Missing Data Models as Meta-Data

Russell G. Almond and James Schimert
StatSci Division, MathSoft*

October 31, 1994

1 Introduction

Missing data are ubiquitous. The common practice is to throw away those parts of the data which
have missing values. This practice not only wastes information, but may also lead to biased
inferences unless the data are missing completely at random, i.e., the subjects with complete data are
a simple random sample of all of the subjects in the data set. Examples where this assumption
breaks down are numerous. In surveys, for example, wealthy people may be most likely to skip
questions about income.

To go beyond simply omitting missing values, the computer requires an explicit model for
the missing values, using information from either external sources or the completely observed
data. These missing data models are meta-data about the variables. Given the missing data
model, standard analysis procedures should adapt themselves to properly account for the missing
data. This paper describes our prototype representation of missing data meta-data in the S-PLUS
language.

First, this paper briefly describes two model based methods for analyzing missing data: mul-
tiple imputation and the Expectation—Maximation (EM) algorithm. Next, we review the current
model for S-PLUS analysis in the framework described by Anglin and Oldford[1994]. We then
extend that model to cover analysis with missing data and describe our progress in implementing
this model.

2 Model Based Missing Data Methods

There have been numerous techniques proposed for handling missing data: imputation (Little
and Rubin [1987], Rubin [1978, 1987]), the EM algorithm (Dempster, Laird and Rubin [1977]),
Markov Chain Monte Carlo (MCMC, Smith and Roberts [1993]), data augmentation (Tanner and
Wong [1987]), and various specialized techniques. All of these techniques require specifying a
model, usually explicitly, for the missing values.

We will describe two of these methods—multiple imputation and the EM algorithm—in more
detail because they exemplify two ways of how models and data are combined to handle missing
values.

* Address for correspondence: StatSci, 1700 Westlake Ave N., Seattle, WA 98109 (almond@statsci.com).
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2.1 Imputation and Multiple Imputation

One alternative to omitting rows of the data frame is to impute, that is estimate and fill in, values
for the missing observations. Imputations are based on a model for the missing observations.
Little and Rubin [1987] suggest a number of different methods for imputation. Heitjan and Little
[1991] review several desirable properties for general-purpose imputations:

e Imputes of missing values should condition on the values of observed variables for that case.

o They should account for the multivariate nature of the non-response, i.e., values are missing
on more than one variable, with a general pattern of missing data.

e Imputations should not distort marginal distributions and associations between observed
and imputed variables. To achieve this, they should be stochastic, i.e., they should represent
values from the predictive distribution, rather than just the means, of the missing variables.

For these reasons, many ad hoc imputation techniques are not sound. In particular, univariate
imputation schemes, i.e., specifying a missing data model separately for each variable with missing
values, should not be used except in special circumstances where the multivariate nature of non-
response does not matter. One example of this is when the missing data fit a monotone pattern
(Rubin [1987], Rubin and Little [1987]), so the imputation model factors into a series of univariate
conditional models.

Multivariate imputation techniques include:

Hot Deck Select from an estimated distribution for each missing value. In applications, this
may consist of drawing values from completely observed subjects deemed to be similar (by
comparing on the observed values) to the case with missing values.

Iterative Simulation Straightforward imputation is achieved by first specifying a parametric
probability model for the complete (missing and observed) data and a prior distribution
for the parameters, and then simulating values from the conditional distribution of the
missing data given the observed data. Complex patterns of missingness, however, make it
difficult and often intractable to directly simulate these predictive distributions. However,
recent advances in Bayesian computation, in particular iterative simulation schemes based
on Markov chains (see e.g. Geman and Geman [1984], Gelfand and Smith [1990]), have made
it possible to generate imputations under a variety of useful models for both continuous and
categorical data, and a mixture of these (Schafer [1991, 1995]).

Each of these imputation methods can be described by a “missing data model”, in particular an
“imputation model”. Although the interpretation differs for hot deck vs. iterative simulation
imputation, in either case the imputation model refers to the information, besides the data itself,
required to carry out imputation. This information can be contained in an object which is attached
as a parameter to a data frame or given as an argument to a modeling function. We briefly describe
the nature of this information for hot deck and simulation-based imputation in turn.

