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1 Understanding Complex Data

Data analysis plays a central role in our attempts to understand the behavior of complex systems.
Derived models or descriptions of complex phenomena axe the result of a gradual process of explor-
ing possible interpretations, generating good and bad hypotheses, and gradually refining results.
Exploratory studies are the informal prelude to experiments, in which questions and procedures
are refined. Exploration is a kind of detective work: before making a formal presentation of a
case, the researcher must first ensure that clues are followed to their conclusions and false trails are
eliminated. The process can determine the nature of relationships between variables, their func-
tional behavior and interactions. Exploratory results give rise to confirmatory studies in a cycle of
successively more refi.ned exploration and confirmation [7, 13].

Exploratory data analysis (EDA) provides a wide range of statistical tools for the ea.rly stages of
analysis [26]. Simple exploratory results include histograms that describe discrete and continuous
variables, schematic plots that give general characterizations of relationships, partitions of relation-
ships that distinguish different modes of behavior, functional simplification of low-dimensionality
relationships, and two-way tables such as contingency tables. Combination of such partial descrip-
tions of data allows a more complete picture to emerge.

Human analysts can find it challenging to select and apply exploratory tools effectively. EDA
poses a difficult search problem, a problem of. control. A wide variety of operations apply: arithmetic
composition of variables, such as those used in function finding; model-based variable decomposi-
tion, as performed by linear regression; partitioning and clustering operations, such as those used
in numerical a,nd conceptual clustering systems; feature extraction operations like statistical sum-
maries; transformation operations; and generalization operations. Goal states can only rarely be
specified from the start. The process is opportunistic, in the sense that the selection of an appro-
priate EDA operation can depend on the results of the immediately preceding operation plus the
context provided by all previous operations. The search space grows explosively.

While research in statistics and artificial intelligence has addressed issues in the automation
of later stages of analysis, such as theory generation, model selection, and experiment design [23],
less attention has been given to initial exploration of data. We have developed a novel approach
to exploration as search. This paper gives an overview of the design of eIDn, the Assistant for
Intelligent Data Exploration, which assists humans in the early stages of data analysis [1].
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The system adopts a script-based planning approach to automating EDA. Data-directed mech-

anisms extract simple observations and suggestive indications from the data. Scripted EDA opera-

tions are then applied in goal-directed fashion to generate deeper descriptions of the data. Control
rules guide the EDA operations, relying on intermediate results for their decisions. The system is
mixed-initiative, capable of autonomously pursuing high and low level goals while still allowing the
user to guide or override its decisions.

AIDE is currently a prototype under development. We emphasize that the work presented here

is incomplete.

2 The Problem

ln Erploratory Data Anolysis, John T\.rkey describes EDA in this way:

A basic problem about any body of data is to make it more easily and effectively
handleable by minds-our minds, her mind, his mind. To this general end:

o anything that makes a simpler description possible makes the description more
easily handleable.

o anything that looks below the previously described surface makes the description
more effective.

So we shail always be glad (a) to simplify description and (b) to describe one layer

deeper [26].

Our design revolves around an understanding of the EDA process as the iterative application
of four classes of operations: operations for descriptive handling, simplification, extension, and

deepening.
Hand,ling operations produce descriptions of data. These may be single-valued statistics such as

mearls and medians, or structures such as histograms and fitted lines. Handling operations produce

results that can be directly used or interpreted by the user.

Simplification operations transform data to facilitate description. A Iog transform that straight-
ens a skewed relationship is one example. Irregularities such as outliers aJe more easily detected

in linear relationships than in nonlinea^r ones; a change in density can often enhance patterns in
data; many statistical operations, even ones as simple as Pearson's correlation coefficient, rely on

linearity. A straightening operation simplifies in that it enhances our observation, manipulation,
and evaluation-in a word, our ha.ndling---of the data.

Deepening operations increase the detail, accuracy, and precision of descriptions, in the way a

microscope enhances observation by trading a global perspective for local detail. An example is

the common practice of examining the residuals of a linear fit. The examination itself is carried
out by simplification and handling operations. Residual examination can bring to light structure
not captured by the line, such as clustering, unequal variance in residuals, or local deviations from
linearity.

