
CCSTM: A Library-Based STM for Scala

Nathan G. Bronson Hassan Chafi Kunle Olukotun
Computer Systems Laboratory

Stanford University
{nbronson, hcha�, kunle}@stanford.edu

Abstract
We introduce CCSTM, a library-based software transactional mem-
ory (STM) for Scala, and give an overview of its design and imple-
mentation. Our design philosophy is that CCSTM should be a use-
ful tool for the parallel programmer, rather than a parallelization
mechanism for arbitrary sequential code, or the sole synchroniza-
tion primitive in a system.

CCSTM expresses transactional reads and writes as explicit
method calls on instances of a reference type. Scala’s flexible
method names, implicit parameters, and closures keep the syntax
concise, and the reference instances provide a natural way to ex-
press additional STM functionality. We use a novel hybrid of static
and dynamic transaction scoping to retain composability while
avoiding the barrier overheads that would otherwise result from an
implementation as an unprivileged library. Experiments show that
CCSTM’s performance and scalability are on par with bytecode
rewriting STMs.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming – Parallel programming; D.4.1
[Operating Systems]: Process Management – Concurrency; Syn-
chronization; Threads

General Terms Algorithms, Languages

Keywords Transactional memory, Scala

1. Introduction
The proliferation of multi-core processors means that more pro-
grammers are being thrust into the difficult world of shared memory
multi-threading. Software transactional memory (STM) provides a
compelling alternative to locks for managing access to shared muta-
ble state; STM’s declarative atomic blocks are free from deadlock,
are composable, and do not require elaborate fine-grained decom-
position to yield scalability.

In this paper we describe the design of CCSTM, a library-based
STM for Scala. CCSTM deliberately sidesteps many of the seman-
tic difficulties common in software implementations of transac-
tional memory, by limiting its focus. We view CCSTM as a do-
main specific language (DSL) for use by parallel programmers that
wish to build algorithms and data structures using optimistic con-
currency control. CCSTM is not a drop-in replacement for locks, an
all-encompassing concurrent programming model, or a mechanism
for automatic parallelization of arbitrary code.

The most fundamental design choice for CCSTM was the de-
cision to implement it entirely as a Scala library. Unlike STMs
that transparently instrument all loads and stores of shared muta-
ble state, accesses in CCSTM are explicit method calls on a Scala
trait Ref. We refer to the resulting STM as ‘reference-based’,
because memory locations managed by the STM are accessed only
through an additional level of indirection.

While a reference-based STM adds one or two characters of
program text to basic loads and stores, it leads to a safer and
more full-featured interface. The encapsulation of transactionally-
managed data allows CCSTM to provide strong atomicity and
isolation with no performance impact on code that doesn’t use
the STM. In addition, Ref instances provide a first-class entity
that names a memory location, which enables CCSTM to provide
additional functionality to the user in a natural way.

CCSTM departs from the dynamic transaction scoping typical
of STMs, using a hybrid approach. Ref’s methods locate the trans-
action via an implicit parameter of type Txn, which must be part
of the lexical scope during compilation; this avoids the overhead
of a dynamic lookup for most calls to the STM. Nesting of atomic
regions, however, is resolved dynamically using a ThreadLocal;
this avoids the need to add an implicit Txn parameter to every
method called inside a transaction.

In this paper:

1. We describe CCSTM, a reference-based STM for Scala. CC-
STM focuses on helping parallel programmers build optimisti-
cally concurrent algorithms and data structures, while restrict-
ing itself to implementation techniques that do not interfere
with components of the system that do not use it (Section 3).

2. We show how a hybrid of static and dynamic transaction scop-
ing can be used to reduce the performance penalty of a library-
based STM while retaining ease of use (Section 3.3).

3. We introduce unrecordedRead, an STM primitive that relaxes
read atomicity while allowing manual validation (Section 4.1).

4. We briefly present CCSTM’s implementation, including a novel
optimization for isolation write barriers (Section 6).

5. We demonstrate that although CCSTM is an unprivileged li-
brary, its performance is comparable to JVM STMs that use
bytecode rewriting (Section 7).

6. We summarize some of the discussions that led from the origi-
nal design goal to the current syntax. We point out the parts that
work well and the parts that are cumbersome, and hypothesize
about ways to address the latter (Section 8).

