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ABSTRACT
Recurrent Neural Network (RNN) applications form a major class of AI-powered, low-latency data center
workloads. Most execution models for RNN acceleration break computation graphs into BLAS kernels, which
lead to significant inter-kernel data movement and resource underutilization. We show that by supporting more
general loop constructs that capture design parameters in accelerators, it is possible to improve resource utilization
using cross-kernel optimization without sacrificing programmability. Such abstraction level enables a design space
search that can lead to efficient usage of on-chip resources on a spatial architecture across a range of problem
sizes. We evaluate our optimization strategy on such abstraction with DeepBench using a configurable spatial
accelerator. We demonstrate that this implementation provides a geometric speedup of 30x in performance, 1.6x
in area, and 2x in power efficiency compared to a Tesla V100 GPU, and a geometric speedup of 2x compared to
Microsoft Brainwave implementation on a Stratix 10 FPGA.

1 INTRODUCTION

Recurrent Neural Networks (RNNs) are a class of sequence
models that plays a key role in low-latency, AI-powered
services in datacenters (Fowers et al., 2018; Jouppi et al.,
2017). In these services, the platforms assume that user
requests come in individual samples and need to be served
with very stringent latency window for real-time human
computer interaction. An example of such workload is
Google Translate, where inference happens concurrently
when a user types. Despite its popularity, RNN model serv-
ing is hard to accelerate efficiently. Modern software and
hardware platforms support optimized BLAS routines. To
serve RNNs on these platforms, a compiler tends to stitch
multiple optimized BLAS kernels into a single computation
graph. While a hardware accelerator might execute each
individual kernel efficiently, it misses the opportunity of
global cross-kernel optimization that can dramatically im-
proves performance and energy-efficiency. This approach
leads to two issues. First, communication between BLAS
kernels creates large intermediate results, which can lead
to poor memory performance when the blocking size is not
properly tuned for the target system. Missing the opportu-
nity of cross-kernel fusion can lead to huge performance
loss due to different access latency at each level of memory
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hierarchy in a processor-based architecture. On a spatial ar-
chitecture, while the first two levels of memory hierarchies,
i.e. registers and on-chip scratchpads, tend to have single
cycle access latency, the energy required to access these
two types of memory would be widely different. Therefore,
lack of cross-kernel fusion can lead to inefficient allocation
of scratchpad resource and low energy-efficiency. Second,
hardware accelerators tend to use large vectorization in com-
pute and memory access to boost compute density when
accelerating BLAS kernels. However, hardware acceler-
ators tend to suffer from resource underutilization when
the workload size is not multiples of the vector size. The
utilization is worse with RNN applications that are com-
posed of sequences of small matrix multiplications due to
small hidden unit sizes and many time steps. Moreover,
many accelerator platforms are optimized for BLAS level-3
(matrix-matrix) operations, e.g. NVBLAS Library for GPU
(nvb), TPU (Jouppi et al., 2017), EIE (Han et al., 2016a),
EyeRiss (Chen et al., 2017), and DaDianNao (Chen et al.,
2014). These platforms suffer from low resource utiliza-
tion when serving single-batch, real-time RNN applications
that contain a lot of matrix-vector multiplication (MVM)
executions.

To address these issues, we propose the following strategies.
First, we fuse all the gate functions with the element-wise,
non-linear functions in the same time step. This way, all
of our intermediate results are buffered in the registers as
opposed to the scratchpads. Second, we spatially parallelize
and pipeline the computation graph. We vectorize the inner-
loop of the tiled dot product to explore SIMD parallelism
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and fine-grain pipelining. We also explore tiled parallelism
and coarse-grain pipelining by unrolling the outer loop nests
based on the amount of available compute resources. These
strategies exploit the gate-level parallelism in RNN cells,
balance the pipelines of MVM and element-wise non-linear
functions, and maximize the resource utilization when serv-
ing RNN models on different problem sizes. In addition, the
entire pipeline is data-flow driven with no dynamic schedul-
ing overhead.

We evaluate the proposed strategies by serving RNN tasks
in DeepBench (Narang & Diamos, 2017) on the target
spatial architecture. We implement the designs in Spa-
tial (Koeplinger et al., 2018), a Domain-Specific-Language
(DSL) that describes applications with nested loops and ex-
plicit hardware memory hierarchy. We choose Plasticine
(Prabhakar et al., 2017), a coarse-grained reconfigurable
architecture (CGRA), as the target spatial architecture. Fur-
thermore, we propose augmentations to the Plasticine mi-
croarchitecture in order to support the mix-precision opera-
tions, which is critical for serving RNNs in real-time.

Finally, we compare the results to those obtained by serv-
ing DeepBench tasks on the state-of-the-art RNN serving
platforms. We show that our implementation delivers consis-
tently high FLOPS utilization across tasks of various sizes.
We also demonstrate energy-efficiency advantage of spatial
architectures compared to processor-based architectures.

The key contributions of this paper are:

1. We analyze the computation and memory layout of
RNN cell implementations on commercially available
platforms. We find that BLAS abstraction leads to
expensive inter-kernel data movement and resource
underutilization.

2. We address these issues by describing RNN applica-
tions using abstractions with more general loop con-
structs that enable cross-kernel optimization, spatial
parallelization, and pipelining of arbitrary loop nesting.
To achieve low-latency inference for RNN applica-
tions, we propose micro-architectural co-design to a
spatial architecture in order to enable low-precision
operations.

