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1 fntroductionAbstract

The paper describes two separate but synergistic
tools for running experiments on large Lisp sys-
tems such as Artificial Intelligence planning sys-
tems, by which we mean systems that produce
plans and execute them in some kind of simula-
tor. The first tool, called Clr (Co--on Lisp
Instrumentation Package), allows the researcher
to define and run experiments, including experi-
mental conditions (parameter values of the plan-
ner or simulator) and data to be collected. The
data are written out to data files that can be an-
alyzed by statistics software. The second tool,
called Ct,c,sp (Common Lisp Analytical Statis-
tics Package), allows the researcher to analyze
data from experiments by using graphics, statis-
tical tests, and various kinds of data manipula-
tion. Clesp has a graphical user interface (us-

ing ClItt, the Common Lisp Interface Manager,
Version 2.0) and also allows data to be directly
processed by Lisp functions. Ct tp and Cl.s.sp
form the foundation of a larger set of specialized
tools we are building for the empirical analysis
of AI programs.

This work was supported by ARPA/Rome Labora-
tory under contracts #F30602-91-C-0076 and $F30602-
93-C-0100.

As planning problems become more complex, in-
volving hundreds of objects and thousands of
resources (e.g., ships, planes, trucks, satellites),
researchers will need to turn to simulators, con-
trolled experiments, and statistics to study the
behavior of their systems. In this paper we
will introduce two tools that we have devel-
oped to aid in running and analyzing experi-
ments: Ct tp and Ct lsp (Common Lisp Instru-
mentation Package and Common Lisp Analytical
Statistics Package). These tools are described
in more detail in Anderson et al. ( [2]), where
we give examples of their use with a planning
system for a transportation planning problem.
They form the substrate for a larger toolbox we
are developing that is specifically designed for
analyzing AI programs.

ClIp enables researchers to define experiments
in terms of the conditions under which the sim-
ulator is to be run and data collected. Clrp
also helps with the running of the experiment,
by looping over all the experimental conditions,
running the simulator, and writing the data to
files. At that point, a researcher will want to an-
alyze the data using statistical software. While
the data files that Clrp writes can be analyzed
by any statistical packags, Ct Ip is especially well
integrated with Cl,tsp. Clasp has many of
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the standard descriptive and inferential statis-
tics, together with a convenient graphical user
interface, and a Lisp interaction window that
researchers can use for implementing statistical
operations that we have not anticipated. Cltp
and Cl,.lsp were developed to be portable across

Unix Common Lisp platforms. 1

2 Running Experiments

A great many experiment designs are used in sci-
ence, but most of them can be viewed as sets of
trials, each with a number of independent vari-
ables, representing the conditions under which
the trial is run, and a number of dependent vari-
ables, which are the objects of scientific scrutiny.
This is the simplest of the kinds of experiment
designs that Ct Ip supports. One common kind
of experiment within this paradigm is called a
"fully factorial" design, in which there are one
or more factors, eactr of which has a small num-
ber of discrete levels. Another comrnon kind of
experiment looks at the relationship of two or
more continuous variables, such as the correla-
tion between them. Cr,r supports both of these
experiment designs.

2.1 Instrumentation

Adding code to extract information from a
system is called instnrmentation, hence CLIP's
name. Most of CLIp's functionality is directed
towards extracting different kinds of informa-
tion from your system-information that is cal-
culated afterwards, collected periodically during
execution, or possibly collected whenever some
event occurs. This aspect of Cltp is deferred to
section 2.2. First, we present an overview of how
Cltp works and what you need to do to use it.2

To use Cllr to run an experiment, Clr first
needs to know how to run your simulator. Es-
sentially, this is a single function or piece of code

lFor specifics about the workstations and Common
Lisp implementations that are supported, see the Rclease
Notes for Cup and for Cue,sp available at the ftp site
listed in section 6

2This article is no substitute for the Cltr/Cutsr man-
ual [l], where everything is rigorously explained.

that CItr can call to start a trial and which will
return when the trial is over. Cltp also works
with simulators that run in multi-threaded (mul-
tiple process) Lisps, but it nevertheless treats the
simulator as a single piece of code.3 Between
trials, Crp will need to reset your system, al-
though this might be unnecessary if the simula-
tor is purely functional (few are). If your sim-
ulator has a notion of time, such as having a
clock, and you want Cup to schedule events for
particular times, Crp will need to know how to
interact with the scheduler and the clock. For
example, you might want to collect data every
day of the simulation, with the average being
written to the data file. To describe how to run
and control your simulator, there is a single Clr
macro, called def ine-sinulator.

