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1 Introduction

Missing data ale ubiquitous. The comrnon practice is to throw away those parts of the data which
have missing values. This practice not only wastes inforuration, but may also lead to biased
inferences unless the data are missing completely at random, i.e., the subjects with complete data ale
a simple random sample of all of the subiects in the data set. Examples where this assumption
breals down are numerous. In sun eys, for example, wealthy people may be most likely to skip
quetions about income.

To go beyond simply omitting missing values, the computer requires an oq>licit model for
the missing values, using inforrration from either external sourcts or the completely observed
data. These missing data models are trcta4ata about the variables. Given the missing data
model, standard analysis procedures should adaptthemselvestoproperlyaccount forthe missing
data. This paper describes our prototlpe representation of missing data metadata in the $Pt us
language.

First, this paper briefly describes two model based methods for analyzing missing data: mul-
tiple imputation and the Expectation-Maximation (EM) algorithnt Noct, we review the current
model for $Pt us analysis in the framework described by Anglin and Oldford[gg4l. We then
extend ttntmodel tocover analysis with missing data and describe our prcgrcss in implementing
this model.

2 Model Based Missing Data Methods

There have been nuulerous techniques proposed for handling missing data: imputation (Little
and Rubin ll987l, Rubin Uy78, L98n), the EM algorithm (Dernpster, Laird and Rubin $97n),
Markov Chain Monte Carlo MCI\,IC, Smith and Roberts [1993]), data augmentation (Tarmer and
Wmg 1L9871'), and various specialized techniques. All of these techniques require specifying a

model, usually explicitly, for the missing values.
We will describe two of these methods-multiple imputation and the EM algorithm-in more

detail because they o<erplify t*o ways of how models and data are combined to trandle missing
values.

'AiBtas for arta?oilence Sta6ci, 1700 Westlake Ave N., Seattle, WA 98109 (almond@tatsci.cour).

23



2.1 Imputation and Multiple Imputation

One alternative to omitting rows of the data frame is to intpute, that is estimate and fill in, values
for the missing observatioru. Imputations are based on a model for the missing obsenrations.
Liftle and Rubin 1L984 suggest a number of different methods for imputation. Heitian and Little

[199U reniew serreral desirable properties for general-puqpose imputations:

o Imputes of missing values should andition on the values of observed variables for that case.

o They should account for the multiomiate natrre of the non-res:lronae, i.e., values are missing
on more ttran one variable, with a general pattern of missing data.

o Imputations should not distort marginal distributioru and associatioru between observed
and imputedvariables. To adrierre this, they shouldbe stochastic,i.e., they should represent

values from the predictive distribution, rather than just the means, of the missing variabls.

For these reasons, many ad hoc imputation techniques are not sound. In particular, uniomiate

imputationschesres,i.e., specifyingamissingdatamodelseparatelyforeadtvariablewithmissing
values, should notbe used except inspecial cirormstances where the multivariate nahrre of non-
rcsponse does not matler. One o<artple of this is when the missing data fit a nonotone pattrn
(Rubin U%n, Rubin and Little lL98n), so the imputation model factors into a series of univariate
conditional models.

Multivariate imputation techniques include:

HotDeck Select from an estimated distribution for each missing value. In applicatioru, this

may cpnsistof drawing values fromcompletelyobserned subjects deemed tobe similar (by

comparing on ttre obserrred values) to the case with missing values.

Iterative Simulation Straighfforward imputation is achieved by first specifying a parametric
probability modet for tlre complete (missing and observed) data and a prior distribution
for the parameters, and ttren simulating values from the conditional distribution of the
missing data given the observed data. Complex patterns of missingness, however, make it
diffioilt and often intractable to directly simulate these predictive distributions. HoweveI,
recent advances in Bayesian computation, in particrrlar iterative simulation sch€lnes based

on Markov chains (see e.g. Gerran and Geman [19841, Gelfand and Smith [19900, have made

itpossibleto generate imputations under a variety of useful models forbothcontinuous and

categorical data, and a mixture of these (Sctrafer 11997,195D.