With descriptive, simplifying, and deepening capabilities, EDA builds descriptions of single
variables, bivariate relationships, tables, partitions and clusters. Local descriptions can have non-
local, often widespread implication{'however; these are examined by ertension operations. When
clusters are observed in the values of a variable r, for example, and similar clusters are observed

in g, then an extension operation prompts the examination of the relationship (r,g).
EDA can be viewed as controlling the sequential execution of these operations. Handling op-

erations establish descriptions of data wherever they are applicable. Other operators support the
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Figure L: Exploring ship and port costs

descriptive process: simplification operations facilitate descriptions by transforming data into more
appropriate forms; deepening operations refine descriptions to increasing levels of detail; extension
operations incrementally widen the scope of descriptions.

3 A Brief Example

Much of our research deals with the behavior of AI planners in demanding simulation environments.
One such system is TransSim, a transportation planner/simulator [20]. In TbansSim, ships travel
between ports carrying cargo along assigned routes. Bottlenecks and other occurrences change
the environment in unexpected ways. The planner must react dynamically to these changes by
rescheduling dock and ship assignments and rerouting cargo through different intermediate ports.

An early experiment examined relationships between resource costs. We collected measurements
of cumulative port cost (P), ship cost (,9), and dock cost (D), the number of ships (,n[), and trial
duration (TD). We were particularly interested in the relationship between the resource costs P
and ,S over the duration of a trial. While we set N at different values, we fixed per-day port, ship,
and dock costs.

We begin with summary statistics for S, cumulative ship cost: the median is about 310K, the
interquartile range 95K, and there is a slight skew toward lower values. More significantly, when we

examine a histogram of S (Figure La), there are four distinct cfusters in the data. Our preliminary
partial description of S comprises the statistics and our observations about the clustering.

When we turn to the relationship (P, S) (Figure Lb), we see a different pattern: the values fall
into fiae clusters. The distinct separation in (P,.S) vaJues, as well as the observation that one of the
modes in the histogram of S (Figure 1a) corresponds to a cluster twice as la.rge as the others, Ieads
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us to return to our description of ,5. We establish an alternative description of ^9 as containing five

clusters, consistent with the clusters in (P, S).
Continuing with our analysis of (P,.9), we see that values in the leftmost cluster (which we

denote pso) can be fit by a straight line. In fact, this is true for all five clusters, though it is a
different line in each case. Once we settle on the description of each cluster as a line, we can add
the observation that the slopes of the lines decrease as the clusters move toward the right.

If we plot the centra.l locations of the clusters pso through ps" (i.e., the median coordinates P-"7
and ,S-"4 for each cluster), as shown in Figure 1c, we see that these five summary points can be fit
by a smooth curve. Further exploration shows that the curve is of the form ,S*"7 : c/Pmea. When
we perform this transformation (Figure ld) it straightens the curve, leaving no clear pattern in the
residuals.

Extending the analysis, we find that the five discrete va,Iues of the variable N, the number of
ships, correspond exactly to the clusters found in the relationship (P, S) and the variable P aione. If
we treat membership in a specific cluster asi a new categorical variable, Crr" , the two-way table of
frequencies, below, shows the relationship. Because we have experimental control over the number
of ships but not the cumulative costs, we count an observation about the former measurements as

an explanation of the latter. In this case, N explains the clustering of resource costs.

N = 15 N:20 N:40 N:60 N = 80

/-1vncn - d

C^"^ = b

C*.^ = C

C*"^: d

C^"^ = Q

We can continue by considering other variables. It turns out, for example, that a simple
functional relationship with trial duration accounts for the difference in slopes between the clusters.
A more complete analysis is given in a report under preparation. This description, though brief,
should give the flavor of the analysis.