3. Finally, we thoroughly evaluate CPU, general pur-
pose graphics processing unit (GPGPU), field-
programmable gate array (FPGA), and a previously-
proposed CGRA, as serving platforms for RNN appli-
cations.

The rest of the paper is organized as follows. Section 2
provides backgrounds on the RNN algorithms, the DSL and
hardware platform used in this paper. Section 3 discusses
the available RNN implementations on commercially avail-
able platforms. We then discuss the optimization strategies

Name Shape Specification

xt D LSTM cell’s input vector
ft H Forget gate’s activation vector
it H Input gate’s activation vector
ot H Output gate’s activation vector
jt H Candidate of memory gate’s activation vector
ct H Memory gate’s vector
Whi,j,f,o

H,H Hidden state’s weight matrices at gate i, j, f, o

Wxi,j,f,o
H,D Input vector’s weight matrices at gate i, j, f, o

b H Bias vector at gate i,j,f ,o

Table 1. LSTM specifications.

implemented in this work that address the inefficiency in
these implementations. Section 4 discusses the architec-
tural changes for supporting efficient RNN inference on the
target spatial architecture. Section 5 details our evaluation
methodology and experimental results. Section 6 discusses
related works on available software and hardware optimiza-
tion strategies for serving RNN applications. Section 7
offers concluding remarks.

2 BACKGROUND

RNNs are widely used to model arbitrary sequential tasks.
An RNN contains a cell unit to iteratively consume a T-step
input sequence x = [x0, x1, · · · , xT ] in order to generate
an output sequence y = [y0, y1, · · · , yT ]. Long Short-Term
Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) (Chung et al., 2014) are pop-
ular RNN cell units. In this paper, we use LSTM as an
example. Nevertheless, our optimization techniques can be
generalized to any other types of RNN cells. In Section 5,
we also provide evaluations of GRU implemented using our
techniques.

2.1 LSTM Cell

At step t, an LSTM generates an output yt and the next
memory cell states ct and ht as follows:

it = σ(Whi
ht−1 +Wxi

xt + bi) (1)
jt = tanh(Whj

ht−1 +Wxj
xt + bj) (2)

ft = σ(Whf
ht−1 +Wxf

xt + bf ) (3)
ot = σ(Who

ht−1 +Wxo
xt + bo) (4)

ct = ft ◦ ct−1 + it ◦ jt (5)
yt = ht = ot ◦ tanh(ct) (6)

H,D are dimensions of hidden states and input features,
respectively. R is the sum of hidden state and input feature
dimensions. ◦ is the Hadamard product. Table 1 shows the
specifications for each matrix and vector in an LSTM cell.
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2.2 Spatial Reconfigurable Architectures

Spatial reconfigurable architectures, such as FPGAs and
CGRAs, are gaining traction as data center accelerators
for their energy efficiency (Amazon, 2017; Putnam et al.,
2014; Ouyang et al., 2014). Compared to processor-based
architectures, spatial architectures can reach high resource
utilization by reconfiguring memory and compute based on
the applications and computation requirements. In addition
to exploiting parallelism, pipelining of data-flow graph in
a spatial architecture provides high compute throughput.
Nonetheless, the traditional low-level programming inter-
face and long synthesis time of FPGA is the major obstacle
for it to become a mainstream accelerator. As opposed to
bit-level flat-interconnection in FPGAs, CGRAs are usu-
ally configured at higher level of granularity and contain
a hierarchical interconnection network. In exchange, the
reduction in flexibility in hardware translates to lowered
routing overhead and higher clock frequency. The reduced
routing overhead provides higher compute density and mem-
ory capacity, which makes CGRA an attractive platform to
accelerate deep learning workloads. Due to the flexibility
in mapping applications, spatial architectures often require
design space exploration (DSE) in order to achieve good re-
source utilization and performance (Koeplinger et al., 2016;
Liu & Schafer, 2016).

2.3 Spatial

Spatial is a hardware-centric DSL that targets FPGAs and
a previously proposed CGRA, Plasticine. A user describes
applications in un-parallelized pattern-based loops with ex-
plicit memory hierarchies. Spatial automatically schedules,
parallelizes, and pipelines arbitrary loop nests. To scale
the memory bandwidth with parallelism, Spatial banks the
scratchpad memories. To sustain the throughput of pipelin-
ing, Spatial also buffers the intermediate memories. Spatial
exposes important design parameters such as blocking size
and unrolling factor. Using the exposed parameters, users
can easily tune their design either manually or with an exter-
nal DSE engine to balance the pipeline stages and saturate
resource for different tasks on different hardware targets.

2.4 Plasticine

Plasticine is a CGRA that accelerates general nested loops
in Spatial. It consists of primarily two types of units: a
pattern compute unit (PCU) containing a single instruction
multiple data (SIMD) pipeline optimized for accelerating
vectorized map and reduction loops, and a pattern memory
unit (PMU) containing configurable memory that to support
banking and buffering schemes for various access patterns.
Plasticine supports parallelizing and pipelining arbitrarily
nested loops from Spatial. More architectural details will be
explained in Section 4.