Eadt of ttrese imputation m€thods can be described by a "missing data model", in particular an

"imputation model". Although the interpretation differs for hot deck vs. iterative simulation
imputation, in either case tlrc imputation model refers to the information, besides the data itselt
requircd to carry out imputation This inforrration canbe contained in an object which is attached

as a pararneter to a data frane or given as an argument to a modeling ftrnction. We briefly describe

the nature of this information forhot deck and simulation$ased imputationinhrrn.
For the hot deck, the model is implicit in the description of the procedure. There are several

discrete choices involved in the choice of a hot deck method, e.g. Mahalanobis metric matching vs.

matctring on a set of predetennined factors, and there are also some control pararrreters that may
be set in some versiors of the matching algorittrm, e.g. relative weights to be given to differerrt
variables, "similarities" amonlg levels of a categorical variable or droice of variables for whidt
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exact matddng is compelled. Another input to a hot deck could be a supplernentary data set to
be us€d as a donor pool.

In conkast to the "nonparartetric" hot deck, in simulation*ased imputation, we can specify
the joint multivariatemodel for dl of the data byfonnulas (this is meantin a specilic serrse made
more precise belon ). Irr the $Prus softruare, we have employed the Creneral Iocation Model with
constraints (Krzanowski [1980,1982] and Little and Sctrluchter [1985]), whidr is the centerpiece
of Schafer's 11991,19951 work on missing data imputation. In fact, Ioe Schafer's software forms
an algorithmic "engine" arround which we have created dass obiects and methods to implement
the $hus modeling paradigm. Once the joint distribution is specified (details follow below) and
fitted, all of the conditionals mayh obtained for imputation.

Singleimputationtakes the data frarne withmissing values and produces an effectively com-
plete data frame (i.e., has no missingvalues). One advantage of imputationis that, after imputa-
tion, the analyst can use familiar complete data methods, drawing on his erperience with those
methods. Different analysts might perforrr the imputation and analysis steps. Much of the devel-
opment of the imputation methodology was sponsored by the Cmsus Bureau. They assumed that
the data supplier(the Census Bureau) wouldperfonntheimputations and theircrrstomerswould
used the imputed data for their own purposes. In general, a data supplier may have access to
knowledge aboutthe missingdata mechanism and hencebebetter equipped to create completed
data sets for public use by a varied audience. In ttris case, ttre and1rst need not leam any new
missing data echniques. Bpecially in this situation, it is desirable that statistical software trandle
the imputed data sets in a manner that does not require the analyst to act differently than with
complete data sets.

The biggest drawback of applying usual inference procedures to a single imputation proce-
dure is that this pretends that tlre missing data were knovrn all along and thercfore ignores the
additional variability in the model parameters induced by imputation. If we let p rqtresent our
model parameters, and Y-;r, the missing observations, thenwe have that

VorQt) = ElVar(plY-*")l +var(EfulY-i,,1) .

Note thatthe firstterrris simplythevariance of ourpararteter estimatesreportedbythecomplete
data analysis. Single imputation implicitly assumes *rat the second terur is zeo.

Multiple imputation (Rubin llg79l) addresses this problem by taking a sarrrple of possible
values for the missing values, i.e., imputing M > L times irutead of iust once. lhe betrreen-
imputation variance in the parameter estimates from the M resulting filted-in data frames sup-
plies the correction term for the variance of the parameter estimates. Rubin daims a dramatic
improvement for even modest values of. M (e.g.,2, 3 or 5).

Note that the result of multiple imputation is several effective complete data frames. In order to
integratemultipleimputationwith the rest of theanalysis softwarc, we mustexpand ouranalysis
software (1) to acrcept data frames with additional multiple imputation data, and (2) to properly
aggregate the results of the multiple complete data analyses.