For the hot deck, the model is implicit in the description of the procedure. There are several
discrete choices involved in the choice of a hot deck method, e.g. Mahalanobis metric matching vs.
matching on a set of predetermined factors, and there are also some control parameters that may
be set in some versions of the matching algorithm, e.g. relative weights to be given to different
variables, "similarities” among levels of a categorical variable, or choice of variables for which
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exact matching is compelled. Another input to a hot deck could be a supplementary data set to
be used as a donor pool.

In contrast to the “nonparametric” hot deck, in simulation-based imputation, we can specify
the joint multivariate model for all of the data by formulas (this is meant in a specific sense made
more precise below). In the S-PLUS software, we have employed the General Location Model with
constraints (Krzanowski [1980,1982] and Little and Schluchter [1985]), which is the centerpiece
of Schafer’s [1991, 1995] work on missing data imputation. In fact, Joe Schafer’s software forms
an algorithmic "engine" around which we have created class objects and methods to implement
the S-PLUS modeling paradigm. Once the joint distribution is specified (details follow below) and
fitted, all of the conditionals may be obtained for imputation.

Single imputation takes the data frame with missing values and produces an effectively com-
plete data frame (i.e., has no missing values). One advantage of imputation is that, after imputa-
tion, the analyst can use familiar complete data methods, drawing on his experience with those
methods. Different analysts might perform the imputation and analysis steps. Much of the devel-
opment of the imputation methodology was sponsored by the Census Bureau. They assumed that
the data supplier (the Census Bureau) would perform the imputations and their customers would
used the imputed data for their own purposes. In general, a data supplier may have access to
knowledge about the missing data mechanism and hence be better equipped to create completed
data sets for public use by a varied audience. In this case, the analyst need not learn any new
missing data techniques. Especially in this situation, it is desirable that statistical software handle
the imputed data sets in a manner that does not require the analyst to act differently than with
complete data sets.

The biggest drawback of applying usual inference procedures to a single imputation proce-
dure is that this pretends that the missing data were known all along, and therefore ignores the
additional variability in the model parameters induced by imputation. If we let x represent our
model parameters, and Y,;,s the missing observations, then we have that:

Var(p) = E[Var(p|Ymiss)] + Var (E[p|Ymiss]) -

Note that the first term is simply the variance of our parameter estimates reported by the complete
data analysis. Single imputation implicitly assumes that the second term is zero.

Multiple imputation (Rubin [1978]) addresses this problem by taking a sample of possible
values for the missing values, i.e., imputing M > 1 times instead of just once. The between—
imputation variance in the parameter estimates from the M resulting filled-in data frames sup-
plies the correction term for the variance of the parameter estimates. Rubin claims a dramatic
improvement for even modest values of M (e.g., 2, 3 or 5).

Note that the result of multiple imputation is several effective complete data frames. In order to
integrate multiple imputation with the rest of the analysis software, we must expand our analysis
software (1) to accept data frames with additional multiple imputation data, and (2) to properly
aggregate the results of the multiple complete data analyses.

2.2 EM Algorithm

The EM algorithm is a likelihood-based approach to handling missing data. Let Y = (Yo, Yiniss)
be the complete data. We would like to maximize [(6]Y"), the log-likelihood of the complete data.
However we cannot, because of the missing data. Instead, supposing that our best current estimate
of the parameters is 6®), we create (E step) and maximize (M step) with respect to §
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the average (over the missing values) of the complete log-likelihood, weighted by the distribution
of the missing data (given the observed data and the current estimate of the parameter). This
procedure is iterated until convergence—one of the optimality characteristics of the EM algorithm
is that the likelihood increases at each iteration.

For the complete exponential family of distributions, this algorithm consists of calculating the
expected values of the sufficient statistics, then performing the usual maximization for complete
data. This is close to the intuitive practice of iteratively imputing missing values, and then
performing a complete data analysis. In fact, this intuitive idea underlies a variety of missing data
algorithms including iterative simulation methods, the data augmentation methods of Tanner and
Wong [1987], and sequential imputation (Kong, Liu, Wong [1991]). Multiple imputation simulates
approximate draws from the predictive distribution f and thus approximates the averaging in (1).
Note that, for the exponential family of distributions, when the log-likelihood is linear in the data,
the E step of the EM algorithm is equivalent to imputing the data.

