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RNNs are Popular Data Center Workloads

Machine Learning Workload at Google

RNN
29%

MLP
61%

5%

Source: In-Datacenter Performance Analysis of a Tensor Processing Unit (2017)



How to design an efficient hardware
accelerator for all the RNN kernels?
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RNN is Hard to Serve Efficiently

= RNN kernels contain complex dataflow.

= RNN sizes can vary a lot over different problems.



RNN Kernels Contain Complex Dataflow
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RNN Kernels Contain Complex Dataflow

Weight Matrices (D x H)
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H: #hidden units
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RNN Kernels Contain Complex Dataflow
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RNN Kernels Contain Complex Dataflow
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—> Dataflow
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RNN Kernels Contain Complex Dataflow
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—> Dataflow
° Matrix-Vector Multiplication

@  Element-wise operation
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RNN Sizes Can Vary over Different Problems

Sequence Long Short-term Memory (LSTM) 128
Classification

Speech Gated Recurrent Unit (GRU) 2816
Recognition
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RNN is Hard to Serve Efficiently

RNN kernels contain complex dataflow.

RNN sizes can vary a lot over different problems.
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Accelerators with BLAS Abstraction

BLAS Level | Example Operation Accelerator Example

2 Matrix Vector Multiplication Brainwave Neural
(MVM) Processing Unit (BW NPU)
3 Matrix Matrix Multiplication Tensor Processing Unit
(MMM) (TPU)
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Is BLAS the right ISA for accelerators?
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Is BLAS the right ISA for accelerators?

Programmability (+)

Efficiency on
individual kernel (+)
end-to-end task (-)
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-----------------------------------------------------------------------------------------
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Using BLAS ISA Leads to HW Underutilization

H
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Using BLAS ISA Leads to HW Underutilization

. Matrix Vector Multiplication
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Using BLAS ISA Leads to HW Underutilization
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Using BLAS ISA Leads to HW Underutilization
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Using BLAS ISA Leads to HW Underutilization
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Using BLAS ISA Leads to HW Underutilization

128

For RNN-128,
utilization is 56%!




Intermediate Results Buffered in On-chip Scratchpad

On-chip
Scratchpad

. Matrix Vector Multiplication

. Element-wise Operation
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Intermediate Results Buffered in On-chip Scratchpad
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Frequent Access to the On-chip Scratchpad
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BLAS abstraction leads to hardware
underutilization caused by
misalighnment.
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Alternative: Loop-level abstraction
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Fine Grain Tiling Leads to Better HW Utilization

Element-wise
Operatlon
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Fine Grain Tiling Leads to Better HW Utilization
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Fine Grain Tiling Leads to Better HW Utilization

- -
.
)
L]
- -

H
| . |
X

. Matrix Vector Multiplication

. Element-wise Operation

30



Fine Grain Tiling Leads to Better HW Utilization
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Fine Grain Tiling Leads to Better HW Utilization

128 A

For RNN-128,
utilization is 80%!
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Intermediate Results Buffered in Register

Register

. Matrix Vector Multiplication

. Element-wise Operation
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Fine Grain Tiling along the Hidden Unit Dimension
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Fine Gram Tiling along the Hidden Unit Dlmen5|on
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Fme Grain Tiling Converts MVM to DP
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Fine Gram Tiling Uses Cheaper Memory Elements
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Loop Abstraction Enables Fine Grain Tiling to:

= reduce hardware underutilization due to
unalignment.

= reduce the size of the intermediate buffers.
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BLAS abstraction leads to a
heterogenous accelerator design that
contains unbalanced pipeline.
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Pipelining the RNN Serving Task

O(H + D)
\

Constant
A

[ |

SR -

Matrix Vector
Multiplications

Element-wise
Operations

. Matrix Vector Multiplication

. Element-wise Operation

40



Heterogeneous vs. Homogeneous Accelerators
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Pipeline within a Heterogeneous Accelerator

Parallelism {

Time >
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Pipeline within a Heterogeneous Accelerator
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Pipeline within a Heterogeneous Accelerator
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A heterogenous accelerator will have
an unbalanced pipeline with respect
to different problems.
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Pipeline within a Heterogeneous Accelerator
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Pipeline within a Homogeneous Accelerator
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Pipeline within a Homogeneous Accelerator
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A homogenous accelerator can
achieve a balanced pipeline regardless
of the problem sizes.
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Evaluation Configurations

Tesla V100 GPU | Stratix 10FPGA | Plasticine CGRA

Programming TensorFlow + Brainwave ISA Spatial Lang.
Language cuDNN

Accelerator Type Temporal Spatial Spatial

ISA Type MMM MVM Loop
Implementation Type Heterogeneous Heterogeneous Homogeneous
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Evaluation Configurations

Tesla V100 GPU | Stratix 10FPGA | Plasticine CGRA

Peak 32-bit TFLOPS 15.7 12.5
Technology (nm) 12 14 28
Die Area (mm?) 815 1200 494

TDP (W) 300 148 160
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Evaluation on DeepBench

FLOPS Utilization
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Improvement over CPU Baseline

Perf/Area
435x

= P|asticine (28nm)
Tesla V100
== = Brainwave Perf/Watt

341x

2782x
Perf
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Homogeneous accelerators with

loop-level abstraction achieves better
HW utilization
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