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Abstract
Probabilistic models a,re being used
widcly in artificia,l iatelligence and statistics, for in-
stance, in diagnoois and expert systems, as a fra,me-
work for representiug and reasoning with probabil-
ities and indcpendencics. They comc with corre-
sponding algorithms for performing etatistical in-
fcrence. This offcrs a unifying framework for proto-
typing and/or gcncrating data analysis algorithmr
from graphical specifications. This papcr illustratcs
the franework with an exa,mple and then presenta
some basic tcchniqucc for the tash problem decom-
poeitioa aud the calculation ofexact Bayea factors.
Other tools already dcvelopcd, such as automatic
diferentiation, Gibbs sampling, and usc of the EM
algorithm, makc this a broad basis for the geaera-
tion of data analysis software.

Introduction
This paper argucs that the data analysis tasks of
lea,rniag and knowledge discovery can be haadled
using graphical models. This meta,level use of
graphical models was first zuggcstcd by Spiegelhal-
ter aud Lauritsen [a1] in the context of learuiag
probabilitics for Bayesiao aetworks. An exteusion
of the standad graphical modcl is uscd here that
allows this ldnd of lea,ruing to be representcd. The
extcnsion is the notion of a plote introduced by
Spicgclhaltcrl. Plates allow sa,mples to be repre-
scnted ocplicitly on the graphical model, and thug
reasoned about. This makcs data analyais problcms
osplicit iu much the sa,me way that utility and de-
cision nodes ale uscd for decision analyais problems
[38].

Considcr, for instance, Figure 1. This prescnts a
situation where a mixture model with hiddcn va,ri-
able ctrcss is usd for su@uent prediction of ao4
from ucr2 and uor3. The part to the left of the
pa,ra,meters $ aad,0 ia the graphical reprcaeutation
of a samplc. The contents of the p&aCe (the box

'p"*"""f ---rr "ation. 
lte aotion of a tepli-

cated aode' was Dy vereion of thir dcvdopcd indcpen-
dcotly. I have adoptcd thc aotation urcd by Spiegdhal-
tcr aad othcrs for uniforoity.
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Figure 1: Simplc uusuperviscd learuing, with geu-
eral predictiou

a,rouud the aodes for clcss, ao?!, !or2 aud ocr3)
on the lcft indicates that a sample of ff cases with
nariables tuotlrto?2 and ucr3 a,re given, whilc clcsc
is hidden, being unshaded. The plate indicates that
its coutaircd subgraph is replicated JV times. The
part ou the graph to the right of the parameters
C and 0 repreeents the predictiou task. The rralue
node on the right, the diamond, indicates that sub
sequent prcdiction accuracy is the goal oflearning.
Together, this graph indicates that the utility for
thc problem is (uar1 -6F1(oo4,ocr3)), and the
joiat distribution of the pa^ra,rreters takes the form
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f[ r("t"r"r I 
g) p(ta4,;lclos s ;, o 1)

i=1
pftta4,;ldoss;, 02) p(tor3,; lclcss;, 03) .

Thcre has been a receut push withiu the ma,
chin6 l66iag and neural uetwork communities to
diepel the magic aud art from the rrarious leara-
iug fiel& aud present them more as engineering
disciplincs. Decision tree methods [5] and feed-
forward networks [30, E] a,re aome examples that
ghow how already popula,r algorithms can be re
engineercd from wcll understood principlcs ofprob
ability iu combination with the knowledge repre-
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gentatiou and stsudard scarch methods. A aimple
counectionist fecd-forwa^rd network (using the no.
tation of Hertz, Krogh aod Palmer [23]) aud ita
corresponding Bayesian uetwork is given in Fig-
ure 2(a) aad (b) respectively. SimilarlS other neu-
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Figure 2: A simplc fecd-forward network: (") i"
native forrr (b) as a DAG.

ral networks can be modeled with graphical models
( furobabilistic networks" ).

This geueral approach, engineeriug using princi-
plce of probabilitn is uow becoming widcspread.
The basic tools of probabilistic (Bayesian) infer-
euce used for thig proccss are reviewed, for iusta,nce,
by Ta,nner pZ], tress [36], Kass and Raftery [2E],
Neal [34], aad Bretthorst [2], and Madigan et at.

[32]: ',rarious exact methods, Markov chain Monte
Carlo methods such as Gibbe sampling, thc EM al-
gorithm, and the Laplace approximation. lfith cre-
ative combination, thcse are able to addre$ a wide
range of data aoalysis problems. Gilks, Spiegelhal-
ter and Thomas have taken this process a step fur-
ther by developiug a compiler that gencrateg Gibbe
sa,rnplers from graphical spccifications [19]. This
handlcs a surprisingly broad number of statistical
tasks [18].

