Hypergraph Grammars for Knowledge Based Model Construction

Russell G. Almond, StatSci
1700 Westlake Ave, N., Suite 500, Seattle, WA 98109
almond@statsci.com

ABSTRACT

Graphical belief networks, including Bayes nets and influence diagrams, can be represented with directed
hypergraphs. Each directed hyperedge corresponds to a factor of the joint distribution of all variables
in the model. A hyperedge replacement grammar is a collection of rules for replacing hyperedges with
hypergraphs. A hyperedge replacement grammar for graphical belief networks defines a collection of
graphical belief models.

Hyperedge replacement grammars have several interesting implications in the construction of graphical
models. (1) They provide a way to represent the process of constructing a graphical model. (2) Coupled
with an object-oriented variable type system, provide a convenient method for searching through candidate
factors to fill a particular slot in the model graph. (3) They provide a method for integrating high-level and
detailed views of a graphical model. (4) They provide a mechanism for representing uncertainty about the
model structure.

Keywords: Graphical Belief Networks, Knowledge Based Model Construction, Valuation Based Systems, Object
Oriented Model Construction.

1.0 Introduction

Many researchers have suggested using graphs to represent the structure of complex multivariate models.
These models have gone by many names: Bayes nets, influence diagrams, and graphical belief functions are
fairly common. Each of these models differs slightly in terms of what kind of distributions they represent:
Bayes nets only allow probabilities, influence diagrams allow probabilities and utilities, graphical belief
functions allow belief functions (and as a special case, probabilities). However, all of these types of models
can be placed under a common framework, graphical belief networks. (Shenoy and Shafer[1990] describe the
common framework in more detail.)

Despite the well known advantages of graphical belief networks, there are two difficulties: (1) very large
models may still be computationally intractable, and (2) the model must be constructed before any question
can be answered. Ideally, a graphical belief model could be assembled from existing model fragments
like a jigsaw puzzle. This paper explores what shape the pieces must be in order for the computer to
provide support for the assembly operation. The construction method described here may offer a solution
to the first problem as well. This paper describes the results of attempting to implement these ideas in the
GRAPHICAL-BELIEF computer environment for graphical modelling.

There are two roughly similar approaches to the problem of model construction: Knowledge based
model construction and Model fragment libraries. Knowledge based model construction (Breese, Goldman and
Wellman[1991], Goldman and Breese[1992], Charniak and Goldman[1993]) uses a conventional rule-based
expert system to build the graphical model. Note that by building a model which is just large enough
to solve a particular query, this approach also offers a way to address the very large model problem.
Model fragment libraries (Almond, Bradshaw and Madigan [1993]) store fragments of models in an library
or database. The modeller can then search through this library for factors or other model fragments which
might be appropriate to the current model and re-use them in the new context.

Egar, Puerta and Musen[1992] propose using graph grammars for manipulating influence diagrams.
Using the directed hypergraph representation of a graphical belief network model, the manipulations of
the graph are represented by Hyperedge replacement grammars (Habel[1992]). This paper explores how the
directed hypergraph representation can be used to support both knowledge based model construction and
model fragment libraries.

Section 2 describes the directed hypergraph representation and its correspondence to more familiar rep-
resentations. Section 3 describes hyperedge replacement models and some simple applications to graphical

15

belief network construction. Section 4 shows how an object-oriented type system for the variables can
produce intelligent search strategies for model fragments. And finally Section 5 discusses the implication
of these ideas.

2.0 The directed hypergraph representation

In this paper, we use a directed hypergraph to represent the factorization of a large probability (or belief
function) model. For example if Al is independent of A2, we can factor the probability distribution over
the variables, A1, A2 and E, into three pieces as follows:

p(Al, A2, E) = p(E|Al, A2)p(A1)p(A2) . (1)

Figure 1a shows the directed hypergraph representation of this factorization. The round nodes represent
the variables in the model. The square hyperedges represent the factors of the joint probability distribution.
Each hyperedge has a number of condition variables and a consequence variable. Tentacles (arrows) go from the
condition variables to the hyperedge and go fo the consequence variables.

