient statistics for ¢ as fol-
lows:
N
33(¢) = Zgclau.-Ivarl,,-,varg,i,vars,.-,¢,0 (da"s)

i=1

ii. For ¢ = 1,...,10, reassign the sufficient
statistics for 6, ., 62 , 03, as follows:
N
ss(6j,c) = Z
t=1

8class.~|var1,.~,varg,;,vara,;,¢,0 (lclas:,-=cva7'j,i)
iii. Replace ¢ and 6 by their MAP values given
the sufficient statistics as above.

(c) Compute the score for the final parameter val-
ues as

2
score = det (d 1°8P(¢,0|sample))

d(¢,6)
2. Return the parameters ¢, matching the best
score.

The system would automatically compute the
derivatives, expected values, MAP calculations,
and so forth and insert the code efficiently into the
major loops. Notice there are problems with this
algorithm scheme, for instance, if a ¢; approaches
zero the score will become ill-defined because some
of the parameters will become redundant. This is
irrelevant for the purposes of our illustration.

High-level specification of data
analysis algorithms
An overview of the basic framework is given in Fig-
ure 8. Inputs to the system are a graphical model to
specify the variables and their relationships, and an
algorithm scheme to specify the algorithm. These
two inputs can be patched together from libraries.

A language to specify variables and
their relationships

Probabilistic graphical models (chain graphs [44,
16]) extended with plates are used here as a spec-
ification language. When augmented with specific

Figure 8: The basic framework for specification.

functional forms such as the Gaussian and the logis-
tic, this language is sufficient powerful to represent
a broad range of problems across several fields: gen-
eralized linear models, feed-forward networks, Jor-
dan and Jacobs mixture of experts [27], unsuper-
vised learning of many different kinds, and hybrids
of these models. A review of some of the learning
problems represented appears in [7].

A graphical model implies a probability model,
thus it defines how probabilities, log-probabilities,
their derivatives, and some expected values can be
computed, and in some cases how sampling can be
done. For a Gaussian or discrete Bayesian network,
for instance, the usual exact computations are im-
plied by the graph [39]. Techniques for computing
these quantities are of course more complex in other
cases. In general, exact methods for expected val-
ues are not known, and probabilities are not in gen-
eral easy to compute for chain graphs and Markov
networks, although ratios of probabilities are. The
automatic calculation of derivatives on structures
such as graphs is a well understood problem [20].
In neural networks, this corresponds to the Back-
propagation algorithm and its extensions for second
derivatives [9]. Likewise, the calculation of deriva-
tives on probabilistic graphical models is an appli-
cation of the chain rule for differentiation. Details
appear in [3].
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Algorithm schemes

Algorithm schemes are high-level algorithms used
as input for code generation and compilation. The
algorithm scheme refers to variables, probabilities,
log-probabilities, derivatives, and expected values
for items on the graph whose computation can
be determined automatically. Thus the scheme is
free of many of the cumbersome equational details
found in most languages. Algorithm schemes them-
selves can be produced automatically from algo-
rithm templates for problems matching the right
preconditions, and in other cases may be provided
or refined by the user. We do not give a specifi-
cation of the scheme and template language itself
here, but the reader can infer from the examples
that the scheme language is a fairly standard pro-
cedural language with appropriate hooks into the
matching graphical model. Some sources for algo-
rithm templates are as follows:

e Gilks et al [19] have developed general algorithms
to perform Gibbs sampling on Bayesian networks
with plates.

e Other algorithms such as conjugate gradient,
Fisher’s scoring method, or Laplace approxima-
tions [43, 28] can be applied once first and second
derivatives are calculated for model parameters.

e Lauritzen describes the application of the EM al-
gorithm [15] to Bayesian networks with a single
plate [29] in the context of missing values. The
more general application of the EM algorithm for
hidden variables is obvious, as for instance done
in unsupervised learning [21].

