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Machine Learning Workload at Google

RNN 
29%

MLP 
61%

CNN
5%

RNNs are Popular Data Center Workloads

Source: In-Datacenter Performance Analysis of a Tensor Processing Unit (2017)



How to design an efficient hardware 
accelerator for all the RNN kernels?
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Performance
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RNN is Hard to Serve Efficiently
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§ RNN kernels contain complex dataflow.
§ RNN sizes can vary a lot over different problems.
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RNN Kernels Contain Complex Dataflow
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LSTM Example
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Weight 
Matrices
(H x H)

Weight Matrices (D x H)

Bias Vectors (H)

H: #hidden units
D: #input features
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Input Vector (D)
Hidden Vector (H)

Memory Vector (H)

Hidden Vector (H)

Memory Vector (H)

H: #hidden units
D: #input features
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RNN Sizes Can Vary over Different Problems
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Tasks RNN Type RNN Size 

Sequence 
Classification

Long Short-term Memory (LSTM) 128

Speech 
Recognition

Gated Recurrent Unit (GRU) 2816



RNN is Hard to Serve Efficiently
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§ RNN kernels contain complex dataflow.
§ RNN sizes can vary a lot over different problems.



Accelerators with BLAS Abstraction
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BLAS Level Example Operation Accelerator Example
2 Matrix Vector Multiplication 

(MVM)
Brainwave Neural 
Processing Unit (BW NPU)

3 Matrix Matrix Multiplication 
(MMM)

Tensor Processing Unit 
(TPU)



Is BLAS the right ISA for accelerators?
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§ Programmability (+)
§ Efficiency on

§ individual kernel (+)
§ end-to-end task (-)

Is BLAS the right ISA for accelerators?
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Using BLAS ISA Leads to HW Underutilization
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Using BLAS ISA Leads to HW Underutilization
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# hidden units

# input features
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Using BLAS ISA Leads to HW Underutilization
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H

H

Matrix Vector Multiplication

Element-wise Operation
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Matrix Vector Multiplication

Element-wise Operation
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Using BLAS ISA Leads to HW Underutilization
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128

128

80
60

For RNN-128, 
utilization is 56%! 
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Intermediate Results Buffered in On-chip Scratchpad
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On-chip 
Scratchpad

H

H

Matrix Vector Multiplication

Element-wise Operation



Intermediate Results Buffered in On-chip Scratchpad
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Frequent Access to the On-chip Scratchpad
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BLAS abstraction leads to hardware 
underutilization caused by 

misalignment.
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Alternative: Loop-level abstraction
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Fine Grain Tiling Leads to Better HW Utilization 
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Fine Grain Tiling Leads to Better HW Utilization 
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80
1

For RNN-128, 
utilization is 80%! 

128

128
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Intermediate Results Buffered in Register
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Register

H

H

Matrix Vector Multiplication

Element-wise Operation
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Fine Grain Tiling along the Hidden Unit Dimension 
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(H by 1)

(D by 1)
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Tile by H
times
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Fine Grain Tiling Converts MVM to DP 
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Dot Product
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Fine Grain Tiling Uses Cheaper Memory Elements
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§ reduce hardware underutilization due to 
unalignment.

§ reduce the size of the intermediate buffers.

Loop Abstraction Enables Fine Grain Tiling to:



BLAS abstraction leads to a 
heterogenous accelerator design that 

contains unbalanced pipeline.
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Pipelining the RNN Serving Task
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O(H + D)

O(H)

Constant

Matrix Vector 
Multiplications

Element-wise
Operations Matrix Vector Multiplication

Element-wise Operation



HomogeneousHeterogeneous

Heterogeneous vs. Homogeneous Accelerators
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Matrix Vector 
Multiplication

Element-wise
Operation

(BLAS)



Pipeline within a Heterogeneous Accelerator
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Parallelism

Time

Matrix Vector Multiplication

Element-wise Operation



Time

Pipeline within a Heterogeneous Accelerator
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Parallelism

Matrix Vector Multiplication

Element-wise Operation



Time

Pipeline within a Heterogeneous Accelerator
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Parallelism

Matrix Vector Multiplication

Element-wise Operation



A heterogenous accelerator will have 
an unbalanced pipeline with respect 

to different problems.

45



Time

Pipeline within a Heterogeneous Accelerator
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Parallelism

Matrix Vector Multiplication

Element-wise Operation



Pipeline within a Homogeneous Accelerator
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Time

Parallelism

Matrix Vector Multiplication

Element-wise Operation



Time

Pipeline within a Homogeneous Accelerator
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Parallelism

Matrix Vector Multiplication

Element-wise Operation



A homogenous accelerator can 
achieve a balanced pipeline regardless 

of the problem sizes.
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Evaluation Configurations
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Specification Tesla V100 GPU Stratix 10 FPGA Plasticine CGRA
Programming 
Language

TensorFlow + 
cuDNN

Brainwave ISA Spatial Lang.

Accelerator Type Temporal Spatial Spatial
ISA Type MMM MVM Loop
Implementation Type Heterogeneous Heterogeneous Homogeneous



Evaluation Configurations
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Specification Tesla V100 GPU Stratix 10 FPGA Plasticine CGRA
Peak 32-bit TFLOPS 15.7 10 12.5
Technology (!") 12 14 28
Die Area (""#) 815 1200 494
TDP (%) 300 148 160



Evaluation on DeepBench
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LSTM
256

LSTM
512

LSTM
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LSTM
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LSTM
2048

GRU
512
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1024
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1536
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2048

GRU
2560
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2816

FLOPS Utilization

V100, 12nm BrainWave, 14nm Plasticine, 28nm
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2782x

435x

Improvement over CPU Baseline

341x



Homogeneous accelerators with 
loop-level abstraction achieves better 

HW utilization
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