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Abstract

We describe a decision-theoretic methodol-
ogy for case-based reasoning in diagnosis
and troubleshooting applications. The sys-
tem utilizes a special-structure belief network
to represent diagnostic cases, with nodes
representing issues, causes, and symptoms.
Dirichlet distributions are assessed at knowl-
edge acquisition time to indicate the strength
of relationships between variables. During a
diagnosis session, a relevant subnetwork is ex-
tracted from a belief-network database that
describes a very large number of diagnostic
interactions and cases. The constructed net-
work is used to make recommendations re-
garding possible repairs and additional ob-
servations, based on an estimate of expected
repair costs. As cases are resolved, obser-
vations of issues, causes, symptoms, and the
success of repairs are recorded. New variables
are added to the database, and the probabil-
ities associated with variables already in the
database are updated. In this way, the infer-
ential behavior of system adjusts to the char-
acteristics of the target population of users.
We show how these elements work together in
a cycle of troubleshooting tasks, and describe
some results from a pilot system implemen-
tation and deployment.

1 Introduction

Most model-based [de Kleer and Williams, 1987] and
probabilistic [Heckerman et al., 1992] methods for au-
tomated diagnosis use prespecified domain models as
fundamental knowledge representations. The inference
techniques used in these methods are powerful, but
they rely on the availability of robust and relatively
complete characterizations of potential problems, and
have no explicit mechanism for feedback and learn-
ing from experience. Case-based reasoning (CBR) is
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a method for problem solving that uses a database of
previously encountered problem solving incidents as its
core representation. The presumption in CBR is that
past problem solving behavior is the best predictor of
future problems and solutions. In contrast to other di-
agnostic approaches, CBR typically utilizes less pow-
erful reasoning methods, but is more responsive to the
problem solving environment and less modeling inten-
sive. In this paper, we present a method that uses
decision-theoretic and statistical techniques to provide
normative inference and updating techniques, while re-
taining the case-driven modeling that is characteristic

of CBR.

Typically, CBR systems provide mechanisms to (1)
index into the database of incidents to retrieve po-
tentially relevant cases, (2) apply previous cases to
the solution of the current problem instance, and
(3) modify and update the case database to reflect
new information and results from the current problem
solving incident. In the literature, many techniques
for representing and indexing cases, generating solu-
tions, and updating the database have been developed
[Kolodner, 1993, Allen, 1994].

In the approach described here, the database of
previous cases is represented as a belief network
[Pearl, 1988]. The initial belief network is constructed
manually from an expert based on a set of past prob-
lem solving experiences. The parameters in the be-
lief network are encoded as Dirichlet distributions. At
consultation time, input text describing the current
problem is used to index into the relevant portion of
the belief network, corresponding to Step 1 in the stan-
dard CBR process. The current implementation uses
a probabilistic information-retrieval similarity metric
to generate a list of potentially relevant symptoms and
causes. Based on the user’s selection, the relevant por-
tion of the belief network is constructed.

Probabilistic inference methods are then used to cal-
culate the probabilities of various problems, and cost
analysis is used to suggest possible repairs and infor-
mation gathering actions. We refer to the result as a
troubleshooting plan. This portion of the consultation



uses the current means of the Dirichlet distributions
stored in the belief network, and corresponds Step 2
in the standard CBR process.

Once a case is resolved, the belief network database
is updated to reflect the new case. If the attributes
observed in the case match those represented in the
belief-network database, then the relevant Dirichlet
distributions in the network are updated to reflect the
current observations. This allows the belief-network
parameters in the database to adjust to the character-
istics of the target population. If attributes or obser-
vations in the current case do not match entities in the
current belief network database, then the database is
extended to include those variables with an initial set
of human assessed parameters. These updating proce-
dures correspond to Step 3 in CBR.

In the remainder of the paper, we describe the struc-
ture of the belief-network database (Section 2). Then,
we outline a cycle of decision-theoretic troubleshoot-
ing, including steps for database access, model con-
struction, repair planning, and case recording (Section
3). Finally, we describe experiences with a pilot im-
plementation of these methods in Section 4.