To summa.rize, we begin with initial descriptiorzs of the data, such as the observation of gaps

between adjacent values. Flom these we generate indications [t9], or suggestive characteristics: the
data fall into clusters. Based on these indications we apply specific EDA procedures; we break the
data down and analyze the clusters individually. These procedures may involve 'iteratiae refinement,
as with the alternative descriptions of clusters in ^S. When possible, we simplify; instead of dealing
with all data points, we work with a reduced dataset of just the median points of the clusters. We

then follow two separate courses: we eatend current results, here by considering other variables,
and we deepen results, in this case by turning from a surface description of the clusters to an
examination of the behavior of the data within each cluster. As we proceed we watch for potential
generalizations, such as the set ofrelated straight lines that fit the clusters. The result is a coherent,
structured description of the data.

4 Basic Operations

Datasets are the basic level of data representation. A dataset is an extension of the familiar
relational table of attributes and values. Extensions capture implicit and explicit knowledge we have

about the data. Datasets and attributes can be specialized as distinct types, the most common cases

being relationships (or multivariate subsets of datasets) and variables (or univariate relationships).

22 0 0 0 0

0 22 0 0 0

0 0 2t 0 0

0 0 1 20 0

0 0 0 0 2l
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While there exist operations applicable only to variables, or to relationships, there is a large set of
shared operations that make it desirable for all data to be handled in tabular form.

A dataset may contain sets of other, as values of an attribute. Datasets and attributes are
annotated with information about their characteristics as well. A variable may be annotated
with the information that it is a dependent variable in an experiment; a relationship (r,y,z)
may contain the annotation that z - o + y. Dataset attributes are furthermore conceptually
multidimensional, for reasons that will become clear below. The annotations and associations
between related structures let us build a complex network of results during analysis.

We manipulate a dataset in three distinct ways. The first kind of manipulation involves sub-
dividing or combining elements of datasets. In order to construct fitted lines to each cluster in
the tansSim data, we partitioned the original data into five smaller datasets. We then examined
each cluster independently, at a finer level of detail. We call an operation that breaks data into
smaller but simiia.r parts a data decomposition. A data decomposition generates a mapping from
the elements of a dataset to membership in a set of new, derived data.sets. Operations that bin
data, exhaustively partition data, or nonexhaustively cluster data all decompose data in this way.
The inverse operation, data amposition, combines separate datasets. Data decompositions and
compositions let us capture independent detail in subsets of data and recombine results.

The second kind of manipulation involves deriving new attributes for elements of the dataset.
During the tanssim analysis we performsd a fla.nsfelmation of cluster medians to remove cur-
vature. Operationally the procedure transformed a single attribute, P,n"d, into a new attribute,
P/, where P' :1/P. We call such an operation an attribute transformation. A special type of
transformation is attribute composition: consider the transformation from attributes port cost,
ship cost, and dock cost to S + P * D, or total cost. Another type of transformation is attribute
decomposition: to conclude that a given line is a good fit to a relationship, we need to generate the
residuals by subtracting P from P-by decomposing the attribute into structure and residual.

Because dataset attributes may contain datasets as well, another useful transformation is the
mapping of a statistic over the elements of an attribute. Our data decomposition of the data.set
? generates five new datasets. More precisely the result is a new dataset, Z|, which contains a
single attribute "Clusters", whose value is these new datasets. We can now apply an attribute
transformation to the "Clusters" attribute, to produce new attributes such as ,,x-median,, and ,,y-
median". We continue by fitting a line, a further attribute transformation. F\rnctions for attribute
transformation include arithmetic operations, exponentiation, and higher level dataset operations
such as these.

The third kind of manipulation is red,uction, which is the type of function performed by summary
statistics such as means and medians. Correlations and partial correlations are similarly reductions
of bivariate and multivariate relationships.

Designing a system around such general structures and operations is not simply an attempt at
conciseness. Rather, the design is geared specifically toward the kinds of operations appropriate
for EDA. Consider the example of generating a histogram for a discrete variable N in a dataset ?.
To build a histogram we divide a variable into bins and count the number of observations that fail
into each bin. Using the operations describe above, we can implement a histogramming procedure
as follows. First we apply a data decomposition to ?. The result is a set of new datasets that form
disjoint subsets of ?, stored as an attribute "Data" in a new dataset, 4r. Our operations now work
on 7h. An attribute transformation of "Data", based on the count statistic, gives the size of the
bins' Another transformation using the mode statistic gives the value of N associated with each
bin. These distinct values and their counts can then be displayed directly in histogram form.