3 Complete Data Analysis

The goal of our research is to extend the S-PLUS modelling and analysis environment in a nat-
ural way to handle model-based missing data techniques. This section looks at the existing
environment for complete data analysis. We start with a theoretical model proposed by Anglin
and Oldford[1994] and then explain the existing S-PLUS environment in terms of that framework.
Section 4 shows how we must extend that framework to include missing data methods.

3.1 The Anglin and Oldford Model

Anglin and Oldford[1994] describe a general class of model called the response model. This class is
defined by the common characteristic that one variable is chosen as the response whose expected
value (and variance) can be expressed as a function of a number of explanatory variables. The
relationship between the explanatory and response variables is typically described in terms of a
formula whose terms are functions of the response variables.

The simplest subclass of the response model is the gaussian linear model. Here the formula
is linear in the explanatory variables and the response variables are assumed to be normally
distributed about their expectations with a constant variance. More complex classes of models,
such as the general additive model, can include a link function which represents a transformation
of the formula to produce the expected response, a family for the distribution of the errors, weights
to adjust for unequal variances and non-linear formulae. Both because the more general models
can be thought of as variations on the linear model, and because the linear model encompasses
a large number of useful models, we have chosen it as the focus for our prototype design and
implementation.

Many important data analysis tasks involve comparing two models. For example, we may
want to compare the fit of a model with and without a particular explanatory variable to under-
stand the relationship (if any) between the explanatory variable and the response. Typically, this
is done through the formula part of the model specification. The analyst adds and removes terms
from the model searching for the best fit. Almond[1994] discusses some interaction metaphors
which specifically support the model comparison task. The key idea of Anglin and Oldford[1994]
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is that there are two parallel class hierarchies for models. The first is the model hierarchy described
above; the second is the fitted model hierarchy.

Data Frame Model
Object Object

Fit Model ST T
Parameters

Fitted Model
Object

Figure 1: Fitting a model object to a data frame produces a fitted model object.

Each of these objects supports a different set of generic functions for many common analysis
tasks. All of the object support some very general functions like summary (), plot(), and
print (). Functions like add1 () and dropl () manipulate the formula part of the model object.
The fitting function takes a model object and a data object and produces a fitted model object.
These fitted model objects include information needed for many important functions. Functions
like coef () and deviance () return statistics from the fitting procedure; the fitted() and
residuals () function return the predicted values for the response variable and the differences
from the predictions which play an help detect and diagnose lack of fit. The predict () function
predicts value for the response variable for new realizations of the response variables.

Note that combining models and data to produce fitted models is a powerful idea. Cleveland
[1993] extends this idea to produce general purpose plotting routines. These routines take a
model object (a formula) and a data frame and produce a plot which should show how the
response variable(s) behave as a function of the explanatory variables.

3.2 The Key Objects in the S-PLUS Implementation

Becker, Chambers and Wilks[1988] describe the New S environment for data analysis. New
S is an interactive statistical programming language which supports statistical, graphical and
mathematical analyses of data; S-PLUS is an extended version of New S commercially supported
by MathSoft (StatSci). Although S-PLUS supports a wide variety of statistical techniques, its direct
support for missing data methods is limited; the only general method provided is a function which
omits all cases with missing values from a data frame.

An important feature of the S-PLUS language is that any object can have "attributes" as well as
data (similar to the "properties” of Lisp symbols). For example, row and column variable names
are implemented as attributes of the matrix object. For a long time, S-PLUS functions have used
this feature to bundle the output of functions into compound objects which can be manipulated
by other functions. Note that the class of an object (which S-PLUS uses to compute the dispatch for
generic functions) is also implemented using attributes. Thus S-PLUS is weakly object-oriented: it
supports both composite data objects and polymorphic functions, although it does not use class
definition meta-objects or perform any type-checking or optimization.

The current version of S-PLUS (based on Chambers and Hastie[1992]) supports statistical
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models as first class objects: objects which can be passed and manipulated by functions as if
they were data. The basic kind of model object, the formula object, implements the Wilkinson
and Rogers[1973] language for model specification. The S-PLUS implementation (Chambers and
Hastie[1992]) extends the language, and uses it to fit a variety of models: least squares (regression),
analysis of variance, generalized linear models, generalized additive models (including splines),
local regression (loess) models, and tree based models.

