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Abstract

This paper reports experiments in the automatic discovery of linguis-
tically significant regularities in text. The minimum description length
principle is exploited to eva.luate linguistic hypotheses with respect to a
corpus and a theory of the types of regularities to be found in it. The
domain of inquiry in this paper is the discovery of morphemic sufrxes
such as English -ing and -ly, but the technique is widely applicable to
language learning problems.

1 Introduction
Many recent papers have reported work on the automatic discovery of linguistic
regularities in text. Most of these exploit statistics based on information the.
ory to measure how likely two linguistic entities are to ceoccur. Cooccurrence
statistics have been used to assess semantic simila^rity [15], PP attachment pref-

erence [16], linguistically significant collocations [23], syntactic categories [4],
and syntactic rules [5]. The above work raises two interesting questions: how
should statistical measurements be interpreted, and how should measurements
of different kinds of linguistic patterns be combined? This paper argues that
structure discovery procedures based on the miuimum description length (MDL)
principle have a clear semantics within which measurements of distinct liuguistic
structures can be "natutally" combined to answer a single question. An MDL
procedure for discovering morphemic suffxes illustrates the point. When run
on the 1000 most common words in a sample of the Wall Street Journal, this
procedure outputs age, al, ed, ing, ion, itg, ly, ment, nce, and s.

The use of statistical measurements raises two questions.
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l. Eow should statistical rneasures be interpreted?
Church (1988) and Hindle (1993) use co-occurrence statistics for lexical
and syntactic disambiguation, so their numbers are interpreted opera-
tionally by disambiguation systems. But other resea,rchers have collected
numbers without providing any objective interpretation. For example, [12]
describes a hierarchical cluster analysis on word-adjacency statistics. The
authors claim that some of the thousands of resulting classes correspond
roughly to familiar syntactic or semantic classes. But this interpretation
of classes lacks semantics, operational or otherwise.

2. Eow can rneasares of different linguistic regularities be combined?
Two intuitious that linguists use in identifying morphemes, such as English
-ing, are (1) morphemic suffixes and stems recombine with one another
to form multiple words; (2) morphemic suffixes provide information about
the syntactic categories of words formed with them. Either one of these
intuitions could be assessed by measuring the mutual information between
suffixes and stems, or between suffxes and syntactic categories. But it is
nontrivial to combine these two meisurements. Arbitrary combinations,
such as addition or multiplication, can yield meaningless numbers.

The MDL Approach Minimum description length (MDL) induction proce-
dures [22, 17] have a generative semantics within which disparate information
sources can be "naturally" combined. MDL induction has been successfully
applied to a large number of learning problems in the past. Examples include
hand-printed character recognition [14], decision tree induction [20], molecular
evolution [1, 18], analysing dynamic systems [8], learning engineering models

[21], clustering [6], computer vision [13] and constructive induction [19]. In the
context of automated concept acquisition from linguistic corpora, however, ap-
plications of the MDL principle have been relatively few. MDL principle has
been explored for lexical knowledge acquisition [2], speech segmentation [3,7],
and to phonology [10, 11].

Conceptually, induction can be viewed in terms of a module that enumer-
ates a set of hypotheses, and another independent module that determines the
most plausible hypothesis. MDL is a criterion for evaluating hypotheses in
terms of how well they explain the regularities in the input. A hypothesis, or
aa accounting comprises of two components, namely, the theory and the sner-
plained residual. Among all accountings, the MDL principle prefers the one that
is least stipulative, where stipulativeness is equated with information content.
Typically, the problem of devising an encoding (for computing the information
content) for an induction problem has two parts: (1) Devising a high level model
ofthe process that generated the input data, and (2) Converting the model into
a compact encoding.

The rest of this paper is organized as follows. The next section provides two
models for the morpheme-discovery problem. The first makes use of the intu-
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ition that morphemes recombine to form multiple words. This model illustrates
the intuitive appeal of MDL induction. The second model augments recombina-
tion with the intuition that words formed with a pa,rticular suffix tend to belong
to particular syntactic classes. This model illustrates the way in which disparate
information sourcea can be "naturally" combined within the MDL framework.
Section 3 describes the specific encodings we use. Section 4 outlines the heuris-
tics we used for searching the space of possible hypotheses. Section 5 describes
some experiments on finding morphemic suffixes in word lists extracted from
the Wall Street Journal. Section 6 concludes the paper.

2 Two Models
This section presents two models of the process responsible for generating the
words in a corpus, along with the comesponding high-level representations of
hypotheses.