22 EM Algorithm

The EM algorithm is a lilcelihooddased approach to handling missing data. I-et Y = (Ya,,Y^;"")
be the coryletc data. We would liIG to maximize l(|lY), the log-likelihood of the complete data.
Horverrer we cannot, because of the missing data. Instea4 supposing that our best current estimate
of the parameters is A('), we create (E step) and maximize fUit"pl witt o"spect to A
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e@1e{tl', = | 4e1v1f (y^;ulya",e!)ydy^;," (1)

the average (over themissingvdues) of thecompletelog-likelihood,weightedbythe distribution
of the missing data (given the obsenred data and the current estimate of the pararneter). This
proedureisiterateduntilconv€rgencHne of the optimalitydraracteristics of the EM algorithm
is that the likelihood increases at each iteration

For the complete ogonential family of distributions, this algorithmconsists of calctrlating the
expected values of the sufficient statistics, then perforrring the usual mocimization for complete
data. This is dose to the intuitive practice of iteratively imputing missir€ values, and thm
performing a complete data analysis. In fact, this inhritive idea trnderlies a variety of missing data

algorittrms indudingiterativesimulationmethods, the data augmentationmethods of lhrurer and
Wmg IL98n, and sequentid imputation (Kon& Liu, Wong [19910. Multiple imputation simulates
approxima& draws from the predictive distribution / and thus approximates the averaging in (1).

Notethat, fortheocponential famityof distributions,whenthe log-likelihoodislinearinthe data,

the E step of the EM algorithmis equivalmt to imputingthe data.

3 Complete Data Analysis

The goal of our research is to oftmd the $Ptus modelling and arralpis environment in a nat-
ural way to handle model-based missing data techniques. This section looks at the existing
envirorurrent for complete data analysis. We start with a theoretical model proposed by Anglin
and OldfordlTg4l and then explain the existing $Pt-us environment in tetms of that frarrreruork.

Section 4 shows how we must octend that frarnework to indude missing data methods.

3.1 The Anglin and Oldford Model

Anglin and Oldfordllg4l describe a general dass of model called frre rcspur* tttdcl. This dass is

defined by the common draracteristic that one variable is drosen as the responsewhose exPecH
value (and variance) can be expressed as a function of a ntrmber of exphtutory oariables. The

relationstrip betvveen the oElanatory and response variables is tpically descriH in tenns of a

fom.ulawhose Erms ale firnctioru of ttre resPonse variables.
The simplest subclass of the rcsponse model is the gaussian linear model. Here ttre formula

is linear in the ocplanatory variables and the lesponse variables are assumed to be normally
distributed about their ogectations with a corutant variance. More complex dasses of models,
such as ttre general additive model, can include ali*functionwhich represents a transformation
of the formula to produce the erpected response, afamily for the distribution of the ernors, weights

to adiust for rurequal variances and non-linear forrrulae. Bothbecause the more general models

can be thought of as variatioru on the linear model, and because the linear model elrcomPasses

a large ntrmber of useful models, we have dtosen it as the foctrs for our prototlpe design and
implenrentation

lvlany important data analysis tasks involve comparing two models. For e:<artple, we may
want to compar€ the fit of a model with and without a particular oglanatory variable to under-
stand the relatioruhip (if any) betrueen the explanatory variable and the resPonse. Typically, this
isdonethroughtheforrrulapartofttremodelspecification Theanalystaddsandlemovesternrs
from the model searctring for the best fit. Almond[194] discrrsses some interaction metaphors
which specifically support the model comparison task. The key idea of Anglin and OldfordlLD4l
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Data Frame Model

Fit Mod.e1

Fitted Model
ect

is that there are two parallel dass hierarchies for models. The first is the model hierarchy described

above; the second is frre fitted model hierarctty.

tions &

Parameters

Figrrre 1: Fitting a model object to a data frame produces a fitted model obiect.

Each of these objects supports a different set of generic ftrnctioru for many courmon analysis

tasks. All of the object support some very general functions like summary ( ), plot ( ), and
prinr ( ) . Functions like addl ( ) and dropl ( ) manipulate the fornrula part of the model object.

The fitting function takes a model obiect and a data obiect and produces a fitted model obiect.

These fithd model obiects indude information needed for many important firnctions. Functions

like coef O and deviance O return statistics from the fitting procedure; the f it,ted0 and
residuals ( ) function rctum the predicted values for the response variable and the differences

from the predictions which play an help detect and diagnose lack of fit. The predict ( ) function
predicts value for the response variable for new realizations of the r€sPonse variables.