General discussion

We can see that many parts of this ambitious plan,
a software tool kit for data analysis, are already in
place. But the aim here is to provide tools for de-
velopment, not complete packaged solutions. Pro-
ponents of Gibbs sampling, for instance, say that
the design of an efficient sampler takes care and ex-
perience. For instance, specific matrix forms might
be used to advantage. It is often the case that some
fine tuning is needed in algorithms.

One task that can never have direct software sup-
port is the design of an appropriatee model with
an appropriate prior. This is a knowledge elicita-
tion problem. Techniques here are varied and range
from careful choice of the representation to sim-
plify elicitation [22], to techniques for working with
components and libraries [1]. But the elicitation
task still has to be done afresh with each differ-
ent problem, except in those prototypical situations
that are routinely addressed by standard statistical
packages. While one might use a standard package
in initial modeling, as the problem becomes better
understood specific requirements are needed that
canned software may not provide. Of course, tools
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for software generation alleviate the modeling task
greatly by providing rapid prototyping. Neverthe-
less, it is my view that a sizeable burden in the
Bayesian analysis of data is software engineering
rather than the statistical analysis itself, and there-
fore software generators and support tools are both
a realistic and important goal.

Naturally, an important part of such a framework
is component libraries containing modules for com-
mon sub-tasks. Almond et al. [1] point out that
parts of a graph, components, are often shared in
a series of applications. Learning and data anal-
ysis are no different. One useful component is
the generalized linear model [33] which can include
basis function sets for orthogonal polynomials or
wavelets. Likewise, algorithm templates for stan-
dard techniques such as Gibbs sampling and the
EM algorithm could be prepared.

In the remainder of this paper we discuss a few
more pieces for this general software toolkit. The
first is an algorithm for the decomposition of a
chain graph with plates into its independent com-
ponents. This technique has been used to develop
efficient algorithms for learning Bayesian networks
from complete data [6, 11, 32]. The second contri-
bution is some exact algorithms on graphical mod-
els with a single plate. Both these simplify calcula-
tion of the Bayes factor for a model, used widely in
Bayesian methods [28, 32]. The Bayes factor is the
support given to model M, relative to model M;
by the data sample.

p(sample| M)
p(sample|M;)

We use the term evidence [31] for the basic com-
ponent, evidence(M) = p(sample|M) and consider
its calculation throughout.

While these techniques can be used in many
places in a learning toolkit, one interesting by-
product is that they show how to develop al-
gorithms for learning DAGs from complete data
where the conditional distributions are in the ex-
ponential family, including mixtures of Gaussians,
Poissons, discrete variables, etc. All that is required
is a conjugate prior. While this capability should
not be surprising —and perhaps the hardest part,
appropriate priors, is left out—it is interesting that
we can construct these algorithms automatically
using the operations presented here.

Bayes- factor(M2, M;) =

Exact algorithms on graphs with
plates

The removal of a plate by arc reversal is related to
arc reversal used for influence diagrams [38], how-
ever, the operation must be recursive so requires
much stricter conditions to apply. These conditions
are well known in statistics as the problem reduces



to the existence of sufficient statistics and applies to
members of the exponential family of distributions.
This includes standard undergraduate distributions
such as Gaussians, Chi squared, and Gamma, and
many more complex distributions constructed from
simple components including class probability trees
over discrete input domains [5], simple discrete and
Gaussian versions of a Bayesian network [45], and
linear regression with a Gaussian error. Thus, these
are a broad and not insignificant class of distribu-
tions that are given in the definition below. Their
general form has a linear combination of parame-
ters and data in the exponential.

Definition 1 A space X is independent of the pa-
rameter 8 if the space remains the same when just 6
is changed. If the domains of z,y are independent
of 0, then the conditional distribution for z given
y, p(z|y, 0, M), is in the exponential family when

k
i (Smnce).
B (1)

for some functions w;, t;, h and Z and some inte-
ger k, for h(z,y) > 0. The normalization constant
Z(0) is known as the partition function.