2.1 Simple Recombination
Consider the problem of identifying morphemic stems and suffixes. Stems and
suffixes can help account for the regularities in a corpus in terms of the following,
admittedly simplistic, model of how the corpus was generated. The black box
generating the words in the corpus has a finite list of stems and a finite list
of suffixes, and it generates words by concatenating stems and suffixes freely.
Given this free.concatenation model, the induction problem is to determine the
stem list and the suffix list used in generating the words of a particular corpus.

For the sake of illustration, imagine that some corpus of English contained
all and only the words listed under "lnput Words" in Figure 1. Suppose that
those words were generated by concatenating a stem from a stem list and a suffix
from a suffix list. Then the two lists shown at right in Figure 1 constitute a
plausible hypothesis about the lists used to generate the corpus. The epsilon on
the suffix table stands for the empty string, which allows the strings on the stem
table to occur without any suffix. The two lists constitute the theory portion of
an accounting. This theory predicts that any word formed by concatenating one

element from each list is a legitimate word of English. However, the theory fails
to predict that, among all the words that can be generated from these stems
and suffixes, a particular subset does not occur, including dumped,, damping,
preferentis, and preferentied. Such incorrect predictions are inevitable here,

since the free-concatenation model ignores a many morphological facts. Under
the theory, the failure of these predicted words to occur in the input sample is
a matter of unexplained residual.

The stem and suffix lists, written in alphabetic characters, constitute high-
level encodings ofthe theory. A highJevel encoding ofthe unexplained residual
would specify which words, arnong those that the theory predicts, are attested
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walks
walked
walking
referred

referral
refer
refers
dump
dumps
preferential

Input Words Stem Table Suffix Table

Encoded Words

Figure 1: An input lexicon (left) and a generative explanation for it (right)

in the corpus, and, by process of elimination, which are not. The table titled
"Encoded Words" in Figure 1 is one possible representation of the residual. The
stem table specifies the correspondence between stems and stem code words, and
the suffix table does the same for suffxes. In this high-level code, the code-
words are simply the ordinal indices of the stem and suffix on their respective
tables.

The representation shown in figure 1 illustrates the intuitive appeal of the
MDL principle. Although the binary encoding shown iu the next section con-
stitutes a more accurate evaluation, the relative information content of different
accountings can be approximated by countiug the number of characters in their
high-level representations. Now, consider an alternative theory within the free-
concatenation model. In the stem and suffix tables shown at left in Figure 1,

consider dividing the words in the input sample in such a way that each hy-
pothesized suffix is ectended, by one character, while each hypothesized stem is
reduced by one character. In this case, the total number of letters in the stem
and suffix tables clearly exceeds the total of the theory in Figure 1. This ac-

counting stipulates more information than the original instance and also makes
less accurate predictions about English words.

2.2 Combining Multiple Measures

Consider an approach to discovering morphemic suffixes that combines infor-
mation from two sources. The first source is just as before - stems and suffixes
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A. Lexicon

C. Encoded Lexicon

Figure 2: Input lexicon, category table, and encoded lexicon for the class of
induction ofgenerators that label words with syntactic categories.

recombine into multiple words. The second source is the tendency of mor-
phemic suffixes in English to determine the syntactic category of words formed
with them. For example, words bearing the morphemic suffx -s are likely to
be verbs or nouns, but unlikely to be adjectives or adverbs.

Suppose that the input to the suffix identification procedure consists of words
along with their major syntactic categories, as shown under "Input Lexicon" in
Figure 2. Ambiguous words occur in the input once for each of their possible
categories. The following model exploits both sources of information: words
are generated by selecting a stem and a suffix from their respective lists, and
then selecting a syntactic category from a list of syntactic categories aaailable
to words with the selected sufir. A. particular theory in this framework consists
of a stem list, a suffix list, and a list of syntactic categories availablefor words
with each suffix. For example, given the input shown in Figure 2, a plausible
theory includes the stem and suffix lists from Figure L, along with the category
table in Figure 2. The fewer categories each suffix can take, the smaller the
category table, and hence the more highly rated the accounting, all other things
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Figure 3: Encoded lexicon for the hypothesis in Figure 1

being equal.
In the combined model, the unexplained residual is the particular set of

stem-suffix-category triplets that are observed in the sample, among all those
triplets that the hypothesis permits. The encoded lexicon table in Figure 2 is
one possible representation of this residual. (Note that the category indices in
the table are relative to the suffix.)

It should be noted how easily information from such disparate sources as

orthography and lexical syntax can be combined in MDL induction.

3 Encoding
The representation of tables shown so far, which includes alphabetic characters,
numerals, and alignment into rows and column, is less than ideal for measuring
information. One reason is that the information communicated by alignment in
these tables is not included in the character-counting measure. More important,
the tables contain unnecessary characters, and therefore they fail to show each
hypothesis in the best light. We need to render (encode) the tables shown above
as a single sequence of zeros and ones that contain much less redundancy. The
encoding must be a one-to-one transformation.