It ig thc thesis ofthis paper that these techniques
are now gufrciently well developed so that soflbwa,re
support cau be provided for their usc i! data anal-
ysis problems. That is, we a,re now able to generate
components of data analysis algorithms, aud even
entire algorithms themselves from highJevel spcc-
ifications. The paper demonstrates the theais by
presenting a fra,rrework based around the uge of
graphical modelg as a specificatiou language.

We begin with two cxamples. Thc first illustrates
thc iuteuded use of the software we cnvisage, and
the second gives some more mathematical detail.
Theu we outliae in more dctail the spccification
language wc propose. Finally, we prcseut some the-
oretical results rccessa,ry for developing the envir
aged softwa,re. More details of thcsc results cau
be found in [3], including results for dcterministic
nodes and techniques for doing differentiation, both
used in modeling ncural networks with probabilistic
graphical models.

Two examples
The software we envisage ig iutended to be uscd iD
an iterative protot5ryerefine cycle using staudard
data manipulatiou and visualiuation padrages such
as Matlab, PV-Wavc/IDL, or $Plus. An impor-
tant obsdvatiou is that prepadraged data analysis
goftware such as clustering, linear regressioa, and
fced-forward aeurd nctworLs a,re sometimes inade
quate for thc particular task at haud. While thesc
pacLagc8 a,re often good for cxploratory data and-
yeis, our crpcrieace aad that of many othcrs irdi-
catcs that data analysis and knowledge discovery
requiree more flexibility in geueral. The firat cx-
a,mple below illustrates the kind of prototyping our
eavisaged softwa,rc is intendcd to assist, and the
sccond example illustrates some more of the math-
ematical dctail.

Prototyping data analysis
Thie examplc will demoustrate how the system we
proposc would operate, reduciug a problem that
might requirc weeks of effort into au a,fternoon'g
work. Figure 3 plots the raw data for this example.
Thc data give mcan bid-ask prices posted by banks
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Figure 3: The mean bid-ask price for DM/$.

at va.rious time points over the course of a week
for turning dollars into Deutsch marks. The meau
bid-ask price (averagc of the two) is a more stable
indicator of the bank's priciag positiou because the
bid or ask price alone also iucludes efects due to
thc bauks policy ou the bid-ask spread. Original
data takes the form of a date and time, the bid aod
asking price, and the bank code.

Date
SeP
SeP
SeP

113:42
L 13242
113:43

40
45
74

Bid
L.5737
1.5735
1.5735

Ast
L.57+2
1.5745
1 .5740

Bar*
coxr
}IGTI
BBII

77



II
e

It;
It

Our goal is to modcl thc timc aerics and to uader-
staad individual diferenccs 8,mong the be"Ls. The
data we have at our dispooal consists of the tick
data in Figurc 3 together with m,rioue propertics
ofthe baulr, such as their gcographical locatioa.

\[Ic hypothceire that thc tick data ig ef,ectivcly
a random walL, but rhere thc pcrccntagc change
at cach timc point is influcnccd by thc bauk poeL
rug thc price. For cxample, wc might surpcct that
some banls tcud to poet larger diffcrcncca from thc
prcvious tidr than the avcrage changc, or that some
banb poot more frequently during upawingp than
downswings, eo that thc tidrs posted by euch a
ba,nk run contra,4r to thc doraward trend. Figurc 4
shows the Lind of thing we a,rc a,fter, plotting the
empirical Aequcncy of pcrcentage changcs for all
the ticks, for a bank that only poots largc changes
from thc prcvious tick, and for a la^rge baot that
oosts manv chaaecs.' rrsra.lEr

LF9Ecm
,rEtcm

havc:

o The mcan of thc bank's bid-ask rprcad.

o The bant's gcographical location.

o The avcragc number of poets the ban} generatcs
pcr day.

o Thc tic,k data grving the baok's rela.
tive price changc ovcr thc immcdiatelyprccediag
pricc (probably postcd by a dificrent bank).

The graphical model, shown in Figure 5, is ceated
nrin8 a drawiug tool. In this model, thc relatirrc

C:e,nma
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Figure 5: Basic clustered ra,adom work model for
price changes.

chaage that a bank will ofer is assumed to be de
tcrmincd by its class, but is othcrwis€ a random
walk. Notice this model has multiple banke, aud
erch bad( gives multiplc prices, so this model has
multiple platca indicated a doublc product occurs
in the fulljoint distribution for the data (over b."k"
and ovcr thc bauk's pricc cha"gcs). For the current
problem we simply drag " prefabricated mixture
model aad appropriate components fiom a palette
or componcnt libra,ry into thc work a,rea, and makc
somc modifications to it. Tbc model should include
complete spccification of all distributions and pa.
ra,metcrs (".g., dl para,meters of thc Dirichlcts in
Figurc 5 be supplicd). For instauce, we would havc
to sct thc various para,metcrr for thc conjugate pri-
ors appcaring in the model. The model of F'igurc 5
is not a standard clustcring modcl so could not be
obtaincd from any gtandard statietical paclege. In
othcr problems wc could crcatc a ftec form model
by drawiug individual nodcs, linls, and probability
annotations. Thc drawing ft,sel seafeinr the neces-
sary hools to associatc va,riablce oa the platc with
tbc ficl& from thc bank databasc, aud thc com-
puted ficlds from thc tick databasc.
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Figurc 4: Frcqucncies for different relative price
changcs.