Note that combining models and data to produce fitted models is a powerful idea. Cleveland

t19931 octends this idea to produce general purpose plotting routines. These routines take a

model obiect (a forrrula) and a data frame and produce a plot which should show how the
r€sponse variable(s) behave as a ftrnction of the oglanatory variables.

3.2 The Key Obiects in the $hus Implementation

Becker, Chambers and Wilks[1988] describe the New S environsrent for data analysis. New
S is an interactive statis6cal programming language which supports statistical, graphical and

matheuratical analyses of data; $Prus is an extended version of Nemr S commercially supported
by Mattr,Soft (Sta6ci). Although gPrus supports a wide variety of statistical techniques, its dircct
supportformissingdatamethodsislimited;theonlygenerdmettrodprovidedisafunctionwhich
omits all cases with missing values from a data frame.

An important feattu,e of the $Prus language is that any obiect cart have "atlributes" as well as

data (similar to the "prqperties" of Lisp syrrbols). For example, row and column variable names

are implemented as attributes of the matrix obiect. For a long time,$,PI.us functions have used

this feattue to btrndle the output of functions into compoturd objecb whidt can be manipulated
by other ftrnctions. Note that the dass of an object (which $Pt us uses to compute the dispatch for
generic ftrnctions) is also impleurerrted using attributes. Thus $Prus is weakly objectoriented: it
supports both composite data o$ects and polymorphic functions, although it does not use dass

definition metadiects or perfornrany tpe-checking or optimization.
The ctrrrent version of gPrus (bas€d on Chambers and Hastie[19{21) supporb statistical
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models as first dass objects: obpds which can be passed and manipulated by ftrnctions as if
they were data. The basic kind of model object, the fomula obiect, impleurents the Wilkinson
and Rogersltg73l language for model specification. The $,Prus implerrentation (Clrarnbers and
Hastie[1992]) octends the language, and uses it to fit a variety of models: least squares (regression),
analysis of variance, generalized linear models, generdized additive models (induding splines),
local regression Qoess) models, and tree based models.

Data Franres

One of the simplestconceptual models for data is the spreadsheet. In a data spreadsheet, rows of
the table correspond to observations (e9., individuals in a sun ey) and the columns correspond to
uriabb*nasurements on the obserrrations (e.g., questions in a survey).

a matrix of rows and columns of data; in the other vien, it is a list of variables. Having a list of
variables allows $Prus to store variable specific metadata with eadr variable.

Currently, $Prus uses the variable specific metadata to customize the behavior of certain
ptocedures. For exarnple, an important piece of metadata is whettrer a variable is a continuous
or categorical (a factor). The lm ( ) function will adapt its behavior to the tlpes of the
variables in the modet if th€y are all factors it will perform an analysis of variance, if they are
allcontinuousitwillperformaregression. If ananalysthasinterestinspecificcontrastsbetvveen
levels of a factor, he can spedfy thern as variable specific metadata and thus will adapt its
behavior appropriately. Analogously, we psopose using missing data models as metadata to
choooetheappropriatealgorithm- Thisuseof variablespecificmetadataisnotuniqueto$Prus;
Hand[l993] and Roth et. al.l1994l propose other uses.

Fonnulae and Models

Wilkinson and Roger[gTSl introduced a language for specifying linear models. This language is
a strorthand for complex model equations. Thus, to represent the model:

Y: 0o * |tXr,; * fizXz,; * e;,

$re use the simpler fornu Y - XL + X2. The coefficierrb Po, h nd P2 are implicit as is the error
tenn e1; the intercept, h, b imp[ed by default This allows for a mudr morc compact notation
and an easy way of describing the difftrence betneen models.

Forrrulas support four different tlpes of oglanatory variables: factors-variables whose
valuesrepresentchoicesfromafixedset(e.9., {tnre, false}, {red,blue, green}), ordered factors-
variables whose values represent droices from an ordeted set, ntr.nreric values-vectors or inte-
gers or real numbers, and matrices-a compact notation for ssrreral variables. Factors are tneated
slightly afferenUy in formulas: the will expand to a number of coefficients (corresponding to
the number of levels of the factor). lfre rules for trardling formulas (described in Chambers and
Hastie[1992]) take advantage of the natural difference between the way one would like to model
factors and numeric vectors.