Symbol Processor Reconfigurable Hardware

Kernel Inner Loop
Memory Hiearchy On-chip Scratchpad
Register File Register

Unrolling factor using multi-
ple hardware compute blocks

Element-wise Operation
Outer Loop

Vectorization parameter for AVX or SIMD instructions

ParameterSpecification

hv Vectorization parameter on H
hu Unrolling factor on H
rv Vectorization parameter on R
ru Unrolling factor on R
G Number of gates in an RNN. For LSTM, G=4

Table 2. Specifications for symbols and parameters in Section 3.

3 RNN COMPUTATION ANALYSIS

In this section, we first discuss the limitation of BLAS-
based LSTM on processor and spatial architectures. Next,
we discuss our implementation of loop-based LSTM on
spatial architectures. Table 2 contains specifications for
symbols and parameters used in this section.

3.1 BLAS-based LSTM on Processor Architecture

Modern Machine Learning frameworks, e.g. TensorFlow
(Abadi et al., 2016), divide the computation graph of an
LSTM cell into BLAS kernels. Then, the BLAS kernel is
accelerated by calling low-level optimized BLAS subrou-
tines such as Intel BLAS Library on CPU and NVBLAS
Library on GPU. Figure 1 (a) shows the computation graph
of a BasicLSTM cell in TensorFlow. This implementation
can lead to large memory footprint since all the intermediate
results are materialized in memory. A common strategy to
tackle the issue is through fusing blocked kernels. With
TensorFlow’s abstraction, this can only be achieved by ex-
pressing the entire RNN cell as an optimized kernel. For
example, TensorFlow provides LSTMBlockFusedCell
and GRUBlockCell modules, which are the fastest Ten-
sorFlow implementations of RNN cells for CPU. In practice,
such implementation can provide significant performance
improvement over the BasicLSTM implementation. How-
ever, it is still very hard to saturate CPU compute capac-
ity, potentially due to the high synchronization overhead
across threads. Figure 1 (b) shows the computation layout
of TensorFlow with cuDNN library (Chetlur et al., 2014) on
GPU. cuDNN is an NVIDIA GPU library for accelerating
deep neural networks. To minimize the data movement,
cuDNN fuses all the vector-vector (VV) operations after
MVM. Specifically, the bias add in Equation 1, 2, 3, 4, and
all the operations in Equation 5, 6, are fused into one kernel.
Nevertheless, there are still intermediate buffers of size H
between the MVM kernel and the element-wise operations.
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Figure 1. Compute and memory layout of TensorFlow BasicLSTM cell on CPU (a) and CudnnLSTM cell on GPU (b).

Compared to the BasicLSTM implementation,
CudnnLSTM eliminates most of large intermediate
memories. However, the MVMs of Equation 1, 2, 3, 4 are
all accelerated with BLAS3 kernels, which performs only
matrix-matrix level operations. This turns MVM and VV
bias add into Matrix Matrix Multiplication (MMM) and
Matrix Matrix Addition (MMA), which leads to serious
underutilization of GPU.

Moreover, a processor-based architecture introduces large
energy overhead of instruction decoding and schedul-
ing. GPU especially suffers from its power-hungry, high-
throughput memory hierarchy. For these reasons, both the
CPU and GPU architectures are not suitable for energy-
efficient, low-latency RNNs serving platforms.

3.2 BLAS-based LSTM on Spatial Architecture

Previous work has studied the capability of using an FPGA
as a low-latency serving platform. An FPGA has the flex-
ibility of resizing MVM and VV units based on the ap-
plication size. In addition, MVM and VV units can be
implemented with hardware pipelines, which removes the
instruction scheduling and control overhead on a processor-
based architecture. The latest version of Intel Stratix 10
FPGA further boosts the compute power of FPGA with in-
creasing number of hardened digital signal processing (DSP)
blocks and on-chip memory capacity. Microsoft Brainwave
(BW) (Fowers et al., 2018) is a state-of-the-art FPGA-based
deep learning framework.

Figure 2 shows BW’s compute and memory layout. In con-
trast to the CPU and GPU implementations, BW blocks
the MVM along both row and column dimensions. It then
fuses the inner tiled MVM with element-wise non-linear
functions. Specifically for a matrix of size H × R and a

vector of size R, BW parallelizes the compute of multiple
column tiles (ru, # MV Tiles in the original paper) of size
hv × rv with multiple tiled engines, as shown in Figure 4
(a). Each tile engine contains hv (native dimension) number
of dot product engines vectorized by rv (lanes) and achieves
one tile per cycle throughput. Parallel tiles along the row
dimension are then fed into a pipelined reduction and ac-
cumulation unit. Immediately after the accumulation, the
multi-function units (MFUs) execute the element-wise oper-
ations on the hv vector chunk produced by the accumulator.
Although BW’s implementation still keeps the vectorized
intermediate results, the size hv is much smaller than H in
BasicLSTM cell. Nonetheless, with parallelization in ru,
BW allocates lots of vectorized intermediate buffers that can
still lead to energy inefficiency. BW performs one MVM
operation in

⌈
H
hv

⌉⌈
R

rv·ru
⌉

iterations.