A

Figure 1a. Hyperedge (Replacement LHS) Figure 1b. Model Fragment (replacement RHS)

The real strength of the directed hypergraph representation comes from the fact that graph fragments
(corresponding to model fragments) can be represented by directed hyperedges! Figure 1 illustrates this
idea. Examine the collection of factors found within the dotted line in Figure 1b. They represent the
distribution:

H(E|A1,42) =3 - > p(B1)p(B2)p(C|B1, Al)p(D|B2, A2)p(E|D, C) (2)
B1,B2,C,D

Thus, the graph fragment within the dotted line is a factor and can be represented by a hyperedge; this is
the dotted hyperedge in Figure la.

In the model fragment shown in Figure 1, A1 and A2 are input (or condition) variables and F is an
output (or consequence) variable. C, D, Bl and B2 are interior variables. If there was more model extending

beyond A1, A2 or E, then Al and A2 and E would form a Markov boundary for the interior variables: any
other variables are independent to C, D, B1 and B2 given Al, A2 and E.

16

2.1 Implicit Independence Assumptions

Each model fragment (or hyperedge replacement rule) contains an implicit independence assumption:
any variables interior to the rule must be conditionally independent of all other variables in the model
given the condition and consequence variables. Placing a model fragment into our library implicitly
carries this assumption. Note that this means that all parents of the consequence variables must be in the
fragment (at least as conditional variables).

For example, consider two identical power supplies placed in parallel (to improve the reliability of a
system). One failure mode for the power supply is to be crushed by a heavy object falling on it (say during
an earthquake). If the two power supplies are close together, the same heavy object could crush them
both. If the crushed variable was on the interior of the model fragment describing the failure of a single
power supply, this would result in a unwarranted independence assumption among the crushed variables
corresponding to the two power supplies.

There is no way to get around the independence assumptions. Instead, we need to carefully check any
model to make sure the implicit independence assumptions are reasonable. Such searching for common
causes is an important part of the model construction process.

3.0 Hyperedge Replacement Grammars

Habel[1992] defines the concept of a hyperedge replacement grammar. The grammar is nothing more than a
collection of rules describing when you can replace a hyperedge with a more elaborate graph fragment. The
replacement process continues until all non-terminal hyperedges are replaced. In our case, the end result of
the replacement process is a belief network. Thus a hyperedge replacement grammar defines a collection
of models (a language of belief networks).

Figure 1 shows a typical rule in a hyperedge replacement grammar. The rule replaces a non-terminal
hyperedge (shaded with dots in the Figure 1a) with a hypergraph fragment with the specified inputs and
output (the contents of the dashed line in Figure 1b). The hyperedge being replaced (dotted edge in
Figure 1a, left hand side of equation 2) is the left hand side (LHS) of the replacement rule and the graph
fragment which replaces it (dotted line in Figure 1b, right hand side of equation 2) is the right hand side
(RHS) of the replacement.

Note that we may want to qualify the applicability of a rule according to the labels of the nodes. For
example, if we have a fragment of a reliability model which describes the interaction between a valve and
an actuator, we may only want to allow a hyperedge to be replaced if its condition and consequence nodes
are an actuator and a valve. We can build this predicate for the rules into the hyperedge label, with a type
signature. Section 4 develops this idea further.

3.1 Model Construction

We can describe the process of model construction with just two node labels. The directed hypergraph
model is fully specified only when there is a valuation (probability distribution, belief function or utility)
associated with each hyperedge. We will label hyperedges which have a defined valuation with a “V”.
Hyperedges which do not yet have a defined valuation, we label with a “2?”.

e

Figure 2a. Initial Graph Figure 2b. New graph fragment Figure 2c. Set Valuation

-~

~

-®

Figure 2 shows a typical model construction by successive refinement. Figure 2a is the initial model with
the target node E and one undefined hyperedge. In the first step (Figure 2b), we refine the hyperedge by

1%

replacing it with a model fragment which contains one defined hyperedge and two undefined hyperedges.
In the second step (Figure 2c), we refine the hyperedge for Al by defining its valuation. This process
continues until all hyperedges are assigned valuations and we can stop.

Note that sometimes the appropriate input variables will already be in place in the graph, as in
Figure 3a. To handle these cases, we need an another graph manipulation which merges repeated variables,
as in Figure 3b. For example, in the case of the redundant power supplies discussed in Section 2.1 the crushed
variable was already present. Forcing the merging operations into the hyperedge replacement framework
is rather awkward; it is better to think of it as a separate operation.