The encodings in this paper use binary sequences, called code words, for stem
codes, suffix codes, category codes, and for individual letters. The character
counting measure of information is replaced by a continuous approximation to
bit count. The items that occur most frequently get the shortest bit encodings.
An example is shown in Figure 3, where the sequential decimal code words
of Figure t have been replaced by binary code words assigned on the basis of
frequency.

The Shannon-Fano (SF) code is a near-optimal method of determining the
length of each code word in terms of its frequency. The length of the SF code
words is approximately the binary logarithm of the inverse of their relative
frequency. Each stem and sufrx in Figure 3 is an SF code.
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Figure 4: Binary encodiug of a stem table

Let the notation [5] refer to the code word for S, and l([SJ) to the length
of that code word in bits. Let /(^9) be the frequency with which the code
word for stem S occurs in the Encoded Lexicon table. Then its total frequency,
counting the occurrence in the stem table, is /(S)+ 1, and its relative frequency
t 5ffi, so the length of its SF code word is

t([s])=,"t,(ffi) (1)

The code word for stem S occurs /(S)+1 times in the representation, so the total
number of bits used to encode those occurrences is: (/(S) + t)l(t.51) Summing
over all stems, the total bits used for all stem code words is: DSgrt"*"(/(S) +
1)r(tsl)

Since the tables are represented as an unbroken string of zeros and ones,
some mechanism must be provided for determining where one code word ends
and the next one begins. The Shannon-Fano lengths make it possible to select
a set of code words such that no code word is a prefix of another code word.
Given such a set of code words, it is possible to tell where one ends and the
next one begins in any sequence, ifand only ifthe set ofcode words is known to
the decoder. While the stem and suffx tables a,re being decoded, however, the
code words are still unknown. As a result, some additional mechanism is needed
to iudicate their boundaries. One such mechanisms is an array specifying the
number of bits in each code word. This is shown inside the rectangle in the top
half of Figure 4.

[walk] refers to the code word for walk, and l([watk]) refers to its length in
bits. The representation actually consists of three segments. The rightmost
segment contains the code words for each of the stems, in sequence, with no
delimiters. The middle segment consists of a sequence of binary integers, each
of which gives the length of the corresponding code word-the first integer gives
length of the first code word, etc. The lengths of the code words for stems are
all equal to maxs.r1"*,l([S]). This length is specified as a unary integer in the
first segment. Together, these three segments constitute a complete encoding of

111. . .10 a
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the right column of the stem table.
The Shannon-Fano code can also be used to assign frequency-based code

words to individual letters. This requires including another table that gives
the keys to the letter code. Assuming that a letter code table is included, the
left column of the stem table can be encoded as shown in the bottom half of
Figure 4.

This encoding is divided into three segments much like those of Figure 4.
The length of each segment is shown below it, where /r1"-(C) is the frequency
of character C in the stem table, l(S) is the length of stem S in letters, and

lstemsl is the number of stems in the stem table.
The same principles are used to construct encodings for the suffix table and

the letter code table. Putting together the lengths of all these encodings, we
get a formula for the continuous approximation to the number of bits needed to
represent a hypothesis. Among all the accountings in the simple-concatenation
model that our system explores, it selects the one that minimizes the value of
this representation-length. For the model using syntactic categories, several
more terms of the same sort are added to account for the information content
of the category table.

4 Search Heuristics
The encoded words table in the representations described above specifies a split-
ting ofeach word in the input into two parts, one on the stem table and one on
the suffix table. The number of possible splits of the input is equal to the prod-
uct of the lengths of all the words in it. Clearly, it is not possible to evaluate
every single accounting.

The first heuristic we use to reduce the number of accountings is a search
strategy that first determines the suffix table, and llrez chooses a stem table and
an encoded lexicon. This strategy evaluates one hypothesis for each differeut
stem table. This strategy is implemented by ensuring that, given a suff.x table 7,
every word that ends in a string S e T is split before .9. To ensure determinism,
we considered only those suffix sets in which no (non-empty) suffix was a suffix
of another.

Evaluating only one hypothesis for each suffix set reduces the search space
substantially, but the number of possible suffix sets still prohibits exhaustive
search. To make search tractable, all the word-final Ietter sequences in the
Iexicon are ranked according to the ratio of the relative frequency of the sequence

divided by the relative frequencies of its component letters. For example, if
c is the total number of characters in the input, the rank of -iag would be

#8#:r;,+. We use greedy search, that tries adding candidate suffixes, one

at a time, from highest rank to lowest. (Initially the suffix set is empty.) In
some cases, adding a suffix entails discarding one or more other suffixes. When
the description Iength can no longer be reduced by adding a suffix, the system
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tries removing one suffix at time to see if that helps. This addition-removal
process is repeated till there is no improvement in description length.