This may seem arr inordinate effort to produce such a basic structure, but consider a simple
extension: the contingency tabie. To build a contingency table between I[ and C^"^, an attribute
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that records the membership of each data point in a specific cluster, we follow essentially the
same procedure. This time the decomposition simultaneously bins .n[ and C*"*. Decomposition
operations are not limited to single variables; they can just as easily decompose two variables or
an entire dataset. The result of the operation is a dataset, Q, with a two-dimensional attribute
containing the partitions, one for each unique value of .l[ and C*"*. Again we transform by the
count statistic. Calculating the N, C*"* values for each bin is equally straightforward. The desired
contingency table data is the result. A simple variation of this procedure produces a box plot, by
computing letter values rather than counts. More complex two-way tables can also be generated
in a similar way, by calculating statistics for a third variable in each of the partitions.

Producing structures in this way has two abstract benefits: complex procedures can often be

seen as natural extensions of existing procedures, and natural connections between conceptually
similar structures become clear. While it is trivial to observe that a contingency table is a two-
dimensional histogram, it is worth stressing that the two structures can be produced by very similar
procedures, and that both procedures are different instances of a single canonical, divide-and-
conquer EDA procedure. A data decomposition breaks a dataset into smaller parts; dataset-Ievel

attribute transformations compute a set of features of the reduced data; these features are explored
both individually and in aggregate. The procedure is a simple, powerful example of generalization,
as described in the conceptual clustering and constructive induction literature [fA, tO].

We have developed a scripting language to implement these procedures. Scripting has an ad-

vantage over earlier rule-based approaches lLL,24) in that well-understood procedures and decisions

can be explicitly coded. The procedure for histogramming is implemented by the sequence script
below (edited slightly for length).

( def ine- sequence- s cr ipt var iable-hi stogran- s cript (the-var iable )
:doc "First generate a dataset of partitious, then calculate the

sj.ze of each partition."
: output-t1rpe histogran
:bindings ((partitioD-dataset (partitions court nin nax)))
:script (:sequeuce

( script-part it ion the-variable
#r (Iarnbda (x) x)
: output partition-dataset)

(script-transf orn partition-dataset
#'(lambda (partition)

(script-reduce partition' cor:at) )
:DaDe coutlt
: key (attributes partitions) )

.))

We have already mentioned variants of the histogramming procedure, which are implemented
by similar scripts. Other scripts compute initial values for pa.rameters of resistant lines, transfor-
mations of skewed relationships, and so forth. Each script produces a set of new or transformed
structures, appropriately annotated and related to existing structures. Scripts may call one another
for intermediate results. As scripts execute, a growing semantic net of datasets, relationships, and
their attributes and annotations is generated.

5 Control

Scripts provide an alternative to search with sequential control of operations. Nevertheless, they
are only part of a solution; we still face the problem of deciding which scripts to apply. Guidance
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is provided by control scripts which allow combinations of scripts beyond sequencing, and by two
complementary mechanisms: indications ar;.d intentions.

The extended scripting language is based on work in knowledge-based signal processing [5]. A
control script extends sequential scripts in several ways. Control scripts contain constructs that
allow sequencing, iteration, mapping, and conditislalizing of both actions and subgoals. A script
tests its input variables with a set of constraints, using a simple extension of pattern matching. A
script to explore a bivariate relationship is shown below. The script becomes applicable when a
higher level script establishes an "initiate exploration" goal for a bivariate relationship. In the case

of relationships, it is useful to explore the variables it contains before exploring the relationship
itself. We cannot determine, for example, that a contingency table is a reasonable description of a
relationship before we check whether its'rariables are discrete. This script first generates features
for the relationship, then explores the variables of the substructure, then generates indications for
the relationship, and finally explores the relationship. We have developed much more complex
scripts which, for example, implement iterative improvement algorithms for resistant lines and
heuristic straightening procedures for nonlinear bivariate relationships.