The MVM operations are executed on each gate of the
LSTM sequentially. Similarly, element-wise operations
hv using σ, tanh, ◦,+ for the non-linear operators are also
scheduled to execute on the vectorized multi-function units
with size of hv, as shown with the arrow in time in Figure
2. To avoid DRAM communication overhead and improve
compute density, Brainwave embeds MVM in a blocked
floating-point format, where the vector of hv values share
a single 5-bit exponent and have distinct signs and 2-5 bit
mantissa for each value. As a result, they can achieve very
dense low-precision compute and storage, with one adder
per hv values and hv multipliers for a vector of hv. The
remaining operations are performed in 16-bit precision.

When matrix dimensions cannot be divided by hv and rv·ru,
Brainwave suffers from underutilization of the compute
FLOPS, as shown in Figure 4 (a). The underutilization is
worse with small problem sizes. In addition, BW computes
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WxX and WhH separately rather than computing them
with concatenated larger matrices, which can further aggra-
vate the problem. This might be because BW’s abstraction
does not allow partial updates of an vector but only X is
updated at the end of the step.

3.3 Loop-based LSTM

We have made the following observations from analyzing
BLAS-based LSTM implementations:

1. Constructing an LSTM cell’s computation graph us-
ing BLAS subroutines introduces large intermediate
buffers even when the kernels themselves are blocked.
Each element on RNN cells’ non-reduction dimen-
sion of the MVM (H) can be computed completely
independently within one time step. This exposes the
opportunity of fine-grain loop tiling and fusion across
the entire LSTM kernel.

2. MVM is the computation bottleneck in serving RNN
cells. Spatial architecture allows us to distribute most
of the compute resource to MVM by parallelizing and
pipelining MVM with element-wise operations.

3. Using low-precision operations can boost compute den-
sity and keep RNN weights on-chip to avoid high-
latency DRAM communication. We need to introduce
efficient low-precision support in the target spatial ar-
chitecture without introduce too much overhead.

To address the issue of large intermediate buffers, we fine-
grain tile and fuse MVM with non-linear functions. We
refer to the computation for generating every single element
in ct and ht as LSTM-1 operation, which can be computed
independently in a single step. LSTM-1 is composed of
four independent dot products of the row vectors of the
weight matrices with the input vector immediately followed
by the element-wise operations on output of the dot product.
The resulting c and t vectors are produced by computing
LSTM-1 operations for H +D iterations.

As shown in Figure 3, each MVM unit is replaced by a
MapReduce unit to compute the tiled dot product. Each
MapReduce is vectorized by rv with pipelined map function
followed by a pipelined reduction tree. ru is the number of
parallel MapReduce units. Results of ruMapReduce blocks
are reduced and accumulated with another reduction tree
(not shown in Figure). Next, the dot product result is passed
through a chain of function units for executing bias add
and non-linear functions. Dot products, bias adds, and non-
linear functions of the four gates can also be parallelized.
Finally, the results of the four gates are pipelined through a
set of function units for element-wise operation in LSTM
cell. At the outer loop, LSTM-1 runs for H

hu iterations,

MVM
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Figure 2. Compute and memory layout of LSTM in Brainwave.
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design.
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1 // Number of hidden units in h and features in x
2 val H, D = ...
3 // Loop unrolling / vectorization parameters
4 val hu, ru, hv, rv = ...
5 val c = SRAM[T](H) // SRAM storing C
6 val xh = SRAM[T](D+H) // SRAM storing [X,H]
7 // Concatenated weights [Wx,Wh] for each gate in 2-D SRAMs
8 val wi, wj, wf, wo:SRAM2[T] = ...
9 val bi, bj, bf, bo: SRAM[T] = ... // Bias

10 // Lookup tables for non-linear functions
11 val luti, lutj, luf, luto: SRAM[T] = ...
12 val tanh:SRAM[T] = ... // Lookup table for tanh
13 Sequential.Foreach (nSteps by 1){ step =>
14 // Loop range from 0 to H parallelized by hu
15 Foreach(H par hu){ ih =>
16 def fusedDotProductWithNonLinear(w:SRAM2[T], lut:SRAM[T],

b:SRAM[T]) = {
17 // Tiled dot product with blocking size of rv

parallelized by ru
18 val elem = Reduce(Reg[T])((D+H) by rv par ru){ iu =>
19 Reduce(Reg[T])(rv par rv){ iv =>
20 val iuv = iu + iv
21 w(ih, iuv) * xh(iuv)
22 }{ (a,b) => a + b }
23 }{ (a,b) => a + b }.value + b(ih)
24 lut(elem)
25 }
26 val i = fusedDotProductWithNonLinear(wi, luti, bi)
27 val j = fusedDotProductWithNonLinear(wj, lutj, bj)
28 val f = fusedDotProductWithNonLinear(wf, lutf, bf)
29 val o = fusedDotProductWithNonLinear(wo, luto, bo)
30 val cNew = i*j + c(ih) * f
31 c(ih) = cNew
32 xh(ih+D) = tanh(cNew) * o
33 }
34 }

Figure 5. Example of LSTM in Spatial.

where hu is the number of parallel LSTM-1 implementa-
tions.

In the loop-based design, all intermediate buffers are scalars
as opposed to vectors. Regarding utilization, the loop-based
LSTM design suffers from less underutilization due to un-
aligned problem size compared to the tiled MVM approach
in BW. Figure 4 shows sources of such underutilizations. An
MVM approach design would suffer from 2-D fragmenta-
tion on both theH andD dimensions (Figure 4 (a)), whereas
the loop-based design only suffers from 1-D fragmentation
on the R dimension (Figure 4 (b)).