Withinthescopeof aforurula,thenormaloperatorsareinterpreEdsomenrhatdifferently. For
exarrrple, the + operatoraddsterrrstothemodelandthe - operatorreurovesbrmsfromthemodel
(this is tfpically used only when describing the differene betneen two models or to oglicitly
renrove the interaep$. TIre : operator is used to add interaction tenns into a mode} the * operator
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adds both the linear and the interaction terms and the / operator performs a special kind of nested
interaction.

gPrus also impleurents fitted model objects. Model fitting functiors, like 1m ( ) , glm ( ) and
gam ( ) take a data frame and a forrnula as input and rehrrn a fitted model obiect as output. A
widevariety of generic functions have specificmethods for themodel objects,indudingexlraction
functions for the inputs to the fitting routine call, extraction functions for statistics produced by
the model, summary and diagnostic graphics functions and especially the updat,e ( ) ftrnction.
This latter function allows the user to change the forrnula and rcfit the model. This is an important
part of the model selection stage of analysis.

Note that although $Pr-us specifically supports data frame object and fitted model obiects,

it does not fully support model obiects. Ttte forrrula is only part of a model. For all dasses of
resporuie model orrrently supported by tPlus, we could add attributes to the fornrula obiect to
produce models which would sufficienfly specify the intended fitting procedure.

Details of Model Fitting in thus
Otu work aims to implement missing data procedures by combining models and data. The goal
is to seamlessly integrate missing data handting procedures into the modeling fturctions so that,
from a user's a model in the prcsence of missing data is like modeling
complete data.

In the case of imputation, the $Pt us modeling paradigm needs to be implemented in at least
twoplaces:

o combining the imputation model and the original data frame (with missing values) to
produce completed data.

o applying the usual modeling procedures to the imputed data frame.

In either case, we need to know the details of $Prus model fitting functioru, which we
now briefly exarnine. The lm( ) firnction (and other similar ftrnctions) proceeds in 4 steps:
(1) model.frame$-This function preparcs a reduced data frame for fitting the model by
rernoving unneeded variables and tlren selecting a subset of cases, if a subsetting argummts is
grvm In the crrr€nt $Prus implesrentatiorU it calls the na . action function if any rows contain
missing values. (2) nodel .matrix ( ) -This 

function pr€pares a matrix of explanatory variables
based on the forcrula. It creates interaction terms and dummy variables (and contrasts) for factor
variables. (3) Ttre actual model fitting. (4) Collect the results and rehrrn ttte fitted model object.

4 Missing Data Analysis

The current $Eus implernentation leaves precisely one place for adding missing data handling
to the model fitting paradiguu $rittrin the model fitting code, the model . f rame ( ) function calls
ttre na . ac t i on function which should retum a data frame without missing values. Although this
works adequately for procedures such as omitting the missing values or even for sirgle imputation,
it does not adequately serve the needs of more general such as multiple imputation.

Figure 2 more properly caphues the flow of the analysis using multiple imputation. First, the
analystimputesnewvaluesforthemissingdatausingthemissingdatamodel. Thisstepimplicitly
fits the parameters of the missing data model. Note however that the Wtury goal is to combine
data and imputation model to produce other data sets, rather than a fitted model obiect. As in
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Figure 2: Expanding the model fitting model to indude imputation.

any other model fittiogprocedure, this step tJrpicallyinvolves an iterative process of exploratory
data analysis, model identificatioru model fit, and diagnosis. Ttrese stqrs are, howeveg guidedby
diffentcriteriatlunintheanalysisstage. Foro<ample,sinceaccrrratepredictionofmissingvalues
is more important ttran achieving a parsimonious model, variable selectionmay be of secondary
importance (usuallyh.ri.g an imputationmodel whidr is more gerreral than the analysis model
leads to sound inferences - although the opposite may not be tnre). Aft€r multiple imputation,
one may graphicallyexplore the completed data sets to informally assess how interesting features
of the data are affected bymissing{ata

In the second -complete data analysis - step, the analyst applies the model fittirg procedure
to the completed data, i.e., the imputed data frame. Note that different analysts might perfonrt
the imputationand analysis steps.