We sit down at our data analysis system, pull
in thc raw data, and set up a quick modcl to do
an nnsuperired clustcriag of the banks. Our firgt
pass uscs thc random so that wc ca,n get a basic feel
for the diffcrent kinds of banb. For each baot we
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\[e now prese the RUN button. At this point the
system performs all the drudgery such as mathe-
matical calsulatioug, programmingr and validatiou,
previously requiriag weeka of cffort:
o It performe known symbolic simplifications on

the graphical model. For ingtance, it kaows
about sufrcient statistic8 and some cloecd form
solutions to orpccted naluee.

o [t computcs all required derirrative fuactions.

o It chooscE an optimization algorithm.

o It frnds the parameter valuca of maximum pos.
terior probabilitn together with the Baycs factor
aud thc Hcssi8u ofthe posterior eyaluated at thc
final paraueters.

o It gencratce optimized C codc to enaluate the
model by pcrforming a data flow analysis over
the nccdcd computations.

Now we could provide the system with an dge
rithm scheme, such as EM or Gibbe sarnpling (ad-
ditioual examples are given later), and have the
system comc up with the nacc8sary code for the
derivatives, expected values, probabilities, and so
forth. Howevcr, in this casc the ddault algorithm
matching the graph is good enough.

We cau now aualyze the final model to see what
it tells us, for instance usiug anailable visualiration
tools. (All this is make bclieve.) The classcs that
it finds are natural ones we might expcct. The
banks a,re brokeu into different clasees accordiug to
whether they are cloeer to the New York or London
markets. fla.nkg that post iafrequeutly teud to have
a higher bid ask spread thau thosc that post oftea.
Each of thesc groupings alao has different random
walks for their pricing. Some smaller bauks, for
instance, teud to make larger chauges.

We uow go back to the drawing tool a,nd refine
the model to account for the coutext of the tick
data. In the previous model, the rclative chaage
that a bsnk wiU offer is assumcd to be determincd
by its class, but is othcrwisc a random walk. In
this casc wc also make the pricc seusitive to the
current average trend which is depeudeut on pre-
vious prices. This aew model is givcu in Figure 6.
Having drawn the new modcl, we simply click the
RUN button and let the system reoptimize for the
uew coufiguration. This timc, we could use the pre-
vious classification got as the iritisl nalues for the
uew extended modcl.

For this more complexmodel, we would probably
have to modify the default algorithm schemc sug-
geated by the systcm. This is somethiug we expect
in generd, so the syatem we proposc includcs both
a graphical model aud a general algorithm gcheme

as inputs. If the algorithm schemc is missing, the
system cao provide a ddault using general purpose
algorithms such as Gibbs, EM or MAP algorithms.

@nma

Nonnal-@nma

Figure 6: Ttcnd senaitive model for price changes.

A more detailed example
An exa,mple of a graphical model for a sirrrple clus-
tcring problem is giveu in Figure 7. To be cxplicit,

1,0.1,...,0.1)

,D(l{1))

{r)

{3))

Figure 7: A simple uasuperviscd learning problem.

we algo have to give the full distributions for the
nariables iu the graph. Assume there are 10 classes,
ro clart € {1,2,...,10}, aud the nariables ucr;
a,re binary. The graphical model is a mnenomic
for the following diatributioaal assumptions for the
j-th case beiag

1to?;,i N Beruoulli with prob. 8ucc6s 9i,"torrii
doss; ! l0-dimensional Multiuomial with

probabilitics 6uiz,. .., Cro;

and for the parameters / and 0 being

0 N DirbhJet(0.1,0.1,...,0.1) ;

0;," e Beta(Dq;,D(l - cr)) ;

(-

I

Ganssian

qI'O
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Ndnd
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for the hyper-para,mcters D, q1, 92, 93. Using an crtr-
pirical Baycs approach, we set gi to be the obscrvcd
frcquency of succcss fot oeq and sct D = 4 to yicld
rcasonablc prior standa,rd deviatiou for the poesiblc
nalues of 0t.

A matchi.g algorithm scheme for this model, au
itcrated EM algorithmin pscudo-code, gocs as fol-
lows:

1. Repeat, 5 timcs.
(a) Initialbc the para^rneters {,0 randomly accord-

ing to their prior.
(b) Repcat until thc maximum rclative differeace

in pararneter nalues /,0 is less tha,n 1.0e - 5.

i. Rcassign the suftcieat statistics for { as fol-
lowa:

jv

t{C) - ! f,"lo""i1ro ut,ifta?z,i,t)aus,r,4,e (ctacl)
d=1

ii. For c = 1,...110, reassign the sufrcieut
statistics fot 01,.r02,"r0s," as follows:

.lv

cs(0;,") = D
i=l

telaa t;lvar1,;,r,a".,i,o drt,i,4,e (!ao" 
";="tl6f i ,i)

iii. Rcplace C and 0 by their MAP valucs given
the enftcicnt statistics as above.