2 Belief Network Structure

We have developed a special-structure belief network
for case-based diagnostic applications. The basic or-
ganizing structure consists of nodes corresponding to
causes, issues, and symptoms.

1. Cause: A contributing factor, activity, or config-
uration item—for example, “Gateway 4DX2-66”
or “Printing Postscript File.”

2. Issue: A conflict among a set of causes. Typ-
ically, the issue is defined to occur if all the
associated causes occur—for example, “Gateway
4DX2-66V” and “BusLogic BT-445S SCSI/VL-
Bus Adapter” and “Windows for Workgroups
3:11.7

3. Symptoms: A particular behavior or malfunc-
tion caused by an issue—for example, “System
will not boot,” or “Cannot connect to network
server.”

The basic relationships among causes, issues, and
symptoms in the belief network structure is shown in
Figure 1(a) for a single issue. Issues may share com-
mon causes and symptoms as shown in Figure 1(b).
For convenience, each issue 1s constrained to have at
least one cause and at least one symptom.

Each cause is labeled as to whether it is fixable or un-
fixable. A fixable cause is one that can be altered in
the course of troubleshooting. For example, in Fig-
ure 1(a), “Using MS/Style mouse port” is fixable with
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the action (or resolution) of “Switch to the PS/2 style
mouse port.” A cost is associated with each fix. In
our formulation, an unfixable node corresponds to a
fixable node with a very high fix cost. For example,
the cause node “Windows NT 3.1” is treated as un-
fixable in the current model, though, in principle, one
could switch operating systems at very high cost.

Symptoms and causes are labeled as being observable
or unobservable. An observable node is one that the
user can reasonably test or observe. For example, all
the causes and symptoms in Figure 1(a) are observ-
able. We assign a cost of observation to each observ-
able in the database. Some causes—for example, de-
fective hardware—may be unobservable yet fixable by
replacing the component. In our formulation, symp-
toms are always observable.

All nodes in the belief-network database correspond to
discrete variables. The uncertainties associated with
the parameters in the belief-network database are en-
coded as Dirichlet distributions—in particular, means
(probabilities for the next case) and equivalent sample
sizes. The particular parameter means are as follows.

1. Pr(C;) is the probability that cause 7 is present
in a given case.

2. Pr(Sk|I;,T;,Vi # j) is the probability of symptom
k given only issue j is true.

3. Pr(Sk|I;) is the “leak” probability of symptom k
given issue j is false.

In this formulation, we assume that there is a “noisy
OR” relationship [Pearl, 1988] between each symptom
and the issues that cause it. This assumption makes
both model assessment and inference more efficient
[Heckerman, 1993, Heckerman and Breese, 1994]. Up-
dating of the Dirichlet distributions is described in Sec-
tion 3.5. Leak probabilities are not updated in the
current scheme.

3 The Troubleshooting Cycle

The troubleshooting cycle is demand driven and con-
sists of five basic steps:

1. Database Access: The text describing the prob-
lem is used to find potentially relevant symptoms
or causes. Omne such variable is selected by the
user to initiate the session.

2. Belief-Network Construction: The relevant por-
tions of the belief network database are extracted
for the following step.

3. Belief-Network Solution: Using the constructed
belief network, the system generates recommen-
dations for components to repair, and makes sug-
gestions regarding additional observations.
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Figure 1: (a) The belief-network structure for a single issue, consisting of causes and symptoms. (b) The belief
network structure for the case database, consisting of an interdependent set of issues.

4. User Execution: The user performs one or more
repairs or observations, and reports the results to
the system. The construction—solution-execution
steps are repeated, until the problem is solved or
the user suspends the session.

5. Case Recording: Upon termination, relevant
Dirichlet distributions are updated. If variables
not in the belief network database were observed,
these can be added to the domain model, expand-
ing the scope of issues covered.

In this section we describe each of these steps.