-G,
— T

Figure 2a. Graph with Repeated Variable Figure 2b. Variable C Merged

-~

~

3.2 Collapsed views

Very large graphical belief networks will be difficult to display on a single page or screen of information.
In that case the graph must be partitioned into several smaller pieces which represent subsystems of the
system being modelled. If the interactions between the subsystems are limited to a few variables, this
representation should be simple to work with. The modeller would look at a system level network model
where much of the detail about subsystems would be collapsed into hyperedges. Expanding the subsystem
hyperedge would reveal its graphical structure.

Figure 1 provides an illustration of this idea. Figure 1b is an expanded view of the subsystem which
is collapsed into the dotted hyperedge in Figure 1a. Presumably, Figure 1a would be embedded in a much
larger graph. Subsystem model graphs could themselves have collapsed hyperedges; this can be carried as
far as necessary.

The collapsed hyperedges have an important implication for fusion and propagation as well as for
model construction and display. The collapsed hyperedge represents the conditional distribution of the
outputs given the inputs (e.g., p(E|A1, A2)). This conditional distribution could be precalculated for the
collapsed hyperedge. (This is especially easy in the case of probabilistic model, where it is sufficient to
condition on each configuration of the inputs and calculate the distribution of the outputs.) If the modeller
does not fix the values of any of the interior variables in the subsystem, this cached distribution will not
require recalculation.

3.3 Model Uncertainty

Often we will be uncertain about the structure of the model, even if we have built that structure from data.
Madigan and Raftery[1994] point out that ignoring that model uncertainty can lead to poorly calibrated pre-
dictions; averaging over the models leads to better predictions. Properly accounting for model uncertainty
in the general case requires a general representation for the space of possible models.

Figure 4. Probabilistic replacement rule for model uncertainty

18

Hyperedge replacement grammars can be pressed into service once again to represent model uncer-
tainty. Figure 4 shows a probabilistic rule which tries to assess whether or not B should be a parent of D.
The hyperedge A, B — D on the left hand side has two possible replacements, one in which B is connected
to D and one in which it is not. The two possible replacements are assigned probabilities .7 and .3. These
probabilities could be updated as more data about B and D make it possible to better assess the relationship.

4.0 Type signatures and candidate replacements

While hyperedge replacement grammars provide a mechanism for constructing models like a jigsaw puzzle,
automated and semi-automated model construction procedures require a method for deciding if a particular
piece is appropriate for a particular slot. A simple way to do this is to restrict our search based on the types
of variables involved in the hyperedge. This defines a type signature for each hyperedge: an edge is
appropriate if it matches the type signature. In GRAPHICAL-BELIEF the variable types are based on a variable

object system.

4.1 Variable object system

Some model fragments may be more generally applicable than others. For example, a model fragment
describing a valve-actuator system might have two input variables, one of type motor operated valve and one
of type actuator, and one output variable of type valve—actuator system. A model fragment describing the
reliability of the valve brand H24C, might be specific to just that valve brand. A series system model might
take two fail-nofail variables as inputs and have a system variable as an output.

Valuation Signature
Name Inputs Outputs
CV-H24C Failure Rate 0) => (Valve CV-H24C)
Valve-Actuator System (Valve, Actuator) = (Valve-Actuator-System)
Series System (Fail-Nofail, Fail-Nofail) = (Subsystem-Variable)
Valve-Operation (Valve-fault, Control-Signal) = (Valve-Status)
Fail-Nofail Components
is-a / ‘
is-a is-a
- I N
Valves Pumps Actuators
is-a / f
/ is-x:
Ch;kv-valves Motor ()Aperated valves
is-a is-a
1
Valve H24C Valve H32M
A
is-a is-::
CV-48-a MOV-25-a

Figure 5. Inheritance graph for parts

To capture the generality, we introduce a class structure among variables. Figure 5 provides an example
for variables representing the fault states of valves. At the top we have the most general classes, like fail-
nofail. Lower down we have more specific classes, like valve and motor operated valve. The lowest level
variables correspond to specific brands of valves and other components.