(c) Compute the score for the find paramcter nal-
ues aa

sso?e = u., / d2 log49'al:omPte)\\-e6D-l
2. Rcturn thc para,rneten $r0 matching thc bcgt

8CORe.

Thc system would automatically compute the
derivatives, cxpected rralues, MAP calculatioas,
and so forth and inscrt the code efficicntly iato the
major loops. Notice thcre are problems with this
algorith'n schemc, for insta,ncc, if a 0; approar:hcs
zero the scorc will bccomc ill-dcfined because Bome
of the para,meters will become redundant. This is
irreleva,nt for the purposcs of our illustration.

High-level specification of data
analysis algorithms

An ovcrview of thc basic fra,mcwork is givcn in Fig-
ure E. Inputs to the system are a graphical model to
specify the na,riableg and their rclationships, and au
dgorithm schcmc to specifu the dgorithm. These
two inputs can be patched togcthcr from libra,rics.

A language to specify rrariables and
their relationships
Probabilistic graphical models ("h"i" graphs [r1.{,
16]) extendd with plates arc used here as a spec-
ificatiou languagc. When augmentcd with specific

Prdfiyn!d.l
AEritmstuE

Figure E: The basic framework for specification.

functioud forme such as thc Gaussiau aud the logir
tic, this languagc is suffcicnt powerful to repreecnt
a broad range ofproblerna a/srosa several fielda: gen-
crali"ed linea,r models, feed-forward networks, Jor-
dan and Jacobs mixture of ocpcrts [27], unsuper-
viscd learning of many diffcrent kinds, and hybrids
of theae modcls. A review of some of the learning
probleme represeuted appears in [].

A graphical modcl implics a probability modcl,
thug it defincs how probabilities, log-probabilities,
thcir derinatives, and some errpectcd nalues can be
computed, and in some Gaaes how sampling caa be
doue. For a Gaussiau or discrcte Bayeaiau network,
for instance, the usual cxact computationg are im-
plied by the graph [39]. Technique for computiug
thesc quaatitics a,re of coursc morccomplexin other
casca. In general, exact mcthods for cxpected val-
ucs are not known, and probabilities are not in gen-
erd easy to compute for chaia graphs and Ma,rkov
networks, although ratioe ofprobabilitice are. The
automatic calculation of derinativcs on atructures
such as graphs is a well understood problem [20].
In neural networks, this corresponds to the Back-
propagation algorithmand its extensions for second
derivativcs [9]. tikcwise, the calculation of deriva.
tivcs on probabilistic graphical modela is an appli-
cation of thc chain rule for diferentiation. Details
appcar in [3].
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Algorithm schemes
Afuorithm er.hcmcs are highJevel algorithma uacd
as iaput for code geueration and compilation. The
algorithm scheme refers to rrariablea, probabilities,
log-probabilitica, derivativea, and orpcctcd values
for items on the graph whocc computation cau
bc detcrmincd automatically. Thur thc schcme is
frec of many of the ctrmbersome cquational dctails
fouad in moet laoguages. Algorith'n echemcs them-
sclvcs ca,E be produced automatically from dgo'
rith"' tcmplates for problcms matchiug thc right
prcconditioas, and in other casce may bc provided
or rcfincd by thc us€r. We do not givc a spccifi-
catiou of the schemc and template language itscU
here, but the reader cao infer from the exa,mples
that the achemc language is a fairly standard pro-
cedural language with appropriatc hooks into the
psf,ching graphical model. Some sources for algo-
rithm tcmplatcs are as followe:

o Gilla et d [19] have devcloped geacral algorithms
to perform Gibbc sa,mpling on Baycsian nctworka
with platcs.

o Other algorithms such as coajugatc gradient,
Fisher's scoriug method, or Laplacc approxima-
tioas [43, 2t] can be applied oncc firgt and second
derivativeg are calsulated for model para,meters.

o Lauritzen descdbes the application of the EM al-
gorithm [15] to Bayeeian uetworks with a single
ptate [29] in the context of missing nalues. The
more geacral application of thc EM algorithmfor
hidden va,riables is obvious, as for instance done
ii,nsupsrviscd learning [21].

General discussion
We can sce that ma,ny parts of this a,rrbitious plan,
a softwarc tool Lit for data analysis, a,re already in
placc. But the 'ir. here is to provide tools for de
velopment, uot complete padraged solutions. Pre
ponents of Gibbs sa,rrpliag, for instauce, say that
the dceign of au efficicnt sampler ta,kes care and cx-
pericnce. For iastance, spccific matrix forms might
bc uscd to advantage. It is often the case that somc
fiag hniag is nccded iu algorithms.