(def iue- s cript iuit iate -relat iouship-expJ.orat ion-plan ( structure)
: satisfies (initiate-exploration ( : typep bivariate-relationship) )
: script
( : sequence

(generate-f eatures structure)
( :nap (substructure (internals structure))

(subgoal expJ.ore-sg1 (geoeric-explore substructure)))
(subgoal indications (generate-indications structure))
(subgoal explore-sg2 (explore structure))))

Script execution is driven by indications and intentions. Indications are suggestive characteris-
tics of the data, most often involving evaluation of a statistic or descriptive structure. Indications
establish goals for exploration. For example, evidence of clustering is an indication, as is the pres-

ence of outliers, and cunrature in the residuals of a linear fit. In each of these cases the indication
Ieads to goals which, if satisfied, explain its presence. Indications are generated based on features
of structures, and may traverse the relationships between structures for their calculations. The
indication below checks whether a relationship contains two discrete variables.

(def ine- indicat ion discrete-valued-relationship-p

: class bivariate-re1at ioaship
:features (identity)
: form #' (lanbda (relatiouship)

(structure-match' ( : indirect conte!.ts
( ( : has-iudication discrete-valued-p)

( : has-indication discrete-valued-p) ) )
relationship) ) )

Indications provide guidance based on intemal characteristics of data. Intentions, in contrast,
impose ertentol considerations on exploration; for example, "Determine whether there is a difference
in behavior of the system for cases in which R < 1 and cases in which R 2 1," or "See if tr, is a
plausible direct cause of ^5." Intentions may be provided explicitly as user directives, or implicitly,
as assertions made by the user to provide the system with more information. An initial causal
model, generated by the user, is an example of a set of implicit intentions to test the plausibility
of specific causal relationships. Indications and intentions provide data-driven and goal-driven
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guidance to exploration. In a nutshell, indications help generate descriptions suggested by the

data, while intentions help generate descriptions appropriate for the goals of the analysis.

Indications and intentions determine whether a specific script is relevant to meeting a specific

goal. Complex interactions can take place between indications or intentions. For example, IIDE
currently contains two simple indications of univa.riate clusters. Clustering is indicated (1) if there is
a significant gap between adjacent values, as determined by a nearest neighbor clustering algorithm
and a heuristic threshold, or (2) if there are "regions of constancy" within the variable, or discrete
values common to several observations. The first indication tends to find large clusters, the second

small ones. Scripts activated by these indications will decompose the variable according to the two
different criteria produced. Sometimes, however, there is overlap between the criteria (e.g., the
results of timed trials in which successes are clustered around low values, but with a significant
number of failures at a high cut-off threshold.) In these cases the clustering criteria produced by

the indications, which are used as input in the scripts, can be examined and perhaps modified to
account for the interaction.

Focusing heuristics act in this role [5]. Focusing heuristics take advantage of the sequence of
operations leading up to a specific decision (the plan context) and the features, indications, and

intentions associated with the data under consideration (the data context) to decide which of the

applicable plans and structures should be pursued, which delayed, and which abandoned. Focusing

heuristics implement local, context-dependent control. The heuristics have the purpose of

o selecting appropriate plans, and suppressing inappropriate plans, for exploration of a struc-
ture;

o capitalizing on similarities between structures so that earlier results may be reused (e.g.,

successive line fits to clusters);

o reconsidering earlier decisions based on new information (e.g., reparameterizing a clustering
script to increase consistency);

o implementing user directives to override default heuristics.