13

Going from {true, false} to a more general outcome space is an example of the refinement operation.
Shafer[1976] describes the refinement operation in connection with the frame of discernment (outcome
space) of a belief function. One variable can inherit from another when the frame of discernment of the one
is a refinement of the frame of the other. Note that using the concept of refinement on output variables will
lead naturally to belief function models, but applying it to input variables will preserve the probabilistic
nature of a Bayesian network or influence diagram model.

One way GRAPHICAL-BELIEF uses this object system is for type checking. Thus if we place a valve-
actuator system valuation into the model, GRAPHICAL-BELIEF will only allow an input attachement if it is of
type "valve" or "actuator”. The computer can also use the type information to figure out the correspondence
between its internal table (or graphical model) describing the valuation and the variables.

In order to obtain maximum re-usability we would like the types of the variables in the rules to be as
general as possible. Consider the LHS of the replacement in Figure 1 (dotted hyperedge in Figure 1a). It
has two inputs: Al and A2 and one output E. A rule is a candidate replacement for that hyperedge if (1) its
input variables are subclasses (refinements) of A1 and A2 and (2) its output variable is a subclass of E.

As an example, consider a valve modelled by two variables: valve-fault and valve-status. A valuation
(a probability or belief function distribution) which linked the two variables would have one output, of
type valve-status, and two inputs, one of type valve-fault and one of type control-signal. Another valuation
describing the reliability of the component might have no inputs and one output of type valve-fault for Valve
H32C. Presumably, the control-signal input value would be linked to some other part of the model (i.e., the
actuator).

Generalizing variables through an object system is one way to extend the scope of a replacement rule
beyond its original use. Goldman and Charniak[1993] present an alternative approach to generalizing vari-
ables through unification. In their model construction rules, model variables are lists containing semantic
variables, for example, (grass-wet ?date). The semantic variables are set when the fragment is placed
in the model.

4.2 Component libraries

Almond, Bradshaw and Madigan [1994] propose putting the model fragments into libraries. There are two
general types of replacement rules, one in which the RHS is simply a valuation with the given type signature
(changing a non-terminal hyperedge to a terminal one) and ones in which the RHS is a graph fragment
(possibly containing more non-terminal hyperedges). However, as all replacement rules would be stored
sorted by type signature, the modeller can select freely among the various kinds of replacements.

The model component library enables a kind of distributed engineering of graphical belief networks
(Figure 5). For example, in building a reliability model, one engineer (a systems level reliability expert)
would build small model fragments describing the interaction among a few components. Another engineer
(a testing and purchasing expert) would develop model for the various commonly used components from
the usual vendors. A third engineer (a system designer) would then assemble the model from the fragments
created by the other two engineers, drawing on their expertise in the form of stored model fragments. The
type signature system ensures that all model components are used for their intended purpose. As Field
test data become available, testing and evaluation engineers update the models and model fragments in the

library.

4.3 Knowledge Based Model Construction

Many authors (e.g., Breese, Goldman and Wellman[1991], Goldman and Breese[1992], Goldman and Char-
niak[1993]) have suggested using a rule base expert system to drive the model construction process. The
rules in a hyperedge replacement grammar could form the core of such a system.

In knowledge based model construction, the library of model components becomes a rulebase. In other
words, attached to each replacement rule, is a predicate telling when it is appropriate to the problem. The
rules would be predicated both on the current structure of the hypergraph (i.e., the type signatures) and on
other aspects of the problem to be solved not represented in the graphical model.

20

Testing and Purchasing Model Fragments
Engieens K= @ ﬁesﬁng and Evalutaion

) Engineering
Ghliability Engineers | i

P,

Models

?o
]
Manufacturing
Engineers =

Xy

Figure 5. Engineers interacting with GRAPHICAL-BELIEF library

Field
Experience

Obviously, a replacement must be applicable in the sense of the previous section before it can be used
for model construction. The system would select from among applicable replacements on the basis of
production rules which would take the context of the particular query into account. For example, it a
medical expert system would select between a detailed model of the cardiovascular system and a sketchy
model giving a general indication of cardiovascular fitness on the basis of production rules describing
whether or not the detailed cardiovascular model would be necessary for answering a particular query.