Data Frames

One of the simplest conceptual models for data is the spreadsheet. In a data spreadsheet, rows of
the table correspond to observations (e.g., individuals in a survey) and the columns correspond to
variables—measurements on the observations (e.g., questions in a survey).

An S-PLUS data frame object is a representation of such a data spreadsheet. In one view it is
a matrix of rows and columns of data; in the other view, it is a list of variables. Having a list of
variables allows S-PLUS to store variable specific meta-data with each variable.

Currently, S-PLUS uses the variable specific meta-data to customize the behavior of certain
procedures. For example, an important piece of meta-data is whether a variable is a continuous
or categorical (a factor). The 1m () function will adapt its behavior to the types of the explanatory
variables in the model: if they are all factors it will perform an analysis of variance, if they are
all continuous it will perform a regression. If an analyst has interest in specific contrasts between
levels of a factor, he can specify them as variable specific meta-data and S-PLUS will adapt its
behavior appropriately. Analogously, we propose using missing data models as meta-data to
choose the appropriate algorithm. This use of variable specific meta-data is not unique to S-PLUS;
Hand[1993] and Roth et. al.[1994] propose other uses.

Formulae and Models

Wilkinson and Roger[1973] introduced a language for specifying linear models. This language is
a shorthand for complex model equations. Thus, to represent the model:

Y =Fo+ 1 X1 + B2 Xo;i + €,

we use the simpler form: Y ~ X1 + X2. The coefficients 3y, /1 and $, are implicit as is the error
term ¢;; the intercept, Gy, is implied by default. This allows for a much more compact notation
and an easy way of describing the difference between models.

Formulas support four different types of explanatory variables: factors—variables whose
values represent choices froma fixed set (e.g., {true, false}, {red, blue, green}), ordered factors—
variables whose values represent choices from an ordered set, numeric values—vectors or inte-
gers or real numbers, and matrices—a compact notation for several variables. Factors are treated
slightly differently in formulas: the will expand to a number of coefficients (corresponding to
the number of levels of the factor). The rules for handling formulas (described in Chambers and
Hastie[1992]) take advantage of the natural difference between the way one would like to model
factors and numeric vectors.

Within the scope of a formula, the normal operators are interpreted somewhat differently. For
example, the + operator adds terms to the model and the - operator removes terms from the model
(this is typically used only when describing the difference between two models or to explicitly
remove the intercept). The : operator is used to add interaction terms into a model; the * operator
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adds both the linear and the interaction terms and the / operator performs a special kind of nested
interaction.

S-PLUS also implements fitted model objects. Model fitting functions, like 1m (), glm() and
gam () take a data frame and a formula as input and return a fitted model object as output. A
wide variety of generic functions have specific methods for the model objects, including extraction
functions for the inputs to the fitting routine call, extraction functions for statistics produced by
the model, summary and diagnostic graphics functions and especially the update () function.
This latter function allows the user to change the formula and refit the model. This is an important
part of the model selection stage of analysis.

Note that although S-PLUS specifically supports data frame object and fitted model objects,
it does not fully support model objects. The formula is only part of a model. For all classes of
response model currently supported by S-PLUS, we could add attributes to the formula object to
produce models which would sufficiently specify the intended fitting procedure.

Details of Model Fitting in S-PLUS

Our work aims to implement missing data procedures by combining models and data. The goal
is to seamlessly integrate missing data handling procedures into the modeling functions so that,
from a user’s perspective, specifying a model in the presence of missing data is like modeling
complete data.

In the case of imputation, the S-PLUS modeling paradigm needs to be implemented in at least
two places:

e combining the imputation model and the original data frame (with missing values) to
produce completed data.

e applying the usual modeling procedures to the imputed data frame.