4.1 Missing Data Model

Atlmissingdatatrandlingproceduresrequireassumptionsaboutthemissingvalues. Forexarnple,
omitting the rows of the data frame with missingobservatiors assumes that the observations are
mbsing a mpletely at ranilottt Other "non-parametric" techniques like hotdeck imputation assume
that the missing obsenrations are similar to the observed values for some variable tn a local
neighfurlwd (where the neighborhood is defined in terms of the completely obssved variables)
of the subiect with missing values. Howeveu defining the local neighborhoods requires making
choices about the relative scaling of the variables. In all cases, we should shrdy robustness and
seruitivity to these : making the assumptiors explicit helps us do this.

We use a separate model for the missing values and the response variables for a number of
reasons. (1) Ihe missing data model must provide a model for all column variables with missing
obsenratioru, not just the response variable. (2) Often we want to irrclude additional variables in
the missing data model (proxies for the missing observations) which are not of direct interest the
inference stage. (3) While parsimony is a concem when cneating inferential models, it is not as
great a conc€rn when fitting missingvalue models. ( ) We maywant to separate the imputation
and analysis steps.
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An Imputation Model

Onepartiorlarlyusefuldassof missingdata modelsistheC,eneral I-ocationModel (Olkinand Tate

1196ll, also known as the conditional gaussian model (t auritzen and Wer:nuth[1989]). This model
can describe the ioint distribution of variables that are either factors (i.e., discrete or categorical
variables) or continuous variables. Following the usual terrrinolory of categorical data analysis,
the factors forrr a contirqgency table of cells.The General Location Model assurres that:

o the cell counts follow a multinomial distribution, and

o conditionedonthecells,thecontinuousvariablesfollowamultivariatenonnaldistribution.
The cell rrearu may vary across cells, but the cell covariances are assurred to be the same
for all cells.

When there are iust two cells, the General Location Model reduces to the farniliar model for
discriminant analysis.

The large number of parameters in this model make it difficult to fit to many datasets, especially
those for which the number of factors is large. In this latter case, the contingency table (fornred by
the factors) may be too sparse to estimate either the probabilities for the cells, or the mean vectors
\Mithin the cells. The analyst may impose either loglinear constraints on the cell probabilities
and/or AITIOVA-like constraints on the cell mearu. The loglinear constraints, as in hierarchical
interaction models (HM, Edwards[190D, require that for every interaction terur in the model,
all of the lower order interaction terms involving the samevariables and all of the corresponding
main effects terms dso be irrcluded in the model.

Thecorutraintsdefinethemodel, andtheneforetheimputationmodelunderaGenerallocation
Model can be expressed by two forrrulas, one for each corstraint. The AI{OVA-like constraints on
the cell upans arc easy to ocpress using the syntax for linear models in tPr,us, i.e. the Wilkirson
and Rogersll$Z4l language. Because of the linear relatiorship betrneen the log of the cell means
and the factor variables, HIlvIs can be represented either with the Wilkinson and Rogers[gT4l
language or the HIM model language developed by Edwards[1990].

Shaferll9l , 1995lhas created software for multiple imputation based on the C'eneral l.ocation
Model (allowing corstrainb). Note that the General Location Model can specify the distribution
for a mix of factors and continuous variables. Thus, we only need to specify one model for
the entire data frarrre. Naturally, the variables may be all be continuous (multivariate normal
model) or all factors. The nature of the variables and the formula will deterrnine the appropriate
algorittrnr"

42 Andysis with Multiple Imputation

Inorder to implementmissingdata analysis withmultipleimputation,wemustextend two of the
oblects in the original data analysis model (Figure 1): the data frame and the fitted model obiect.
Figure 2 grves the resulting data analysis model.