Figure 5 shows a loop-based LSTM design implemented in
Spatial. Foreach is a loop construct with a lambda that takes
loop iterator as input. Reduce is a construct that executes
MapReduce by taking a map function followed by a reduc-
tion function. User declare explicit on-chip scratchpads
and registers with SRAM and Reg. To enable fine-tuning
an RNN application, we exposes loop vectorization factor
rv, hv and unrolling factors hu, ru.

4 PLASTICINE SPECIALIZATION FOR
RNN SERVING

To show efficient execution of the loop and parallel pattern
constructs, we map our implementation onto a spatial archi-
tecture, Plasticine. Foreach at Line 17, 19 and Reduce at
Line 22, 23 are mapped to PCUs on Plasticine. When the
application size is small, these constructs are executed using

pipelined SIMD lanes within a single PCU. When the appli-
cation size is large, multiple PCUs can be used to parallelize
and pipeline the dot product across PCUs. Element-wise
operations can be executed in a deep pipeline formed by
chaining multiple PCUs.

To fit an RNN’s weights on-chip, we execute our application
with low-precision arithmetics. In this section, we pro-
pose the necessary micro-architectural changes to support
low-precision arithmetics on Plasticine. We also discuss ar-
chitectural parameter selection for Plasticine to serve RNN
applications efficiently.

4.1 Mixed-Precision Support

Previous works (Fowers et al., 2018; Jouppi et al., 2017)
have shown that low-precision inference can deliver promis-
ing performance improvements without sacrificing accuracy.
In the context of reconfigurable architectures such as FP-
GAs, low-precision inference not only increases compute
density, but also reduces required on-chip capacity for stor-
ing weights and intermediate data.

To support low-precision arithmetics without sacrificing
coarse-grained reconfigurability, we introduce two low-
precision struct types in Spatial: a tuple of 4 8-bit and 2 16-
bit floating-point numbers, 4-float8 and 2-float16
respectively. Both types packs multiple low-precision val-
ues into a single precision storage. We support only 8 and
16-bit precisions, which are commonly seen in deep learning
inference hardwares. Users can only access values that are
32-bit aligned. This constraint guarantees that the microar-
chitectual change is only local to the PCU. Banking and
DRAM access granularity remains intact from the original
design.

Figure 6 (a) shows the original SIMD pipeline in a Plasticine
PCU. Each FU supports both floating-point and fix-point
operations. When mapping applications on Plasticine, the
inner most loop body is vectorized across the lanes of the
SIMD pipeline, and different operations of the loop body
are mapped to different stages. Each pipeline stage contains
a few pipeline registers (PRs) that allow propagation of live
variables across stages. Special cross-lane connections as
shown in red in Figure 6 enable reduction operations. To
support 8-bit element-wise multiplication and 16-bit reduc-
tion, we add 4 opcodes to the FU, shown in Figure 6 (b).
The 1st and 3rd stages are element-wise, low-precision op-
erations that multiply and add 4 8-bit and 2 16-bit values,
respectively. The 2nd and 4th stages rearrange low-precision
values into two registers, and then pad them to higher preci-
sions. The 5th stage reduces the two 32-bit value to a single
32-bit value using the existing add operation. From here,
we can use the original reduction network shown in Figure
6 (a) to complete the remaining reduction and accumulates
in 32-bit connection.
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With 4 lanes and 5 stages, a PCU first reads 16 8-bit values,
performs 8-bit multiplication followed by rearrangement
and padding, and then produce 16 16-bit values after the
second stage. The intermediate values are stored in 2 PRs
per lane. Next, 16 16-bit values are reduced to 8 16-bit val-
ues and then rearranged to 8 32-bit value in 2 PRs per lane.
Then, the element-wise addition in 32-bit value reduces the
two registers in each line into 4 32-bit values. These val-
ues are fed through the reduction network that completes
the remaining reduction and accumulation in two plus one
stages.

In a more aggressive specialization, we can fuse the multi-
ply and rearange into the same stage. We also fuse the first
low-precision reduction with the next rearange as shown in
Figure 6 (d). In this way, we can perform the entire low-
precision map-reduce in 2 stages in addition to the original
full precision reduction. In order to maximize hardware
reuse, we assume that it is possible to construct a full preci-
sion FU using low-precision FUs. In addition, we observe
that the original reduction network in the SIMD lanes could
lead to low FU utilization. To improve FU utilization, we
fold the entire tree structure in a single stage. Figure 6 (c)
shows the folded reduction accumulation structure. Specif-
ically, latter reductions in the tree are mapped to earlier
stages in the pipeline. In this setup, the entire reduction plus
accumulation is still fully pipelined in log2(#LANE)+1 cy-
cles with no structural hazard. With fused reduced-precision
multiplication and reduction, and folded reduction tree, a
PCU is able to perform all map-reduce that accumulates
4#LANE 8-bit values using 4 stages. All the operations are
completed in 2 + log2(#LANE) + 1 cycles.
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Figure 7. Variant configuration of Plasticine for serving RNN.