In either case, we need to know the details of S-PLUS model fitting functions, which we
now briefly examine. The 1m() function (and other similar functions) proceeds in 4 steps:
(1) model . frame ()—This function prepares a reduced data frame for fitting the model by
removing unneeded variables and then selecting a subset of cases, if a subsetting arguments is
given. In the current S-PLUS implementation, it calls the na . act ion function if any rows contain
missing values. (2) model .matrix () —This function prepares a matrix of explanatory variables
based on the formula. It creates interaction terms and dummy variables (and contrasts) for factor
variables. (3) The actual model fitting. (4) Collect the results and return the fitted model object.

4 Missing Data Analysis

The current S-PLUS implementation leaves precisely one place for adding missing data handling
to the model fitting paradigm: within the model fitting code, the model . frame () function calls
the na . action function which should return a data frame without missing values. Although this
works adequately for procedures such as omitting the missing values or even for singleimputation,
it does not adequately serve the needs of more general procedures such as multiple imputation.
Figure 2 more properly captures the flow of the analysis using multiple imputation. First, the
analystimputes new values for the missing data using the missing data model. This step implicitly
fits the parameters of the missing data model. Note however that the primary goal is to combine
data and imputation model to produce other data sets, rather than a fitted model object. As in
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Figure 2: Expanding the model fitting model to include imputation.

any other model fitting procedure, this step typically involves an iterative process of exploratory
data analysis, model identification, model fit, and diagnosis. These steps are, however, guided by
diffent criteria than in the analysis stage. For example, since accurate prediction of missing values
is more important than achieving a parsimonious model, variable selection may be of secondary
importance (usually having an imputation model which is more general than the analysis model
leads to sound inferences — although the opposite may not be true). After multiple imputation,
one may graphically explore the completed data sets to informally assess how interesting features
of the data are affected by missing—data uncertainty.

In the second — complete data analysis — step, the analyst applies the model fitting procedure
to the completed data, i.e., the imputed data frame. Note that different analysts might perform
the imputation and analysis steps.

4.1 Missing Data Model

All missing data handling procedures require assumptions about the missing values. For example,
omitting the rows of the data frame with missing observations assumes that the observations are
missing completely at random. Other “non-parametric” techniques like hot-deck imputation assume
that the missing observations are similar to the observed values for some variable in a local
neighborhood (where the neighborhood is defined in terms of the completely observed variables)
of the subject with missing values. However, defining the local neighborhoods requires making
choices about the relative scaling of the variables. In all cases, we should study robustness and
sensitivity to these assumptions: making the assumptions explicit helps us do this.

We use a separate model for the missing values and the response variables for a number of
reasons. (1) The missing data model must provide a model for all column variables with missing
observations, not just the response variable. (2) Often we want to include additional variables in
the missing data model (proxies for the missing observations) which are not of direct interest the
inference stage. (3) While parsimony is a concern when creating inferential models, it is not as
great a concern when fitting missing value models. (4) We may want to separate the imputation
and analysis steps.
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An Imputation Model

One particularly useful class of missing data models is the General Location Model (Olkin and Tate
[1961], also known as the conditional gaussian model (Lauritzen and Wermuth[1989]). This model
can describe the joint distribution of variables that are either factors (i.e., discrete or categorical
variables) or continuous variables. Following the usual terminology of categorical data analysis,
the factors form a contingency table of cells. The General Location Model assumes that:

o the cell counts follow a multinomial distribution, and

¢ conditioned on the cells, the continuous variables follow a multivariate normal distribution.
The cell means may vary across cells, but the cell covariances are assumed to be the same
for all cells.

When there are just two cells, the General Location Model reduces to the familiar model for
discriminant analysis.

The large number of parameters in this model make it difficult to fit to many datasets, especially
those for which the number of factors is large. In this latter case, the contingency table (formed by
the factors) may be too sparse to estimate either the probabilities for the cells, or the mean vectors
within the cells. The analyst may impose either loglinear constraints on the cell probabilities
and/or ANOVA-like constraints on the cell means. The loglinear constraints, as in hierarchical
interaction models (HIM, Edwards[1990]), require that for every interaction term in the model,
all of the lower order interaction terms involving the same variables and all of the corresponding
main effects terms also be included in the model.

The constraints define the model, and therefore the imputation model under a General Location
Model can be expressed by two formulas, one for each constraint. The ANOVA-like constraints on
the cell means are easy to express using the syntax for linear models in S-PLUS, i.e. the Wilkinson
and Rogers[1974] language. Because of the linear relationship between the log of the cell means
and the factor variables, HIMs can be represented either with the Wilkinson and Rogers[1974]
language, or the HIM model language developed by Edwards[1990].