3.1 Database Access

A consultation is initiated by describing the problem
with free text input. In the current test database,
each cause, symptom and resolution is accompanied
by a textual description. A full-text information-
retrieval algorithm, similar to that proposed by Salton
[Salton et al., 1994], is used to identify those causes
or symptoms in the case database whose descriptions
most closely match the textual problem description.
The standard information-retrieval methods have been
extended to deal with domain specific jargon and
acronyms.

3.2 Model Construction

As observations are made, the system identifies the
portions of the belief-network that are relevant to the
observations, constructing a belief-network that is a
subset of the database. In this subset, we include all
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nodes that are dependent on the current set of ob-
served nodes. In addition, because we are going to
use the model to generate recommendations regard-
ing questions to ask (i.e. perform value-of-information
analysis), we also include portions of the network that
would become relevant if we were to make observa-
tions.

Because we can observe any set of observable nodes
in the model, the entire database is always poten-
tially relevant to the current problem-solving task.
However, as described in Section 3.3, we are using
the constructed belief network in a myopic value-of-
information analysis that assumes that the diagnosti-
cian will make just one observation at a time. There-
fore, we need to incorporate only those portions of the
network made relevant by a single observation.

This construction rule is not sound, in principle, be-
cause the best observation to make may be completely
unrelated to the current set of observations. This may
occur, for example, if some problem is so likely to oc-
cur a priort that one should always inquire about that
possibility, irrespective of the currently reported symp-
toms. Nonetheless, this situation occurs infrequently
in many domains. Furthermore, the value of infor-
mation of such variables is independent of the current
consultation and may be computed off line.

We identify variables that are relevant to (i.e., depen-
dent on) current observations using the graphical test
of d-separation. In the following definition, a path
refers to any undirected path.
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Figure 2: Three belief network fragments illustrating d-separation. (a) Observing a cause on a path between
two subnetworks blocks that path. (b) Observing a symptom on a path between two subnetworks activates that
path. (c) Observing a successor of an issue on a path between two subnetworks activates that path.

Definition (d-separation, Pearl, 1988) If X, Y,
and Z are three disjoint subsets of nodes in a directed
acyclic graph Z, Z 1s said to d-separate X from Y,
written < X,Z,Y >p, if there is no path between a
node in X and a node in' Y such that the following two
conditions hold: (1) every node with converging arrows
ts in Z or has a descendant in Z and (2) every other
node is outside Z.

A path that meets conditions (1) and (2) is said to
active. A path that does not meet these conditions is
said to be blocked. We illustrate the use of d-separation
as a graphical indicator of conditional independence in
Figure 2. In Figure 2a, we have < I, {C'},II >p but it
is not the case that < I, {},II >p. That is, observing
C’ blocks all paths between the left and right subnet-
works. In Figure 2b and ¢, we have < I,{},II >p
but not < I,{S'},II >p. That is, observing S" acti-
vates all paths between the left and right subnetworks.
Thus, if two portions of the network are separated by a
common cause, then observing that cause means that
the probabilities of nodes in one subnetwork do not
depend on observations in the other subnetwork and
vice-versa. Conversely, observing a symptom that sep-
arates two subnetworks (or observing a symptom that
is a successor of an issue that separates two subnet-
works) means that the variables in the subnetworks
are dependent on one another. ’

The model construction algorithm proceeds as follows.

1. From currently observed causes and symptoms,
add all nodes and arcs on active paths from all
observed nodes. This procedure stops exploring a
path when either:

(a) The path terminates at an unobserved symp-
tom, or

(b) The path has a segment of the form I — S «
I’ and S is unobserved, or

(c) The path has a segment of the form C —
I + C’ and the successor symptoms of I are
unobserved.

2. For each unobserved symptom in the constructed
network, add all of its ancestors, if not already in
the network.

3. End.

This process is illustrated in Figure 3 for an example
belief-network database. Note that additional portions
of the database would become relevant only if we ob-
served more than one additional symptom. Therefore,
for purposes of myopic value-of-information, the cur-
rently constructed network is sufficient.