Next, you will define your experiment, which
is again done with a single CLIe macro, called
defiue-experimetrt. The heart of an experi-
ment is the set of independent and dependent
variables, which are specified with the macro.
The independent variables are described with a
simple syntax much like the Common Lisp loop
macro. The names of dependent variables are
simply listed; the definition of how to collect and
report the data is separately defined as objects
called "clips," which will be discussed in the next
subsection. The defiue-erperiment macro also
provides ways for the user to run code during the
experiment, at four distinct times:

Before the Experiment: When the experi-
ment gets started, you may want, for exam-
ple, to load special knowledge-bases or set
scenario parameters. This is also a chance
to do more mundane things, such as allocat-
ing data structures or turning offthe screen-
saver.

Before Each 1lial: At each trial, you may
want to reinitialize parameters and data
structures. One important thing to do is
to configure your simulator for the current
experimental condition.

3This requirement may be lifted in future versions of
Cur, but the impact is minor. Most multi-threaded Lisps
provide a proccss-rait function, which ca,n be used to
make the simulator seem like a single piece of code.
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After Each Thial: The most important thing
that is typically done after each trial
is to call the function rrite-current-
experiment-data, the Cr,lp function that
writes all the data for this trial. This is also
a good time to run the garbage collector.

After the Experiment: Typicatly, code run
after the experiment undoes the code run
before the experiment, such as deleting data
structures or turning on the screen saver.

Of course, any arbitrary code can be executed
at these times, for whatever purposes you want.
The key idea is that the before- and after-trial
code surrounds every trial and runs many times,
while the before- and after-experiment code sur-
rounds the whole experiment and runs only once.
This ability to run arbitrary code is more than
just an opportunity for hacks-it is a clear and
precise record of the exact experimental condi-
tions. Records are important as a memory aid
and as a means for replicating experiments.

When the experiment has been defined,
you start it running with the function rua-
erperiment. This function takes arguments,
which you can refer to in the before/after code,
so that the final specification of the experimen-
tal conditions carr be deferred until run-time.
The n:n-experinent function also allows you to
specify the output file for the data, the number
of trials, the length of the trial, and other such
information.

Defining the simulator and the experiment,
and then running the experiment is fairly
straightforward and is only a fraction of what
must be done to run an experiment. The bulk
of the effort is in defining "clips"-functions
that measure the dependent variables of your
experiment. Fortunately they are modular and
reusable.

2.2 Clips

Clips are na,med by analogy with the "alligator
clipst' that connect diagnostic meters to electri-
cal devices. They meircure and record aspects
of your system (the values need not be numer-
ical). Essentially, they are Lisp functions that

you define and which CLIr runs if they are in-
cluded in the definition of the experiment. Once
written, they can be mentioned in any number
of experiments. Indeed, it is common to build
up files of clips, so that a new experiment can be
quickly defined by writing a def ine-erperinent
form (or editing an old one) and listing the clips
in the instrunentation argument to define-
erperiment.

Clips are defined with the defclip macro,
which is very much like defun, except that infor-
mation added before the body is read by Crr.
The central issue in defining a clip is the time
that it is run. (The code that is run is written in
the defclip body and is entirely up to the user.)
Most clips simply measure values after a trial
is finished, for variables such as "finish date,"
unumber of bottlenecks," and "total waiting time
for ships." More complicated clips may need to
run periodically, which only makes sense for sim-
ulators that have a clock of some sort; Cltr will
schedule the clip using the schedule-function
specified in the define-simulator form. Other
clips may need to run when some event occurs;
this is accomplished by tying the clip to a func-
tion in your simulator, using a mechanism like
the "advise" facility found in many Lisp imple-
mentations. The defclip form has syntax for
tying the clip to a function. When a clip is run
many times during a trial, it can either report the
mean of the values or it can report all the values
(or some function of them), as tirne series data.
We can statistically analyze time-series data to
see if there are temporal correlations. We cannot
answer such questions just by looking at mean
values after a trial is over.