Focusing is associated with plan selection for goal satisfaction and with selecting parameters for
selected plans. Focusing heuristics are activated the presence of specific indications or intentions,
while actions are implemented as Lisp code. Focusing heuristics thus take the form of rules. In
the univariate clustering example above, involving low, clustered success scores and high, constant
failure scores, a "handle" goal is established during exploration of the variable. Two distinct
instances of the script "isolate-clusters" are activated, corresponding to the different indications.
Each indication supplies a partitioning criterion for further exploration. A focusing heuristic is

associated with the "handle" goal. The heuristic may suppress either script or change the clustering
criterion to a different value. In this case the heuristic would first pursue the partitioning between

successes and failures, preferring a small number of large clusters to a larger number of small
clusters. On completion of this search path (i.e., when the "handle" goal becomes satisfied) the
focusing heuristic is reactivated to decide whether the other partitioning should be considered as

welI.
EDA processing shows strong similarities to the kind of processing common in blackboard-based

interpretation systems that perform signal interpretation [15]. Such systems merge diverse sources

of information by means of evidence aggregation and differential diagnosis. They can furthermore
often take advantage of hierarchical decompositions of domain concepts. A speech understanding
system such as Hearsay, for example, combines elements at the word level to produce structures at
the phrase level. Hearsay relies on a natural mapping of words to one level of abstraction, phrases
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to a higher level. During data analysis, for example as we process a set of clusters, the attributes
we generate from the clusters allow us to construct higher level generalizations, such as similar
linear fits. Whenever we deal with reductions or transformations of data we can speal< of possible
generalizations as well as deeper levels of detail. A blackboa^rd design captures these concepts
naturally.

6 Related Work

This work draws on a number of different sources. The clearest relationship is to early work in de.
veloping concepts of statistical strategy, or the formal descriptions of actions and decisions involved
in applying statistical tools to a problem [13]. Gale and Pregibon's REX system, for example, im-
plemented a strategy for linear regression [11]. Oldford and Peters implemented a complex strategy
for collinearity analysis [21]. The goals of AIDE bear a resemblance to those of Lubinsky and Pregi-
bon's TESS [16], which supports analysis by accommodating user knowledge of context in a search
good descriptions of data. AIDE extends this work by supplying an appropriate ta:conomy for EDA
operations and using this ta:conomy to gurde search at difierent levels of abstraction.

In machine learning there have been several broad approaches to data analysis that bear some
similarity to the approach described here, especially at the level of data manipulation. Systems such
as BACON [t4], Fahrenheit [28], and E* [22] use attribute transformation to discover functional
relationships between variables. In the area of conceptual clustering, systems such as COBWEB

[10], Autoclass [6], and ITERAIE [4, 3] use data decomposition and composition operations to
group observations appropriately. The significance of this work, of course, is not at the level of
data manipulation, but rather in the heuristics or biases they apply to the search for patterns.
Some of these biases have been in corporated into .eroB indications and scripts.

Work in automated scientific discovery, taken beyond function finding, is also relevant. The
PENCHANT system [27], applied to the domain of developmental biology, discovers patterned
behavior in data. Terms used to describe the system are similar to the concepts we discuss, but
at a difierent granularity (e.g., indications and features/attributes are wrapped up in the single
concept of "quantities".) Building on the 49er system, Zytkow and others l25,291have developed a
taxonomy of "regularities", which include equations and contingency tables. These regularities are

captured in a general form in the representation presented here. Other issues in the related area
of knowledge discovery in databases [17] are releva,nt as well.

Causal modeling systems, especially systems such as TETRAD [12, 9], offer yet another perspec-
tive on data exploration. Much of the external knowledge brought to bear in exploring experimental
data is in the form of causal relationships: y is a dependent variable, and cannot cause variation
in z; the correlation between z and u., is due to sampling bias. When a system relies on statistical
tests for its reasoning, exploration can comes into play to ensure that assumptions of the tests are
not violated (e.g., Iinearity for partial correlations [2].)

Central to AIDE is the opportunistic, incremental approach to discovery described by T\rkey,
Mosteller, and other advocates of EDA. There axe some obvious difficulties with the approach:
maintaining consistency in an incrementally growing set of descriptions can be difficult; in many
cases loca^l techniques can miss simple globat patterns [8]; local techniques can Iead to a plethora of
spurious results [22]; the problem of scaling in cluster analysis is notoriously difficult. Nevertheless
many such problerns can be alleviated in a system does not always act autonomously focuses on
both data and on goals of the analysis, and pursues exploration paths with the aid of external
knowledge and the context supplied by its own actions. We have designed eroe to address these
concerns.
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