This algorithm can be viewed as a repeated application
of an efficient method for finding sets of d-separated
nodes developed by Geiger et al. (1990) . It also can
be viewed as constructing a graph that is equivalent
to the union of a set of networks that would be con-
structed by the knowledge-based model construction
algorithm developed by Breese, where each symptom
in the network constructed in Step 1 is provisionally
observed [Breese, 1992].

3.3 Belief-Network Solution

The objective at this stage of problem solving is to
generate a set of recommendations for repairs and ob-
servations based on the case at hand. In this paper, we
adopt a scheme developed by Heckerman et al. (1994,
1995). In the following discussion, we first consider
recommending just repair actions. We then address
the possibility of observing additional symptoms and
causes to focus troubleshooting.
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Figure 3: (a) The implicit database network structure. The shaded nodes are the initial observations. (b) The
constructed network after Step 1 has completed. Both the original and added nodes are shaded. (c) The final
constructed network consists of the shaded nodes, where all ancestors of symptoms are added to the previous
network.
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Given a constructed network containing several pos-
sible fixable nodes, what order of repairs should be
attempted to repair the device or system? In order
to determine this sequence, we assume that there is a
single problem-defining symptom, repair costs are in-
dependent, and each fixable cause must be observed to
be abnormal immediately prior to its repair. For our
constructed network, one of the observed symptoms
will be designated as the problem defining node.

Let C? and CT denote the cost of observation and re-
pair of a fixable cause ¢;, respectively. Let p; be the
probability that ¢; is in a faulty state given current ev-
idence, calculated using the belief network constructed
as described in Section 3.2. If we observe and possi-
bly repair components in the order ¢y, ..., c,, then the
expected cost of repairing the system, denoted ECR is

ECR = (C+p.CF)
+(1 - p1)(CF + T2—C3)
=P
p3
A = O e e
(1 =p1—p2)(C3 T ——— 3)
+...
= Y X p | Cr+mcr (1)
1=1 =t

That is, we first observe cause c; incurring cost CY.
With probability p;, we find that the cause is faulty
and repair it incurring cost C7. With probability 1 —
p1, we find that the cause is normal, and observe cause
¢z incurring cost C3. With probability ps /(1 —p1), we
find that ¢ is faulty and repair it; and so on.

Heckerman et al. (1995) show that the optimal trou-
bleshooting sequence under these assumptions is given
by observing and possibly repairing causes in descend-
ing order of the ratio p;/Cf. Ties may be broken
arbitrarily.?

This ordering assumes that there are no additional ob-
servations interleaved in the repair sequence. The ad-
ditional observations, which we call nonbase observa-
tions, provide information about the system without
changing the state of the system (i.e., without repair-
ing causes). In order to estimate the value of these ob-
servations, we evaluate the expected cost of repair as if
we can make at most one nonbase observation before
executing a plan consisting of only observation-repair
actions as described above.

This evaluation proceeds as follows. We assume that
each observable o; can take on exactly one of r; pos-
sible states. We write o; = k to indicate that obser-

'This procedure can be modified to include a recom-
mending a service call, i.e. some more sophisticated trou-
bleshooting agent. See Heckerman et al. (1995) for more
details.
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vation o; takes on state k. Let E denote the current
information state of the troubleshooter. E may include
information about previous observations as well as re-
pairs. First, we use Equation 1 to compute the ex-
pected cost of repair for the plan where no nonbase
observation is made, denoted ECR(E).

Then, for one possible nonbase observation o;, we de-
termine the best observation-repair sequence for ev-
ery possible outcome of o;. For each possible out-
come, we again use Equation 1 to compute the ex-
pected cost of repair of the best sequence, denoted
ECR(E U {o; = k}). Next, we compute ECO(E, o;),
the overall expected cost of first observing o; and then
executing the observation—repair sequence:

ECO(E, 0;) =

oF Z Pr(o; = k|E) ECR(EU {o; = k}) (2)

k=1

Note that the conditional troubleshooting sequence
following the observation may be different for every
possible outcome of the observation. We repeat the
computation of ECO for every possible nonbase obser-
vation.