The following is a simple graphical reinterpreta-
tion of the Pitman-Koopman Theorem from statis-
tics [25, 14]. Consider Figure 9(a). T'(z.,%.) is a
statistic of fixed dimension independent of the sam-
ple size N (corresponding to n,p in the coin toss-
ing example). The theorem says that the sample
in Figure 9(a) can be summarized in statistics, as
shown in Figure 9(b), if and only if the probability
distribution for z|y, @ is in the exponential family.
In this case it is said that T'(z.,y.) is a sufficient
statistic. '

Theorem 1 (Recursive arc-reversal). Consider
the model M represented by the graphical model for
a sample of size N given in Figure 9(a). Have z

p(z'y: 6, M) =

(b)

@

Figure 9: The generalized graph for plate removal

in the domain X and y in the domain Y, both do-
mains are independent of 8, and both domains have
components that are real valued or finite discrete.
Let the conditional distribution for z given y,0 be
f(z|y,0), which is positive for all z € X. If first
derivatives ezist w.r.t. all real valued components of
z and y, the plate removal operation applies for all
samples ¢, = Z1,...,ZN, Ys = Y1,---, YN, and 6,
as given in Figure 9(b), for some sufficient statis-
tics T(z.,y«) of dimension independent of N if and
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only if the conditional distribution for z given y,6
is in the ezponential family, given by Equation (1).
In this case, T(z.,y.) is an invertible function of
the k averages

1 N
‘NZ:lt;(zj) o= sk
J=

Graph decomposition
Learning problems can be decomposed into sub-
problems in some cases. For instance, consider the
learning problem given in Figure 10 over two multi-
nomial variables var; and vary, and two Gaussian
variables z; and z;. For this problem we have spec-
ified two alternative models, model M; and model
M;. Model M> has an additional arc going from the

Model = M,

Q

Prrinl

Figure 10: Two graphical models

discrete variable var; to the real valued variable z;.
We will use this subsequently to discuss local search
of these models evaluated by their Bayes factor.

A straight forward manipulation of the condi-
tional distribution for this model yields, for model
M;, the conditional distribution given in Figure 11.
When parameters, 6, 85, etc., are a prioriindepen-

S @

Figure 11: A simplification of model M;

dent, and their data likelihoods do not introduce
cross terms between them, the parameters become
a posteriori independent as well. This occurs for
61, 62, and the set {u;,01}. This model simplifica-
tion also implies the evidence for model M; decom-
poses similarly. Denote the sample of the variable



z) as 1. = Z1,1,...,21,N, and likewise for var;
and var,, etc. In this case, we get,

evidence(M,) = p(vary.|M;)p(vars.|var, ., M1) (2)

(21,4 |vary «, M1) p(22 4|21+, var) o, M) .

The evidence for model M, is similar except that
the posterior distribution of x; and o, is replaced
by the posterior distribution for 4} and oj.

This result is general, and applies to both DAGs,
undirected graphs, and more generally to chain
graphs. Similar results results are covered by
Dawid and Lauritzen [12] for a family of models
they call hyper-Markov. The general result de-
scribed above is an application of the rules of inde-
pendence applied to plates. This uses a notion of
local dependence, which is called the Markov blan-
ket, following Pearl [35]. The Markov blanket is a
nodes parents, children, and the children’s parents.
If deterministic nodes are involved, the definition
requires a bit more care [3].

To perform the simplification depicted in Fig-
ure 11, it is sufficient then to find the finest parti-
tioning of the model parameters such that they are
independent. The decomposition in Figure 11 rep-
resents the finest such partition of model M;. The
evidence for the model will then factor according
to the partition, as given for model M; in Equa-
tion (2). For this task we have the following theo-
rem.