Cltp has other features to support experimen-
tation, such as aborting a trial but continuing the
experiment, say when some intermittent error
has occurred-very common in stochastic sim-
ulations. Cltp also lets you run only part of the
experiment, which facilitates brea,king the exper-
iment into parts to run on different machines.
These facilities are all explained at length in the
Clr/Cl.r.sP documentation [1].
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3 Data Analysis

The idea of Cr,e,sp began when we wanted to
run a t-test on some experiment data without
having to write out the data to a file in some

tab-delimited format, move the code to another
machine, run a statistics program, and load
the data. From this small beginning, we have

added most of the workhorse statistical func-
tions, data manipulation (regrouping, selecting
subsets), data transformation (such as log trans-
forms), graphing sofbware (now replaced by Scr-
GRaru, by Bolt, Bera^nek and Newman, Inc.).
We have a convenient graphical user interface
implemented in Clnvr, and a prograrnmatic in-
terface so that the Ct.rq.sp functions can be called
by the user if the desired data manipulation isn't
already on a menu. IdeallS everything can be

accomplished by menus in the graphical user in-
terface.

CLasP's screen interface, an example of which
is shown in figure 1, comprises four areas: the
menus, the datasets, the results, and the note-
book:

Menus The CLA,sp menus will appear across
the top of the window. The menus, which
will be discussed below, are: File, Graph,
Describe, Test, Manipulate, Thansform and
Sample.

Datasets When you load a file of data into
Cr,.e,sp, such as a file written by Cln, it be-
comes a Cl.Asp dataset and appears on this
menu. The name of the dataset is the name
of the experiment. Earch column of data is
called a uariable; the na,me of the variable is
usually the name of the clip that returned
that variable, unless you specify a difierent
narne in the defclip. Most operations in
Clasp take either datasets or variables as

arguments, and the items in this pane be-
come mouse-sensitive under those circum-
stances.

Results Display When a Ct rc,sp operation
yields a complex result, such as a table or
graph, that object goes into a menu of re-
sults.

Notebook The notebook is a complete Lisp
read-enal-print loop, except that Cl.tsp
com-ands are also accepted. Having Lisp
available is important and powerful, because
users can operate on the data in ways we
have not yet implemented or even thought
of. Cl.c.sp commands can be typed instead
of using the menusl indeed the menus just
type the appropriate thing into the note-
book. When the command is fully entered,
it is executed and its results are printed to
the notebook. Clasp output in the note-
book is also mouse-sensitive when appropri-
ate.

Cle,sp uses a prefix command syntax, very
much like Lisp, in that you give the command
name first, such as :T Test Tro Sanples X Y,

where Xand Yare va,riables. Using the features
of Ct nu, Cl.e,sp allows command completion and
prompts for arguments.

Ct.Lsp groups related commands in the main
menu. The following are the categories and the
kinds of commands found in each. This descrip-
tion is just a few highlights, but everything is
completely described in the Clr/Cutsp man-
ual.

File This menu allows you to load Cl.o,sp
datasets from files and to save them to files,
say if you've made changes or created new
datasets.

Graph This menu allows a number of displays
of data, including histograms, scatter plots,
line plots, and regression plots.

Describe This menu contains the most com-
monly used descriptive statistics.

Test This menu contains a variety of inferentia,l
procedures, including t-test, confidence in-
ternals, analysis of nariance, chi-square and
regression. In the near future, we plan to
implement bootstrap variants on most com-
mon statistical functions [7].

Manipulate Clesp provides several ways to
extract subsets from a dataset through data
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Figure 1: Excerpt from sample interaction with Cusp

manipulation operations such as partition-
ing. Other operations on this menu allow
you to create new datasets.

Tbansform This menu has commands that pro-
duce new variables from old ones (for exam-
ple, by sorting a rrariable).

Sample This menu contains commands that
produce datasets by sampling from a given
probability distribution.

4 Empirical Analysis Toolbox

Cr,r/Cr,lsP forms the core of a larger set of
empirical tools for analyzing the behavior of AI
programs that we are building. These tools are

"add-on" modules to Clte/ClASp that help the
user find significant relationships in data and
model the causes of these relationships. These

modules are more focused than Clasp's general
statistical procedures. Each is tailored to a spe-
cific aspect of program analysis, such as finding
the major factors contributing to program suc-
cess or identifying interactions of progra,m com-
ponents that degrade performance. The mod-
ules we are currently building, while by no means
complete, include three that have proved partic-
ularly useful:

Exploratory Data Analysis Having run an
experiment and gathered data, the user is
faced with the task of identifying significant
relationships among the factors measured.
We are building a module that assists the
user in this effort by employing EDA tech-
niques [11]. These techniques can partition
data to distinguish different modes of behav-
ior and generate functional descriptions of
interactions between factors. Through de-
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tailed exploration of experimental data the
user can gain a more complete picture of
system behavior.