If ECR(E) < ECO(E, 0;) for any nonbase observation
0;, then we choose not to make a nonbase observation
and recommend the first action in the observation—
repair sequence encoded in ECR(E). Otherwise, we
recommend to observe that symptom or cause o; with
the lowest ECO. After a repair or nonbase observation
has been carried out, we update the information state
E. If a repair action has been carried out, we must re-
move all observed symptoms that correspond to nodes
that are descendants of the repair-action node, because
the repair action may have caused these observations
to change.

Although we may make additional nonbase observa-
tions in the actual troubleshooting sequence, we ig-
nore these possible actions when selecting the next
nonbase observation. Similarly, although the repair
sequences are generated assuming a single fault, the
iterative procedure allows us to deal with multiple
fault scenarios. We have found this myopic approx-
imation to yield good results in real-world problems
[Heckerman et al., 1995].

3.4 Execution

Given the recommendations, the user performs one or
more repairs or observations, and reports the results
to the system. As additional variables are observed, it
is necessary to reinvoke the model construction algo-
rithm to extend the set of relevant causes, issues, and
symptoms. Note that since repair actions may invali-
date observations, the model could contract. Because
our observation valuation procedure assumes a single
additional observation at a time in the evaluation of



Equation 2, the model construction algorithm is guar-
anteed to produce the correct probabilities. If we ex-
tended the myopic procedure to include k-step looka-
head, then the model construction algorithm would
need to similarly be extended.

3.5 Case Recording

During a session, variables represented in the database
and new variables may have been observed. At the end
of a consultation, the Dirichlet distributions associated
with observed nodes in the database are updated. For
simplicity, we only update a distribution if both its
corresponding node and the parents of that node were
observed.

If a new variable was observed, then a corresponding
node is added to the database, and arcs and Dirichlet
distributions are assessed. If a new issue was identified,
several new causes and symptoms may also be added
to the database.

In order to account for dynamics in the population of
problems encountered, a variable length window can
be used for Dirichlet updating, where we only include
the last k observations in updating the distribution.
For example, a short window might be appropriate for
new product introductions or revisions where we want
to discount the effects of previous observations, while
a longer window is appropriate for stable products and
user populations.

4 Implementation

A pilot project codenamed “Aladdin,” which uses the
techniques described in this paper, was undertaken at
Microsoft during the summer of 1994. A belief net-
work database, consisting of approximately 200 issues,
250 causes, and 220 symptoms, was developed for war-
ranty problems for Microsoft Windows NT*™ Version
3.1 operating system. The pilot advisory system was
used by Microsoft support personnel for a two-month
period. The implemented version used a somewhat
different set of heuristics for repair and observation
recommendations than reported here. Each issue was
treated independently and information gathering rec-
ommendations were based on an entropy-style infor-
mation measure.

Overall satisfaction with the tool by pilot participants
was very high in terms of speed of resolution and style
of interaction. Unfortunately, the pilot knowledge base
did not have sufficiently wide coverage for the range of
issues actually encountered in on-line use, and there-
fore was not used extensively. Although Dirichlet pa-
rameter updating and model extension facilities were
implemented and deployed, empirical results regarding
effectiveness are not yet available.

In order to investigate the utility of the techniques

62

while controlling for coverage, we developed an exper-
iment comparing the Aladdin system to the currently
available information tools provided to support engi-
neers. In these experiments, the correct solutions were
available in both tools. The results in these test indi-
cate that engineers using Aladdin could support prod-
ucts for which they had little or no training. In com-
parison to standard methods, the probabilistic case-
based reasoning approach was faster and resulted in
fewer unsolved problems, as well as being preferred by
engineers.

5 Summary

We have developed a design for a case-based reasoning
system that uses a belief network for runtime problem
solving. The primary components of the system are an
information retrieval mechanism to index into a belief-
network database, a data-driven model-construction
algorithm, a method for generating recommendations
for observations and repairs from a belief network, and
a method for updating the belief-network database as
new cases are encountered. Preliminary results suggest
that the method is useful as a troubleshooting aid.
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