Theorem 2 (Decomposition). A model M is rep-
resented by a chain graph G with plates and no de-
terministic nodes. Let the variables in the graph
be X. We have P possibly empty subsets of
the variables X, X; for i = 1,...,P such that
unknown(X;) is a partition of unknown(X). This
induces a decomposition of the graph G into P sub-
graphs G; where:

e the graph G; contains the nodes X; and any arcs
and plates occuring on these nodes; and
e the potential functions for cliques in G; are equiv-
alent to those in G.
The induced decomposition represents the unique
finest equivalent independence model to the original
graph if and only if X; fori=1,..., P is the finest
collection of sets such that, when ignoring plates,
for every unknown node u in X;, its Markov blan-
ket is also in X;. This finest decomposition takes
O(|X|?) to compute. Furthermore, the evidence for
M now becomes a product over each subgraph,

evidence(M) = fo Hfi(k"wwn(xi,t)) v (3)

for some functions f; (given in the proof).

In some cases, the functions f; have a clean in-
terpretation: they are equal to the evidence for the
subgraphs. This result can be obtained from the
following corollary.

Corollary 2.1 In the contezt of Theorem 2 where
there are no deterministic nodes, suppose there ez-
ists a set of chain components 7; from the graph
ignoring plates such that X; = ; U parents(r;),
where unknown(parenta(rjg) = 0. Then

fi(known(X;.)) = p(known(r;), |parents(r;)., M) .

If we denote the j-th subgraph by model M;, then
this term is the conditional evidence for model M;
given parents(7;).. Denote by M, the subgraph
on known variables induced by cligues, (as given
in the proof). If the condition of Corollary 2.1 holds
for M; for j = 0,1,..., P, then it follows that the
evidence for the model M is equal to the product
of the evidence for each subgraph.

P
evidence(M) = Hem’dence(M,-) . (9

i=0

This holds in general if the original graph G is a
DAG, as used in learning DAGs [6, 11].

Corollary 2.2 Eguation (4) holds if the parent
graph G is a DAG with plates.

In general, we might consider searching through
a family of graphical models. To do this we can
use local search [26] or numerical optimization to
find high posterior models, or Markov chain Monte
Carlo methods [34] to select a sample of represen-
tative models [3]. To do this, we first show how
to represent a family of models. Figure 12, for in-
stance, is similar to models of Figure 10 except that
some arcs are hatched. We use this to indicate that

1

J40188)

Figure 12: A family of models (optional arcs
hatched)

these arcs are optional. To instantiate a hatched
arc they can either be removed, or replaced with
a full arc. This graphical model then represents
many different models, for all 2* possible instan-
tiations of the arcs. Prior probabilities for these
models could be generated using a scheme such as
in [6, p54] where a prior probability is assigned by
a domain expert for the inclusion of each arc, and
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the prior for a full model found by multiplication.
The family of models given by Figure 12 includes
those of Figure 10 as instances. During search or
sampling, an important property is the Bayes fac-
tor for the two models, Bayes- factor(M,, M;). Be-
cause of the decompositions above, the Bayes factor
can be found by only examining component Bayes
factors for nodes whose parents have changed be-
tween models M; and M,. The difference here is
the model for the variable z;.

Bayes- factor(M,, M;) = p(z1,+|vary ., vars ., M3)

p(21,s[vary ., M1)

That is, the Bayes factor can be computed from
only considering the models involving y;,0; and
b1, 01

This incremental modification of evidence, Bayes
factors, and finest decompositions is also general,
and follows directly from the independence test. It
has been used in fast learning algorithms for DAGs
[5, 6, 11], and a similar property for undirected
graphs is given in [12]. This is developed below
for the case of directed arcs and non-deterministic
variables.

Lemma 1 For a graph G in the contezt of The-
orem 2 with no deterministic nodes, we have two
variables U and V such that U is given. Con-
sider adding/removing a directed arc from U to V.
We update the finest decomposition of G as fol-
lows: There s a unique subgraph containing the un-
known variables in parents(chain-component(V)).
To this subgraph add/delete an arc from U to V,
and add/delete U to the subgraph if required.