Dependency Detection The complexity of AI
progriuns has reached a point where their
behavior can be difficult to predict and
problems difrcult to replicate. Program ac-
tions often interact in unforeseen and dele-
terious ways. We employ a technique we

call ilependency d,etection, analyzing pro-
gram execution traces with a statistical fil-
ter to find significant dependencies arnong
interacting actions [8, 9, 10].

Causal Induction Having explored the data
and/or identified dependencies among inter-
acting factors, the user next tries to build a
predictive model of the program's behavior.
We would like for such a model to tell us how
to change the progra,m to improve or mod-
ify its behavior. This requires that we un-
derstand the underlying causal relationships
among the factors influencing its behavior.
We are developing a module that uses path
analytic techniques to build causal models
from data [4], and have incorporated into it
several new causal induction algorithms [6].

Case studies using these and other empiri-
cal techniques to analyze AI prograrns are in-
cluded in a forthcoming textbook on empirical
methods for AI research [5]. It is possible that
the major contribution of Clr/Cr,.nsp will not
be as a standalone instrumentation and analy-
sis package, but rather as a platform for the in-
tegration of more powerful techniques such as

those described above. We envision a new gen-

eration of statistical software in which knowl-
edge and heuristics will guide the application
of exploratory data analysis procedures. We
are currently at work on such a system which
we call AIDE, automated intelligent data explo-
ration [11].

5 Related Work

An alternative to Cr,tr is the Mprpns system,
developed by Bolt, Beranek and Newman, Inc.,

for use in the ARPA/RI Planning Initiative's
Common Prototyping Environment [3]. Mp-
TERs is particularly useful for collecting and fil-
tering time-series data from distributed systems.
Xr,IspStlt [12] provides a richer set of statisti-
cal and graphical capabilities than the current
version of Cr,.l,sr, but is not as tightly inte-
grated into an environment for instrumentation
and analysis as is Cusp. CLAsp's Ct tu inter-
face also makes it more portable across the nu-
merous Common Lisp platforms.

6 Current Status

Cr,p and Cl^o,sp are included as evaluation tools
in the ARPA/RI Planning lnitiative's Common
Prototyping Environment and will soon be incor-
porated into Rome Laboratory's Adrranced AI
Technology Testbed. Cltr/Cu,sr is being used
to instrument and a,nalyze AI systems for plan-
ning, scheduling, causal induction, molecular bi-
ology, signal interpretation, and others.

A Macintosh version of Cl,tsr, MncCuse,
is currently being prepared for distribution with
the textbook mentioned above. Exa,mples in the
text are all analyzed with MncCt,,c,sp. M.c,c-
CLAsP's interface is implemented using the Mac
toolbox (instead of Cluvr - the MCL version of
Cr,ru has some quirks that make the original
Clasp interface difficult to use). M,c,cCLA,sp
benefits from the intuitive look and feel of the
native Macintosh interface, though it lacks some
important features of the Cutvt version, notably
the integrated Lisp Listener and convenient log-
ging capabilities.

Cltp and CL.,c.sp may be obtained by anony-
mous ftp from ftp.cs.unass.edu. Cltp can
be found under the directory pub/eksl/c1ip,
Cr,e,sp under pub/eksl/claspl manuals and
information about which platforms are sup-
ported are included in both these direc-
tories. A tutorial on Cr,.e,sp is avail-
able under pub/eksl/clasp-tutorial. For
more information about M.lcCl.lsp contact
clasp-support@cs . u.mass . edu.

Development of Clrp/Crrtsr continues, and
is largely driven by user demand. We will con-
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tinue to add useful statistical tests and data ma-
nipulation functions, as well as useful functions
contributed by the user base. Comments, bugs,
new feature requests and general questions can
be sent to clasp-support@cs. unass . edu.

7 Conclusion

Cr,tp works directly with a user's simulator, help-
ing the experimenter define dependent measures,
control independent variables and run experi-
ments. Clasp is a statistics package and as such
competes with many good statistics packages on
the market. Its advantages are that it is imple-
mented in Common Lisp and Clttvt, so that it
can easily be combined u'ith your simulator and
with CLIP, allowing for a completely integrated
experimental environment. These tools form the
nucleus of an extended toolbox for the empirical
analysis of AI programs we are developing. We
believe such support for empirical science will be
of significant benefit to the AI community.
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