One task that cau never have direct soltwa,re sup
port is the dcsign of an appropriatee modcl with
aa appropriatc prior. This i8 a kaowledge clicita.
tioa problcm. Techuiqucs here a,re vadd and range
from ca,reful choice of the represeatatioa to sim-
plify elicitation [22], to techaiques for working with
components a,nd libra,ries [1]. But the elicitation
task stiU has to be done a,fresh with each difier-
ent problem, exccpt in thosc prototypical situationg
that a,rc routinely addrcssed by staodard statistical
padragcs. While one might use a standa,rd package
in initial modeling, as the problem becomes better
undergtood specific rcquirements are needed that
canncd software may not provide. Of course, tools

for goftra,rc geucration alleviate the modeli"S task
grcatly by providing rapid prototyping. Neverthe-
lcer, it ia my view that a giseable burden iu the
Bayesiaa analysie of data is softwarc engiaeering
rathcr than thc statiatical analysis itaclf, aud thcre.
forc softwa,rc generators and support toola a^rc both
a rcalistic and importaot goal.

Naturalln ao important part of such a frasrcwork
ir componcnt libraries containing modules for com-
mon sub'tasks. Almoud et d. lLl point out that
parts of a graph, umpttettts, a,rc oftcn shsrcd in
a ecrics of applications. Lcaruing aud data anal-
ysie arc no different. Onc uaeful componcnt is
thc gcncralired lincar modcl [33] which can include
basis fulction scts for orthogoual polynomiala or
wavclcts. Li}ewisc, algorithm templates for gtau-
dard tcchnigucc nrch as Gibbe sa,mpling and the
EM algorithm could be prepared.

In the remainder of this paper we discuss a fcw
more pieceo for this generd eoftware toolkit. The
first is an algorithrn for the decompoeition of a
chain graph with plates into its iadcpendent com-
poucnts. This technique has beeu uscd to develop
cfficieut dgorithms for learning Baycsian nctworls
from completc data [6, 11, 32]. The eecond contri-
butiou is some exact algorithms on graphical mod-
els with a single plate. Both these aimplify calcula.
tion of the Bayes factor for a model, used widely in
Bayesian methods [2t, 32]. The Bayes factor is the
support given to model .1f,2 rclative to modcl .[fi
by the dala somple.

Bose*ftur(Mz,Mt) = *W.'-'-L' p(conflelM1)'

We usc the term evi&ne, [31] for the basic com-
ponent, efi&rce(M) = p(somplellf) aod congider
its calculation throughout.

\f,Ihile theac techniques can be uscd in many
placcs iu a lca,rning toolkit, one interesting by-
product is that they show how to devclop al-
gorithme for lea,rning DAGs from complete data
where the conditional distributions are in the ex-
ponential family, including mixtureg of Gaussians,
Poiesons, discrcte variablcs, etc. All that is requircd
is a conjugate prior. While this capability should
uot be surpriciag -and perhaps thc hardcst part,
appropriate priors, is left out-it is htetcstiug that
we can construct thcsc algorithmg automatically
using thc operations prcseated here.

Exact dgorithms on graphs with
plates

The remonal of a plate by a,rc reversal is related to
a,rc reversal ueed for influence diagra,nns [38], how-
ever, the operation must be recursive so requires
much atricter conditions to apply. Thcse conditiong
are well knowu iu gtatistics as the problem reduces
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to thc cxistencc of sufrcient gtatistics aud applica to
membcrs of thc exponcntial fa,mily of distdbutions.
This includcs staadard undergraduate distdbutions
such as Gaussians, Chi equa,red, and Ga,mma, and
Eany morc complcx distributions constructed from
simplc componcnts iacluding class probability trccs
ovcr discrctc input domaias [5], simplc diecretc and
Gaussian vcrsions of a Baycsian nctwork [+S], and
linear rcgrcaeion with a Gaussian error. Thus, thcee
a,re a broad aud uot inrignificant cla's of distribu-
tions that arc givcn in the dcfinition bclow. Their
general form has a linca,r combinatioa of para,mo.
tcrs and data in thc enponcntial.
Definition I A cpuc X r indepcudent ol thc p
rulmeter 0 if tlrc tp* rcmaritu du satv wlrrln jwt 0
is clwngd. It tl* bmalru of qy orc *rd,eprdl,r*
of 0, tlren tLe @rulitional drrrtribut*m for r gfuen
g, p{oly,0, M), * in tlre exponential fanily rolren

d,ly,o,M) -- W"*(*,,,(a)a(,,y)) ,

(1)
lor aome flumcbioru ru,i, Li, h md Z otd aome il*e-
ger k, fu h(r,C) > 0. thc normalisation coustant
Z(0) it lenoton u tlrc partition function.