We can therefore add shaded non-deterministic
parents at will to nodes in a graph and the finest
decomposition remains unchanged except for a few
additional arcs. The use of hatched arcs in these
contexts therefore causes no additional trouble to
the decomposition process. That is, we form the
finest decomposition for a graph with plates and
hatched directed arcs as if the arcs where normal
directed arcs, and the evidence is adjusted during
the search by adding the different parents as re-
quired.

Bayes factors for the exponential
family

The above results are useful, but to make use of
them automatically we need to be able to gener-
ate Bayes factors or evidence for models. It gen-
erally holds that if a likelihood is in the exponen-
tial family, then the posterior distribution for the
model parameters is also in the exponential family,
although it is only really useful when the normal-
izing constant is readily computed. This holds for
the Dirichlet, the conjugate to a multinomial, and
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the Gaussian-Wishart, the conjugate to a Gaussian
[14]. We give the results here.

Let the normalizing constant for the distribution
of Theorem 1 be Z,(6)Z, where Z, is a constant
part independent of . Assume the prior on 8 takes
a conjugate form such as:

p(blr, M) =

()
£(6) 3
Zo('r) exp Tk+1(l°g l/zl(a)) + g T‘w‘(o) )
for some k + 1 dimensional parameter 7, where
Zy(1) is the appropriate normalizing constant and
f(6) is any function. Then the posterior distribu-
tion is also conjugate and the Bayes factor can be
readily computed.

Lemma 2 Consider the context above. Then
the model likelihood or evidence, given by
evidence(M) = p(z1,...,zn|y1,...,yn, M), can
be computed as:

p(017) TTIZ, p(z;ly;,6)

p(8|7")
Zy(7')
Zy(1)Z)

evidence(M)

Learning mixed Bayesian networks

Class probability trees and discrete Bayesian net-
works can be learned efficiently by noticing that
their basic form is exponential family [5, 4, 6, 11,
40]. Take, for instance, the family of models spec-
ified by the Bayesian network given in Figure 12.
In this case, the Local Evidence Corollary, Corol-
lary 2.1, applies. The evidence for Bayesian net-
works generated from this graph is therefore a prod-
uct over the nodes in the Bayesian network. If we
change a Bayesian network by adding or remov-
ing an arc, the Bayes factor is therefore simply the
local Bayes factor for the node, as mentioned in
the Incremental Decomposition Lemma, Lemma 1.
Local search is then quite fast, and Gibbs sam-
pling over the space of Bayesian networks is pos-
sible. A similar situation exists with trees [5]. The
same results apply to any Bayesian network with
exponential family distributions at each node, such
as Gaussians, or a Poisson. Results for Gaussians
and mixed discrete and Gaussian networks are pre-
sented, for instance, in [17, 3].

This local search approach is a MAP approach
since it searches for the network structure maxi-
mizing posterior probability. We can do a more
accurate approximation and generate a Markov
chain of Bayesian networks from the search space
of Bayesian networks. Because the Bayes factors
are readily computed in this case, we can do Gibbs
sampling or one of many other Markov chain Monte
Carlo schemes. The scheme given below is the



Metropolis’ algorithm [37], suggested because it
only looks at single neighbors until a successor is
found. This is done be repeating the following
steps:

1. For the initial Bayesian network G, randomly se-
lect a neighboring Bayesian network G’ differing
only by an arc.

2. Compute Bayes-factor(G',G) by making the
decompositions described in Theorem 2, and
so doing a local computation as described in
.Lemma 1, and using the Bayes factors computed
with Lemma 2.

3. Accept the new Bayesian network G’ with prob-
ability given by

. + mP(G)
min (I,Bayes factor(G', G) 2G) )
If accepted, assign G’ to G, otherwise G remains
unchanged.

A local maxima Bayesian network could of course
be found concurrently, however, this scheme gen-
erates a set of Bayesian networks appropriate for
model averaging and expert evaluation of the space
of potential Bayesian networks. Of course, initial-
ization might search for local maxima to use as a
reference.
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