4.2 Sizing Plasticine for Serving RNN

Evaluating an RNN cell containing N hidden units and N
input features requires 2N2 computations andN2+N mem-
ory reads. With large N , the compute to memory ratio is
2:1. The original Plasticine architecture uses a checkerboard
layout with 1 to 1 ratio between PCU and PMU. A PCU
has 6 stages and 16 lanes, and a PMU has 16 banks. This
provides a 6:1 ratio between compute resource and on-chip
memory read bandwidth. As a result of this layout, on-chip
memory read bandwidth becomes the bottleneck for accel-
erating RNN serving applications. Given that RNNs cover a
wide range of important applications, we select a Plasticine
configuration tailored for RNN serving. Specifically, we
choose a 2 to 1 PMU-PCU ratio with 4 stages in each PCU.
Figure 7 shows the layout of this Plasticine variant.

5 EVALUATION

In this section, we evaluate the real-time RNN serving tasks
on various platforms. We start with the methodology of our
experiments, followed by a discussion of performance and
power comparisons across these platforms.

5.1 Methodology

To evaluate RNN serving, we use the LSTM and GRU tasks
from Baidu DeepBench as our benchmarks. We evaluate the
benchmarks across processor-based architectures including
CPU and GPU, and spatial architectures including FPGA
and CGRA. Table 4 shows the detailed specifications of
the targeting hardware, which includes state-of-the-art high
performance platforms in each of the commercialized cat-
egories. Table 5 summarizes application configurations of
each platform.

CPU We implement the applications in Tensor-
Flow 1.10, and evaluate our implementations on Intel
Xeon Scalable Processor (Skylake) CPU. We use the
LSTMBlockFusedCell and GRUBlockCell kernels
in TensorFlow. We further enable AVX2 vector instructions
for CPU evaluation. Due to lack of low-precision support in
both tool chain and platform, we use single-precision for
our implementation.
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GPU We use TensorFlow with cuDNN Library to target
NVIDIA Tesla V100 GPU from Google Cloud. cuDNN is a
GPU-accelerator Library from NVIDIA that is specialized
for deep learning. We use 16-bit precision for our imple-
mentation on GPU. On both CPU and GPU platforms, we
run TensorFlow profilers and collect the time spent only on
evaluating the RNN cells.

Plasticine We implement the applications in Spatial,
which targets Plasticine. Although Spatial has FPGA back-
end support, Stratix 10 is not commercially available at the
time of the submission of this work. The current FPGA
targets that Spatial support are not comparable to Stratix 10
both in terms of memory and compute capacity. Therefore,
we only use Spatial to target Plasticine for this evaluation.
However, our approach should generally benefit an imple-
mentation on a high performance FPGA like Stratix 10.
We choose Plasticine configuration that matches the peak
8-bit FLOPS and on-chip scratchpad capacity of a Stratix
10 FPGA. The exact configuration of Plasticine is shown in
Table 3. In order to minimize the overhead of low-precision
support, Plasticine only supports 8-bit, 16-bit, and 32-bit
element-wise operations, and mixed precision reduction op-
eration. For our evaluation, the element-wise operations are
performed in 8-bit precision, the first stage of the reduction
is performed in 16-bit, while the remaining of the reduction
and accumulation are performed in 32 bit operations.

To measure the performance, we use a cycle accurate sim-
ulator for Plasticine. We modified the simulator to model
the proposed micro-architectural changes to support low-
precision operations. We use the area and power of individ-
ual CUs and network switches from the original Plasticine
paper, and compute total area of configuration shown in
Table 3. As discussed in Section 4, we reduce the num-
ber of stages in PCU from 6 stages to 4 stages with fused
low-precision operations and folded reduction tree. Low
preicision function units can be used to compose full preci-
sion units. We conservatively estimate the area and power
of PCU stays the same with our proposed change and re-
duced two stages. We also increase the PMU to PCU ratio
to better match the compute to memory ratio for RNN infer-
ence applications. To match the memory capacity of Stratix
10, we shrink the scratchpad capacity of each PMU from
256kB to 84kB. For power calculations, we generate activity
tracing of the CUs from simulation, and then integrate with
characterized power of individual PCU to compute the total
power. The power and area characterizations are based off
synthesis at 28nm technology at 1GHz clock frequency.

Brainwave Finally, we also compared our results to Mi-
crosoft Brainwave framework. For this evaluation, we com-
pare to Brainwave implemented on top of Intel Stratix 10
FPGA. Brainwave is synthesized at 250MHz and all opera-

Table 3. Plasticine configuration.
# Row 24 # Column 24
# PCU 192 # PMU 384
# Lanes in PCU 16 # Stages in PCU 4
Scrachpad capacity per PMU 84kB

Table 4. Hardware specifications for target platforms.

Specification
Intel Xeon

Skylake
(Dual core)

Tesla
V100
SXM2

Stratix
10 280
FPGA

Plasticine

Max Clock Rate (GHz) 2.0/2.8* 1.38/1.53* 1 1
On-chip memory**
(MB)

55 20 30.5 31.5

Peak 32-bit TFLOPS – 15.7 10 12.5
Peak 8-bit TFLOPS – – 48 49
Technology (nm) 14 12 14 28
Die Area (mm2) 64.4 815 1200 494.37
TDP (W) 15 300 148 160

* Base/Boosted Frequency ** Capacity of L3 cache for CPU, register file for GPU,
and on-chip scratchpad for reconfigurable architectures.

tions are performed in blocked low-precision floating-point
format described in section 3.3.