Shafer[1991, 1995] has created software for multiple imputation based on the General Location
Model (allowing constraints). Note that the General Location Model can specify the distribution
for a mix of factors and continuous variables. Thus, we only need to specify one model for
the entire data frame. Naturally, the variables may be all be continuous (multivariate normal
model) or all factors. The nature of the variables and the formula will determine the appropriate
algorithm.

4.2 Analysis with Multiple Imputation

In order to implement missing data analysis with multiple imputation, we must extend two of the
objects in the original data analysis model (Figure 1): the data frame and the fitted model object.
Figure 2 gives the resulting data analysis model.

The imputed data frame object differs from a standard data frame by the addition of two pieces
of meta-data: the model under which the values were imputed, and the actual imputed values.
Note that several of the generic functions must be extended to accommodate these new data frame
objects. For example, plotting functions might plot a small cloud of imputed values in place of the
missing observations. Of course, the most important extension is to the model fitting functions,
which now must be generic and which dispatch on the type of data frame: complete data or with
imputed values.
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The modelling functions, such as 1m() must be extended as follows: (1) The function
model . frame () which produces the reduced data sets must operate properly on imputed value
data frames. Next, for each of the M completed data sets, the model fitting function must (2) Cal-
culate the data matrix (model .matrix())and (3) fit the model using the complete data method.
Finally, the model fitting function must gather the results of the fitting procedures into an aggregate
model object.

Several of the generic functions which operate on the fitted model objects must also be ex-
tended to properly summarize the multiple fits returned by the multiple imputation methods. In
particular, the variance calculations for coefficients and predictions need to be adjusted for the
uncertainty about the model fit caused by the missing observations.

Note that once the analyst has performed the imputations, the modelling functions use the
meta—data associated with the imputed data object to automatically adjust the behavior of com-
plete data procedures. From the user’s perspective, modelling with missing data is not much
different from modelling with complete data.

4.3 Analysis with the EM Algorithm

Other missing data methods would interact differently with the modelling process. For example,
the EM algorithm assumes a model for the complete data; the result of running EM is a set of
parameter estimates. There is no preliminary step, as in imputation, of assuming an imputation
model to produce completed data sets, which are then analyzed using analysis models. Therefore,
changes needed to modeling functions such as 1m () are minor. One can create an na.keep ()
missing data handler which simply keeps the original missing data symbols, i.e., NAs. Then the
existence of NAs in the data frame causes 1m () to choose an EM algorithm (rather than using a
particular matrix decomposition method). The meta—data for an EM algorithm is therefore the
same as the meta—data used to fit the analyst’s model.

5 Conclusions and Future Directions

Working with explicit model objects has a distinct advantage: the computer can select the appro-
priate algorithm for fitting the model to the data. Associating missing data models with a data
frame should have similar advantages: the computer can select the appropriate algorithm for
handling missing values.

We have chosen to explore two missing data methods—multiple imputation and the EM
algorithm— because they typify two different ways of specifying a missing data model.

In multiple imputation, there are two distinct steps: (1) impute (i.e. estimate and fill in missing
data) and (2) analyze the resulting complete data set(s) using the usual complete data methods.
This requires an explicit imputation model which, combined with data, produces an imputed data
object. The nature of this object determines that a method for multiply imputed data sets is chosen
in the subsequent complete data analysis.

In contrast, the model for the EM algorithm is the same as the analysis model, therefore the
modeling software need only be changed by adding another algorithm which is invoked if there
are missing values in the data object.

Extending the modelling functions to handle imputed values gets around the missing completely
at random assumption. However, it still contains the milder missing at random assumption which
says that missing values are a random sample of all values within subclasses defined by observed
data. Models without this assumption are difficult to fit because we would need to actually find
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the true values of the missing observations to fit them. On the other hand, there are some relatively
simple alternative, such as adding an inflation factor for missing values (e.g., missing values are
approximately 10% higher than the corresponding non-missing values). Using models such as
these, we can at least study the sensitivity of our conclusions to our assumptions about the missing
data mechanism.
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