The followiug is a aimple graphical reiaterpreta.
tion of the Pitman-Koopman Theorem from statir
tics [25, 14]. Consider Figurc 9(a). ?(a.,&) i" a
statistic of fi:ccd dimcnsion indcpcndent of the sa,m-
ple sire JV (correspoading to ftrpb the coiu toss-
iag exa,rrple). The theorem says that the ea,mple
in Figure 9(a) can be sur""arLcd in statistics, as
shown in Figure 9(b), if and only if the probability
distdbution fot tly,O is in the ocponential family.
In this casc it is s8id that ?(c.,y.) is a suffcient
statistic.
Theorem f ficcursirc a,rc-revcrsal,f . Cotrsiilcr
tlv ndct M rcprcsentcdW ttu gzphitnl mo&l for
a sompb of cizc N ghten in Figul g(a). fraae a

(a) (b)

Figurc 9: Thc gcncralized graph for plate removal

in thc domain X and ! in tllc bmoiny, bth do-
mahrs arc indepet&nt of 0, orut bth bmahu lreloe
comlmret*c tllrrt arc tvcl tdrd or finite d&,crzte.
Lct ilw @ilitional dkffidbn for a gioen !,0 b
f@1y,0), uhich k pocithte lor dl a € X. If firct
dedrotiaet ubt u.r.t. all t@l adted ampnents of
a ordy, ilu plote rcnatd oprctiorn applir,; for all
,[Jmples ts = 'tt...raN, Ur = glr...rgNr ot?,d A,
u l1iaen in Figue 9(b), tot come wffrrlient *obis-
ticsT(r.ry.) of dimcnsion*deper&nt of N il otd

only if the oilitbwl d&rffi&bn for a gtueng,0
it lntLc qonential fomily, gltenby Eqntbn (1),
In kit wq T(a.,g.) ir an inaertible finrctilm of
tlre h alcmges

rJv:Irr("r) : i= 1,...,t.
i=L

Graph decomposition
Lcaraing problcmr can be dccomposcd into sub.
problems ia some cascs. For instaoce, considcr the
lcarning problcm girrcu in Figure 10 over two multi-
nomial variablcs uorl and {o"2, a;ud. two Gaussiar
va,riablcs a1 end a2. For this problcm we have spec-
ificd two altcraative modcls, modcl.trfi and model
Mz. Modcl Mzhuau additional arc goiag from the

l,lodd = Mr Itlodd= Mu

Figure 10: T\po graphical modcls

discete nariable !o;2to the rcal rralued variable 21.
Wc will usc this su@ucntly to discuss local scarch
of thesc models cvaluated by their Baycs factor.

A straight forward manipulation of the condi-
tioual dietributioa for this modcl yiclds, for model
M1, the couditional distributiou grven in Figurc 11.
When pararnctcrs, 0y 02, etc., a,rc a prionindcpen-

Figure 11: A aimplification of model.tfi

dcnt, and their data likclihoods do not introduce
croes tcrms bctwccu thcm, thc parametcrs become
a psfr,rbl.i iadepcudcnt as wcll. This occurs for
0u 02, and the sct {p1,o1}. Thie model eimplifica.
tion also implies the evidence for model.l/r decom-
poses simila^rly. Deaote the samplc of thc va^riable
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t1 I z1,t = 3l,lr...rcl,Nr aud likewise for ucrl
and, oot2, etc. In this casc, we get,

The evidence for modcl Mz is similar exccpt that
the pooterior distribution of p1 and o1 is replaced
by the pooterior distribution for p', and dr.

This rcsult is general, and applies to both DAGs,
uudirested tpphs, aud more gcaerally to chaia
grapha. Sirnila,r results reaults a,re covered by
Dawid and Lauritrcn [12] for a fa,rnily of models
they call hyper-Markov. The general result de-
scribd above ia au application of the rulca of irde
pendence applied to platea. Thig uscs a notiou of
local dcpendence, which is called the Markov blan-
ket, following Pearl [35]. The Ma,rkov blauket is a
nodes parenta, children, and the children'g parcnts.
If detcrmiaietic nodes a^re involvcd, thc definition
rcquirea a bit more ca,re [3].

To perform the simplification dcpicted iu Fig-
ure 11, it is sufrcicnt then to fiud the fiuest parti.
trisning of the model pa,rametcrs such that they are
indcpendent. The decomposition in Figure 11 rcp
rcscnts the fiacst such partition of model Mr. The
evidence for the model will then factor according
to the partition, as giveu for model ,4 in Eqo".
tion (2). For this task we have the following the
rem.