5.2 RNN Performance Analysis

Table 6 shows the performance comparison of LSTM and
GRU with various numbers of hidden units (H) and step
sizes (T) over the four platforms. Overall, both CPU
and GPU significantly underutilize the available compute
FLOPS. In addition, they cannot meet the latency require-
ment for real-time serving for all problem sizes. Both BW
and Plasticine deliver promising latencies within 5ms for
all problem sizes. When serving very large RNNs, BW
provides better performance with up to 2x better than Plas-
ticine on the largest GRU (H=2816). When serving small
and medium size RNNs, Plasticine performs better than BW
with up to 30x better performance on small GRU (H=512).
We also observe that Plasticine delivers consistent FLOPS
when serving all the problem sizes.

Processor-Based Architectures For CPU experiments,
the RNN kernels from TensorFlow itself is not multi-
threaded. Since we focus on real-time serving of RNN
applications, we use batch size of 1 for all of our bench-
marks, which expose no parallelism outside the kernel level.

Table 5. Application configurations for target platforms.

Platform
Intel
Xeon

Skylake

Tesla
V100
SXM2

Stratix 10
280

FPGA
Plasticine

Software
Framework

TF+AVX2 TF+cuDNN Brainwave Spatial

Achieved Clock
Frequency (GHz)

2 1.38 0.25 1

Precision f32 f16 blocked
precision mix f8+16+32
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Table 6. Performance comparison of DeepBench Inference.
BENCHMARKS LATENCY (ms) EFFECTIVE TFLOPS PLASTICINE SPEEDUP (X) POWER

(W)

H T XEON
SKYLAKE

TESLA
V100 BW PLASTICINE

XEON
SKYLAKE

Tesla
V100 BW PLASTICINE

XEON
SKYLAKE

TESLA
V100 BW PLASTICINE

LSTM

256 150 15.75 1.69 0.425 0.0419 0.010 0.09 0.37 3.8 376.3 40.4 10.2 28.5
512 25 11.50 0.60 0.077 0.0139 0.009 0.18 1.37 7.6 830.3 43.2 5.6 53.7
1024 25 107.65 0.71 0.074 0.0292 0.004 0.59 5.68 14.4 3,686.6 24.3 2.5 97.2
1536 50 411.00 4.38 0.145 0.1224 0.005 0.43 13.01 15.4 3,357.8 35.8 1.2 102.7
2048 25 429.36 1.55 0.074 0.1060 0.004 1.08 22.62 15.8 4,050.6 14.6 0.7 104.5

GRU

512 1 0.91 0.39 0.013 0.0004 0.003 0.01 0.25 7.6 2,182.3 942.4 31.2 61.9
1024 1500 3,810.00 33.77 3.792 1.4430 0.005 0.56 4.98 13.1 2,640.3 23.4 2.6 109.1
1536 375 2,730.00 13.12 0.951 0.7463 0.004 0.81 11.17 14.2 3,658.3 17.6 1.3 114.6
2048 375 5,040.00 17.70 0.954 1.2833 0.004 1.07 19.79 14.7 3,927.5 13.8 0.7 101.2
2560 375 7,590.00 23.57 0.993 1.9733 0.004 1.25 29.69 15.0 3,846.4 11.9 0.5 117.2

Geometric Mean 2,529.3 29.8 2.0

Table 7. Loop unrolling and vectorization parameters for spatial
architectures.

BENCHMARKS STRATIX 9 BW PLASTICINE
H T ru hv rv hu hv ru rv

LSTM

256 150

6 400 40

6

1

4

64

512 25

4

8

1024 25
1536 50
2048 25

GRU

512 1

2

1024 1500
1536 375
2048 375
2560 375
2816 750

Consequently, the machine is still very underutilized even
with AVX2 instruction. Although one could implement
RNN directly in c++, the MVM sizes in RNNs are too small
to benefit from multi-threading due to the synchronization
overhead. V100 with cuDNN library provides significant
acceleration compared to CPU. Nevertheless, the latency is
still high. This is because GPUs are designed for through-
put oriented rather than latency sensitive workloads. Pro-
vided that the library is based on BLAS3 routines, which
are matrix-matrix operation, MVMs in RNN serving suffer
from significant resource underutilization. In Table 6, V100
shows very poor performance on GRU (H=512). This is
likely due to the initialization overhead which should not be
timed. From our evaluation, neither processor-based archi-
tectures are suitable for providing low-latency serving on
RNN applications.

Spatial Architectures Table 7 shows the selected design
parameters for each problem size for BW and Plasticine.
On Stratix 10, BW uses 6 tile engines (ru) with native di-
mension of 400 (hv) and 40 lanes (rv). Large hv and rv
improve the data-to-control ratio by amortizing the schedul-
ing overhead over a large vectorized instruction. However,
this design choice aggravates the underutilization for small
RNN feature sizes at 256 and 512. Our implementation
effectively uses hv of size 1 by performing dot product
instead of MVM, which prevents fragmentation in the H
dimension. With hv = 1, all the intermediate buffers are

stored in registers. In contrast, BW uses register files of size
hv. In addition, our proposed implementation captures addi-
tional gate-level, X, and H parallelism as well as pipelining
at element-wise functions. In contrast, BW schedules these
operations in time and dispatches corresponding instructions
to drive the compute units.