5 EXPERIMENT
The evaluation function and search techniques described above were tested on
input lexicons of va^rious sizes, prepared from a sample of the Wall Street Journal
tagged for part-of-speech by the Penn Tleebank project. All words except those
containing capital letters or non-alphabetic symbols were sorted by frequency,
and input lexicons of different sizes were prepared by taking the most frequent
words from the top of the sorted list. Experiments were done using both the
simple concatenation model and the combined model. For the combined model,
the Penn categories were mapped down to a set of five categories representing
common nouns, verbs, adjectives, adverbs, and all other words.

The best results were obtained with lists of the 1,000 aud 2,000 most fre-
quent words. First consider the combined model. On the 1,000 word input the
hypothesis with the best evaluation had the following suffixes on its suffix table:
age al ed ing ion ity ly ment nce and. s. ace is reasonable, since it is the ortho-
graphic sequence common to a morphological process that yields either ance,
as in guidance, or ence, as in preference. For the 2,000 word input the best
hypothesis used all the suffixes from the 1,000 word lexicon, plus the following:
able ary ful iue ld ncy one oul ship and sure. Of these, only ld is a meaningless
final string. When the simple concatenation model was used, the 1,000 word
input yielded three incorrect suffixes in addition to the ten correct ones found
by the other method: me, sl, and oe. This is in accord with the expectation
that using more evidence should yield better results. On the 2,000 word input,
however, the difference between the two evaluations was only a single error, ?r,n.

The general trend was that increasing the number of input words (and hence
decreasing the average frequency) led to finding more correct free morphemes,
like 6aII, and also more incorrect final strings. Many of the incorrect strings were
extensions of correct morphemes, such as ional ar'd, gicol. Figure 5 summarizes
the results as a function of the input-size/frequency variable.

6 Discussion and Conclusrons

Our algorithm appears to have successfully exploited the two liuguistic intuitions
that morphemes recombine and that suffixes predict the syntactic categories of
words formed with them. Of the two intuitions, recombination was clearly more
significant than category prediction in these experiments. Category prediction
improved accuracy significantly on small inputs, but its positive effect eroded
steadily with increasing input size. At 4,000 and 8,000 words it showed a slight
trend toward reducing accuracy.
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Words BEBFETE Tot YoM ToP

500
1000
2000
4000
8000

617
10/10
15/16
19/18
27128

2/1
tlt
ele

2/2
8/8 L/r

19/18

L013
3/0
L/L
415

3/6

L6lt0
13/10
20120
3el3e
58/61

38/70
78/700
e5/e5
e0187

95leo

38/70
78/700
85/e0
70167

79175

Figure 5: Categorization of suffixes output as a function of the number of words
in the input lexicon. Syntactic category method / plain recombination method.
B = Bound morpheme; F = Free morpheme, E = Error. L designates extensions.
Tot = total number of suffixes hypothesized. VoM = (Tot - E) as a percentage
ofTot. ToP - (B + F) as a percentage ofTot.

We also observed that the rate of increase of the number of morphemes
was much less than that of the lexicon size. When the iuput increased from
500 to 8000 words, a factor of 16, the number of morphemes hypothesized
only increased by a factor less than six. In addition, the increase in number
of morphemes when the lexicon size increased from 4000 to 8000 was much
Iess than that from 1000 to 2000 or 2000 to 4000, suggestiug a trend toward
convergence. The number of correct bound morphemes increased even more
slowly - approximately as the logarithm of the input size. The growth in the
number of extensions of bound morphemes and in free morphemes was more
pronounced than that in the number of plain errors.

In part, these results reflect the fact that the intuitions encoded here do not
provide a complete account of what is meant by the notion morpheme. Other
factors include: the syntactic category of the stem predicts which morphemes
will attach to it; stems appear as independent surface forms; suffixes can cause

regular changes in the orthography of the composite word; morphemes generally
show some sign of productive use; and both stem and morphemic suffix have
meaning. Given that the algorithm presented here ignores all those factors, it
does remarkably well at discovering morphemic suffxes. More importantly, the
algorithmic induction approach or the generative approach provides a frame-
work within which most of these intuitions can be encoded and tested. In
addition, algorithmic induction promises to be a useful tool for refining and
making explicit the linguistic intuitions themselves.

One key issue for the success of any MDl-based induction is search. Non-
trivial Iinguistic theories have so many degrees offreedom that exhaustive search
is impossible. Discovering powerful domain dependent heuristics is where activ-
ity should be concentrated.
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