Theorem 2 (D@onprtim). A ndcl M is rey
rcser*e.d by a clnin Wph G uith platcs ord ru &,-
terminb8ilc &s. Lct ke roridles in tlre guph
b X. We lure P pssibly empty artaetr of
the wridbc X, X; lot i - lr...rP wch thot
tnhnourz(X;) b o pttitiorn of trn,htwun(X). fidr
in&te,s a deamposition of the gaph G into P stfr-
Crcplls G; ulrcrc:
o he gWhG; a nta*u the nodes X; ond ony anct

and pbks rctri;rtg on these &s; and
o tfu pknthl functiow for cliqtes in G; arc eqntu-

olent to tJpce in G.
The infuced &rompogition rcprcsents he unique
finest eqir&t*indepndcrce mdelto tlre miginol
gmphif atdonlyif X;fori- 1,...,P istllefirrest
alb*tioa of rcts such tlnt, uhen ignoring pbtes,
fot ewry u*nolstt nde u in X;, ik Morkor birlt
ket k dto in X;. This finest de*omposition t&es
O(lXl2) to amprrte. Anthermorc, tlle evidetrce fot
M tprt hamcs o prcdtct oter eoch subgrcph,

eri&rc-e(M) = fo fffrl*r*,,t"(Xr,.)) , (3)

for some furctions t, @run in the prcof).
In some casea, the functions f have a clean iu-

terpretation: they are equal to the evidence for the
aubgraphs. This rcsult caa be obtained from the
following corolla,ry.

Corollar5r 2.L In the conte*t of Tlrcorcm 2 ulurc
tlpn arc tp &krminbtic tudes, ttqtpse tllr;rr-. a-

f i (krcua(X i,. )) = p(kwtn(q).lporcnt c(ri),, M) .

If we denote the 3:-t[ subgraph by model M;, thea
this term is the coaditioual evidcnce for model .tl/;
gjven poret*a(r;),. Dcnote by Mo thc subgraph
oa lrnown variables iuduccd by diquccs (as grven
in thc proof). If thc condition of Corollary 2.1 holds
for Mi for j = 0, 1, . . ., P, theu it follows that thc
evidencc for the model M is cqual to the product
of the evidence for each subgraph.

P

eoi&nce(M) = fledbre(M;). (4)
i=0

This holds in general if the original graph G is a
DAG, as uscd in learniag DAGs [6, 11].

Corollary 2.2 Eqrction (l) lulde if the porcnt
gtroph G b a DAG rurith plates.

In gencral, we might consider sea^rching through
a fa,mily of graphical models. To do this we ca,n
usc local acarch [26] or uumerical optimization to
find high posterior models, or Markov chain Monte
Carlo mcthods [34] to select a sample of represen-
tative models [3]. To do this, we first show how
to represcnt a family of modcls. Figure 12, for in-
strncer is eimilar to models of Figure l0 except that
some arcg are hatched. We uec this to indicate that

Figure 12: A family of models (optional arcs
hatched)

thes€ arcs are optional. To instantiate a hatched
a^rc they can either be removed, or replaced with
a full arc. This graphical model then represents
mauy different models, for all 2a poasible iasta,u-
tiatious of the arcs. Prior probabilities for thesc
models could be geuerated usiug a scheme such as
in [6, psa] where a prior probability is assigned by
a domain expcrt for the inclusioa of each a,rc, and

Y_

N
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thc prior for a full model found by multiplication.
The fa,mily of modcls giveu by t'igurc 12 includeg
thocc of Figure 10 as instanccs. Duriug scarch or
sanpling, an importaot property is the Ba1'cs fac-
tor for thc two modcla, Boge* f ebt(M2, M). B+
cauec ofthe dccompooitious above, thc Baycs factor
can bc found by oaly exa,roining component Bayea
factorg for nodcg whocc parcnto have changcd bc
twecn modcls if,r aod ^l/2. The difference hcrc is
the modcl for the va,riablc cr.

Baye* f utor(Mz, Mr) - e@\Fot 
\:!orz!=' !tz)'' p{at,.lro4;rM1)

That is, the Baycs factor can be computed from
only considcring thc modcle involving p1,o1 and
A,dr-

Thig iacremental modification of cvideacc, BaSrcs

factora, and finest decompoeitions is also general,
and follows dircctly from thc indcpcadcuce tcst. It
has bcen uscd i! fast lea,rning algorithms for DAGs
[5, 6, 11], aod a simila,r property for undirected
graphs is grvcn in [12]. This is dcvcloped below
for the case of dircctcd a,rcg and non-deterministic
variablcs.

Lemma I Fot o gtuph G in the contat of Tle-
orcm 2 uith no &terminbtb tlr&e, ue llrlae hto
oaridlet U atld V rr.rch that U b gioen. Co*
oider o&lilq/rcmouitrg o dipttd arc fiomu toV.
We qd& thc finell &ampaitiut of G u foL
lous: Ttwrc is a rumiqw ar@ph @nto*n@ tllc uv
knolrli,t lllalri;abbc in prent s(cluhr..cornpu*(V)).
To this $rbgrqh add/delek qn cr\c lrotu A b V,
oil &/&btcU ta ttlr- afigrvph il nauhun.