A CGRA is less flexible than an FPGA when performing
arbitrary low-precision operations. In this example, we
increase memory density of Plasticine by supporting quan-
tile precisions as described in Section 4.1. All weights are
stored in 8 bit format, so as the multiplication operations
of MVM. The reduction and accumulation operations are
implemented in mix of 16 and 32 bit precisions. Hence, the
peak FLOPS when performing mixed precision map-reduce
is much less than the peak FLOPS for blocked low-precision
format in BW. As a result, Plasticine performs worse than
BW on the large RNNs.

In addition, Plasticine delivers very consistent FLOPS for
different problem sizes. For small problem size, the dot
product can be fully unrolled with rv ∗ ru. Therefore, we
can increase hu to explore additional parallelism across the
hidden units. For large problem size, dot product becomes
the bottleneck of the pipeline. Hence, we reduce hu and
increase ru to balance the throughput between dot product
and element-wise operations. In this example, BW uses a
single set of parameters for all problem sizes. Although
one can potentially tune parameters for different problem
sizes, doing so will incur re-synthesis and place-and-route
on an FPGA, which is an order of magnitude longer than the
compilation time needed for a CGRA design. In addition,
to exhaust hardware resources with a smaller hv, one would
have to increase the number of matrix vector tile engines
hu × ru in BW. As a result, decoders and schedulers as-
sociated with these units will drive up the control-to-data
overhead and deliver less FLOPS for larger problem sizes.

5.3 Area and Power Analysis

Table 4 shows the die area comparison of different platforms.
While the GPU has a publicly-reported die area measure-
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ment (Markidis et al., 2018), Xeon Skylake and Stratix 10
only have estimated die areas based on their estimated tran-
sistor counts (Cutress, 2017). With the rough area estimates,
we can see that while CPU has the smallest area in this case,
the performance gap is too large even after we scale up to a
28-core server. The GPU also delivers bad performance per
area mostly due to the low utilization of compute FLOPS.
Stratix 10 delivers the best performance for the large RNNs,
but with the largest die area estimates of 30 billion tran-
sistors (Gazettabyte, 2015). Plasticine’s die area is based
on the synthesis results at 28nm, which is one generation
older than all the other platforms. With technology scaling,
Plasticine should possess double the amount of compute
and memory resources at 14nm for the same die area, which
will roughly match Stratix 10’s performance on all the RNN
problem sizes. At the same time, Plasticine is more than 2x
smaller than Stratix 10, which could also contribute at least
2x - 60x performance per area improvement for all prob-
lem sizes. Table 4 shows the thermal design power (TDP)
of the four platforms, which is the peak power achievable
for any workloads (Intel; 2018; Durant et al., 2017). BW
also reports a measured peak power for the given set of
benchmarks of 125W. Table 6 shows the simulated power
for Plasticine for each benchmark. Overall, the peak power
among benchmarks for Plasticine is 118W, which is slightly
less than the peak power compared to BW.

6 RELATED WORK

Previously proposed serving platforms focus on exploiting
data locality by mapping RNN cells onto spatial architec-
tures. For example, Chang et al presented an FPGA-based
implementation of an LSTM network (Chang et al., 2015).
This approach works well for supporting small RNNs. How-
ever, for a large RNN, the weights would be too large to fit
on-chip. As a result, the serving latency would be dominated
by DRAM data loading. To address the issue of fitting RNN
weights on-chip, several previous works (Han et al., 2016b;
Wang et al., 2018; See et al., 2016; Narang et al., 2017) have
studied the approaches for compressing RNN weights. For
example, Han et al presented a compression scheme called
DSD (Han et al., 2016b). It iteratively removes parame-
ters in the weight matrices and retrains the sparse model
to minimize the accuracy loss introduced by sparsity (Han
et al., 2016b). With this compression scheme, Han et al
were able to deploy an LSTM network containing 3.2 mil-
lion parameters onto a modern FPGA without sacrificing
accuracy. Compared to serving on CPU and GPU platforms,
serving a sparse LSTM network on FPGA provides much
lower latency and higher energy efficiency. However, we
find that it could be hard to generalize this compression
scheme for all the RNN tasks. RNNs are very flexible
in terms of their model structures. Applying a DSD-like
compression scheme to all the RNN models requires hand-

tuning the compression heuristics for every model. To avoid
hand-tuning, He et al proposed an approach that uses rein-
forcement learning techniques for automatic compression
tuning (He et al., 2018). However, their approach focuses on
compressing CNN tasks on edge devices, which may not be
transferrable to the case of serving RNN tasks in datacenter.
Observing that the sparsity-based compression schemes are
still under active development, we choose to support com-
pression schemes that focus on representing RNN weights
using low-precision data format. Commercially available
platforms such as Google TPU (Jouppi et al., 2017) and
Microsoft BrainWave (Fowers et al., 2018) support these
schemes.

7 CONCLUSION

In this paper, we describe a set of techniques for performing
cross-kernel optimization within RNN cells. We identify
that by moving away from BLAS abstraction and focus
on optimizing loop-level construct, we are able to achieve
consistent hardware utilization when serving RNN cells
of different sizes. We show that we are able to achieve
10-20x performance improvement at a less advanced tech-
nology compared to the state-of-the-art GPU platform, and
a geometric speedup of 2x compared to the state-of-the-art
FPGA-based platform.
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