\\e intputeil datafratru obiect difftrs from a standard data frame by the addition of two piees
of metadata: ttte model rurder which the values were imputed, and the achrd imputed values.
Note thatseveral of the gmeric functionsmustbeo<tended to accommodate thesenewdata frame
obiects. For ocarrrple, plotting ftrnctioru might plot a small doud of imputed values in place of the
missing observatioru. Of course, the most important extension is to the model fittirg functiors,
which now mustbe generic and which dispatch on the tlpe of data frame: complete data or with
imputedvalues.
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The modelling functions, such as lmfl must be extmded as follows: (1) Ttre function
model . frame ( ) which produces the reduced data sets must operate properly on imputed value
data frarrres. Next, for eadr of the M completed data sets, the model fitting function must (2) Cal-
culate the data matrix (modeJ. .rnatrix t I ) and (3) fit the model using the compleb data method.
Finally, themodelfittingfunctionmustgathertheresultsof ttrefittingproceduresintoanaggregate
modelobiect.

Several of the generic functioru whidt operate on the fitted model obiects must also be ex-
tended to properly summarize the multiple fits returnd by the multiple methods. In
particrrlar, the variance calcrrlatioru for coefficients and predictions need to be adjusted for the
uncertainty about the model fit caused by the missing obserrrations.

Note that once the analyst has performed the imputatioru, the modelling firnctioru use the
meta{ata associated with the impuEd data object to automatically adjust the behavior of com-
plete data procedures. From the user's perspective, modelling with missing data is not much
different from modelling with complee data.

4.3 Analysis with the EM Algorithm

Otlrer missing data methods would interact differently with the mode[ing process. For o<arrrple,
the EM algorithm:rssumes a model for the complete ilata; the result of running EM is a set of
paramehr estimates. There is no preliminary stq>, as in imputation, of assurning an imputation
model to produce completed data sets, which are then analyzed using analpis models. Thenefore,
changes needed to modeling ftrnctiors sudt as Im ( ) are minor. One can create ,m na. keep ( )
missing data trandler whidr simply keeps the original missing data symbols, i.e., NAs. Then the
existence of raas in the data frame causes lm( ) to choose an EM algorithm (rather than using a
partioilar matrix decomposition method). The meta,-data for an EM algorithm is therefore the
same .rs the metadata used to fit the analyst's model.

5 Condusions and Future Directions

Workingwithexplicitmodelobrectshasadistirrctadvarrtage thecomputercanselecttheappro-
priate algorithm for fitting the model to the data. Associating missing data models with a data
frame strould have similar advantages: the computer can select the appropriate algorithm for
handling missing values.

We have drosen to oElore two missing data methods-multiple imputation and the EM
algorittrrr-because ttpy qptfy two diffeent ways of specifying a missing data model.

In multiple imputatiory tlrere are two distinct steps: (1) impute (i.e. estimate and fill in missing
data) and (2) arlr.lyzc the resulting complete data set(s) using the usual comple@ data methods.
Ttris rcquires an otplicit irnrytation ttodcl which, combined with data, produces anhtryted ilata
obrect Thenatureofthisoblectdetenninesthatamethodformultiplyimputeddatasetsischosen
in the subsequent complete data analysis.

In contrast, the model for the EM algorithm is the same as the analysis model, therefore the
modelirqg softrrare need onlybe changed by adding ano,ther dgorithmwhich is invoked if there
are missingvalues in the data obiect.

Extending the modelling fiurctions to handle imputed values gets around themissing cornpletely

at ratdottt assumption However, it still contairu the milder nissing at random assunrption which
says thatmissingvalues are arandom sarrrpleof allvalueswithinsubclassesdefinedbyobsenred
data. Modelswithoutthisassurrptionaredifficulttofitbecausewewouldneedtoactuallyfind
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thetnrevaluesofthemissingobsenrationstofitthem. Ontheothertran4therearesomerelatively
simple alternative, sudr as adding an inflation factor for missing values (e.9., missing values are
approximately 10el" higlrcr than the corresponding values). Using models such as
these, wecan atleast studythe sensitivity of our conclusioru to otrr assumptionsaboutthe missing
data mechanism.
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