5.0 Conclusions

Hypergraph replacement rules provide a straightforward way of manipulating both the model graph and
the underlying probability distribution. Hyperedge replacement grammars offer a number of exciting
possibilities: linking overviews and detailed views of a graphical model (including ways of doing the
computations separately), representing model uncertainty—one of the emerging frontiers of belief network
research—and the ability to share knowledge, in the form of model fragments and valuations, both in
libraries of rules and as more formal expert systems. This knowledge sharing will be essential for large
projects within an organization as well as enabling researchers to better share their results.

Goldman and Charniak[1993] describe the FRAIL3 system for knowledge based model construction.
They note that each rule in their rule base is equivalent to adding a hyperedge to the graphical model;
thus their system is based on hyperedge addition rather than replacement. When two rules both have
the same consequence variable, FRAIL3 adds both and combines them with a causal combination function
(e.g., noisy-or). The hyperedge replacement approach would first select the meta-rule for combining the

21

information sources (i.e., causal combination function), and then the applicable information rules.

In order to make a replacement rule generally applicable, we must be able to generalize it. The variable
object system described in Section 4 is one way of representing generalizations. The marriage of the variable
object system and knowledge based model construction forms object oriented model construction with many
of the advantages of object-oriented programming and design techniques. In particular, we can recognized
fragments of models (hyperedges) which can be used again and store these in libraries or rule bases for
later re-use when appropriate. The type signatures of the model fragments can be used as a search criteria
to find appropriate fragments.

Tossing rules into a rule base expert system with little thought for their interaction often produces
unexpected behavior. The same is true for model fragment libraries or rule bases. Each model fragment
carries an implicit independence assumption: the variables on the interior of the fragment are independent
from the variables not in the fragment given the variables on the boundary (conditions and consequences).
Unfortunately these assumptions are difficult to verify within the context of building the library. Unless
these assumptions are approximately correct, the resulting model will be unrealistic.

Acknowledgements

I would like to thank Jeff Bradshaw for getting me excited about knowledge based model construction, and
David Madigan for listening patiently while I explained how the world could be saved with hyperedge
replacement grammars. John Boose and Debra Zarley had helpful comments on an earlier draft of this
paper. I would also like to thank Steve Hanks, Chuck Schafer and Thien Nguyen for helping me work out
the details of how to apply these ideas to GRAPHICAL-BELIEF.

This research is supported by the GRAPHICAL-BELIEF project, NASA Phase Il SBIR contract NAS 9-18908,
“Graphical belief model for system reliability.”

References

Almond, Russell G., Jeffery Bradshaw, David Madigan [1994]. “Reuse and Sharing of Graphical Belief
Network Components.” in P. Cheeseman and W. Oldford (eds.) Selectmg Models from Data: Artificial
Intelligence and Statistics IV, Springer-Verlag, 113-122.

Breese, John S., Robert Goldman and Michael P. Wellman [1991]. “Knowledge-Based Construction of
Probabilistic and Decision Models: An Overview.” Workshop presented at AAAI-91.

Egar, J.W., AR. Puerta, M.A. Musen[1992]. “Graph-grammar assistance for modelling of decision.” Pro-
ceedings of the Seventh Banff Knowledge Acquisition for Knowledge-Based Systems Workshop, 7:1-19. Banff,
Alberta, Canada.

Habel, A. [1992]. Hyperedge Replacement: Grammars and Languages. Springer-Verlag.

Goldman, Robert and John S. Breese[1992]. “Integrating Model Construction and Evaluation” in Dubois et
al.(eds). [1992] Uncertainty in Artificial Intelligence, Proceedings of the Eighth Conference, Morgan Kaufman,
104-111.

Goldman, Robert and Eugene Charniak[1993]. “A Language for Construction of Belief Networks.” IEEE
Pattern Analysis and Machine Intelligence (15) 196-208.

Madigan, David and Adrian Raftery[1994]. “Model Selection and Accounting for Model Uncertainty in
Graphical Models Using Occam’s Window.” To appear in Journal of the American Statistical Association.

Shafer, Glenn [1976]. A Mathematical Theory of Evidence. Princeton University Press.

Shenoy, Prakash P. and Glenn Shafer [1990]. “Axioms for Probability and Belief-Function Propagation.” in
Uncertainty in Artificial Intelligence, 4, 169-198. Reprinted in Shafer and Pearl[1990]Readings in Uncertain
Reasoning. Morgan Kaufmann.

22