We can therefore add shadcd nou-deterministic
parents at will to uodcs in a graph and the finest
decompoeition:cmains unchangcd cxcept for a few
additional arcs. The use of hatched a,rcs i! thcse
contexts thercfore causes no additional troublc to
the dccompoeition proccss. That is, wc form the
finest decomposition for a graph with plates and
hatchcd dircctd arcg as if thc arcs where normal
dircctd arcs, and the cvidence is adjusted during
thc search by adding the different lx,rents as ro'
quired.

Bayes factors for the exponential
family

The above results arc usdul, but to ma&e use of
thcm automatically wc nesd to be ablc to gener-
ate Baycs factors or evidence for modcls. It gen-
crally holds that if a likelihood is in the c.rlrouen-
tial familn then thc pooterior digtribution for the
model pa,ra,srctcra i8 slso iu thc cxponeutial fa,rrily,
although it is only rcally uscfirl whcn thc normal-
izing constant is rcadily computcd. This holds for
the Dirichlet, the coujugate to a multinomial, and

the Gaussiao-Wishart, the coajugate to a Gauasia,n

[14]. Wc givc the rcsults hcrc.
Lct the normalizing consta,nt for thc distribution

of Thcorem L bc 21(0)22 wh*e 22 is a consta,ut
part iadependent of 0. Assume the prior oa 0 ta&es
a coajugate form guch as:

l0lr,M) = (5)

tp)
ze(r) cxp

!
rr+r(los Uz{q) + !nur(o)

d=l

for some & + 1 dimeusional parametcr r, where
Zs(r) is the appropriatc normaliriag coastant and
,(r) i" auy function. Thco thc postcrior dietribu-
tiou is abo conjugate and the Bayes factor can be
rcadily computcd.

Lemma 2 Consi&r the eontcd, dove. Tlrcn
t]rc model likelihood o? evidence, gflten W
eti&wt(M) = p{rr,...,crlyr,...rUN, M), un
b onpicd u:

eoilbrce(M)
p{rtlu,o)

ze(t')
ze(r)z{

Learning mixed Bayesian networks
Class probability trecs aad disecte Bayesian net-
workg can be learncd cftcicntly by noticing that
their basic form ia exponential family [5, 4, 6, 11,
40]. Ib,Le, for iastancc, thc fa,mily of models spec-
ificd b!'the Bayesian network girrcn iu Figure 12.
In this casc, the Local Evidcuce Corollary, Corol-
la,ry 2.1, applics. The cvidcace for Baycsian nct-
works gcncrated from this graph is therdore a prod-
uct over the nodes in the Bayeriao uetwork. If we
change a Bayesian uetwork by adding or rcmov-
iog 

"n 
arc, thc Bayes factor is thcrcfore aimply the

local Baycs factor for thc nodc, as mentioncd in
the Iucremeatal Decompoeition Lemma, Lcmma 1.
Local search is theu quite fast, and Gibbs sam-
pling orrcr thc space of Bayesian nctworks is pq-
sible. A similar situation odsts with trecs [5]. The
sa,me results apply to any Bayesian nctwork with
cxponcutial farnily distributious at earL node, such
as Gaussia,D.s, or a Poisson. Results for Gaussians
and mixed discrcte and Gaussian networks arc prG
scntcd, for inetaace, in [17, 3].

This local scarch approach ig a MAP
since it sea,rchcs for the network atructure maxi-
miliag posterior probability. We can do a more
accurate approximation and gcnerate a Markov
chain of Bayesian networks from the sca,rch rpace
of Bayesiau networLs. Becausc the Bayes factors
a,re readily computed in this casc, wc can do Gibbs
sa,mpli"g or one of maay other Markov chain Monte
Ca,rlo schcmca. The scheme givcn below is the

p(ol")
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Metropolis' algorithm [3?], suggeetcd becausc it
only looks at eingle neighbors until a succcssor i8
found. This i8 done be repeating the following
stepo:

1. For the initial Bayesian uetwork G, raudomly se
lcct a neighboriag Bayesian nctworL G'differing
only by an arc.

2. Compute Bogps-fdor(G',G) by mrlring the
decompoeitions descibed iu Theorem 2, rnd
so doing a locd computation as descdbcd i!

. Lcmma 1, and using the Bayes factors computed
with Lcmma 2.

3. Accept thc new Bayesian network G'with prob
ability giveu by
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ter. A languagc aud prograrrr for complex
Bayesian modelling. Thc Statisticiarq 1993.
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-io (r, Boses- ftur(',.)ffi)
If acceptcd, assign G' to G, othcrwise G remains
uuchanged.

A local maxima Bayesiao network could of course
bc found coacurrentln horevcr, this scheme geu-
erates a sct of Bayesian networks appropriate for
model averagiag aud ocpert enaluation of the space
of potential Bayesian networls. Of course, iuitial-
ization might scarch for local maxima to use as a
refcrcnce.
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