2. Motivation
An experimental feature such as software transactional memory
should strive to impose only negligible costs on code that does not
use it. Runtime performance costs are the most obvious, but ex-
tra complexity in the compiler, libraries, and language rules should
also be minimized. A pay-as-you-go philosophy facilitates incre-
mental adoption, it allows multiple implementations to coexist, and
it reduces the penalty for failure.

One popular and reasonable interface design for transactional
memory is to mimic lock-based critical regions. Users of such an

CCSTM: A Library-Based STM for Scala 1 2010/3/18



1 class Account(initialBalance: Money) {
2 private var _balance = initialBalance
3
4 def balance: Money = _balance
5
6 def deposit(m: Money) {
7 assert(m >= 0)
8 _balance += m
9 }

10
11 def withdraw(m: Money) {
12 assert(m >= 0)
13 if (_balance < m)
14 throw new OverdraftException
15 _balance -= m
16 }
17 }
18
19 object Account {
20 def transfer(src: Account, dst: Account, m: Money) {
21 src.withdraw(m)
22 dst.deposit(m)
23 }
24 }

Figure 1. Code that performs an account transfer without any
locking or other concurrency control.

STM declare the beginning and the end of an atomic block, and
all memory accesses that occur within the dynamic scope of the
block are transparently redirected to the STM. For a VM language
like Scala this redirection can be introduced by the VM’s JIT, by
bytecode rewriting at class load time, or during the initial compi-
lation of the high-level language. The dynamic scoping of such an
approach, however, means that it is generally not possible to limit
instrumentation to only classes that are used in an atomic block.
An STM that is deeply integrated into the VM’s JIT can minimize
the performance and code bloat impacts of the instrumentation by
performing it citation lazily, but the engineering effort to add this
support to a production VM is prohibitively large. Instrumentation
of the bytecode at compilation or class loading has the lowest en-
gineering cost, but results in two copies of each method. This is
the strategy adopted by the Multiverse [18] and Deuce STM [12]
STMs for the JVM. While this cost may eventually be considered
acceptable, it places a high hurdle to integration into Scala’s stan-
dard library. An additional drawback of bytecode rewriting is that
it is not composable. If two modules use different STMs then they
cannot be used in the same program.

The alternative approach adopted by CCSTM is to require the
programmer to perform explicit calls to the STM. While less conve-
nient for simple uses, this limits performance side-effects on code
that does not use atomic blocks, and it allows the STM to be con-
structed entirely as an unprivileged library. When coupled with an
STM design that does not assume it is managing all threads, the
result is a pay-as-you-go transactional memory suitable for experi-
mentation and incremental adoption.

Scala’s flexible syntax makes a library-based STM tractable.
Operator overloading makes transactional loads and stores concise,
and implicit parameters allow the current transaction context to be
statically threaded through the code without explicitly including it
in each call. The resulting STM can be considered an embedded
DSL for optimistic concurrency.

3. The Basic Interface
As a recurring example, consider a class that encapsulates the bal-
ance of a checking account1. Absent any concurrency control, we

1 This example is adapted from Deuce STM’s bank benchmark [12].

25 class Account(initialBalance: Money) {
26 private val _balance = Ref(initialBalance)
27
28 def balance: Source[Money] = _balance
29
30 def deposit(m: Money)(implicit t: Txn) {
31 assert(m >= 0)
32 _balance := _balance() + m
33 }
34
35 def withdraw(m: Money)(implicit t: Txn) {
36 assert(m >= 0)
37 if (_balance() < m)
38 throw new OverdraftException
39 _balance := _balance() - m
40 }
41 }
42
43 object Account {
44 def transfer(src: Account, dst: Account, m: Money) {
45 STM.atomic { implicit t =>
46 src.withdraw(m)
47 dst.deposit(m)
48 }
49 }
50 }

Figure 2. One way to implement the atomic balance transfer func-
tion using CCSTM. This code uses apply() and := operators for
performing transactional reads and writes, and expresses the atomic
block as an anonymous Txn => Unit.

might write the code in Figure 1. Adding pessimistic concurrency
control to this code by locking accesses to Account instances is
not straightforward, because both the source and destination ac-
count must be locked during a transfer. Unless a global lock or-
der is followed this can easily lead to deadlock. CCSTM allows the
atomic balance transfer to be expressed easily, guaranteeing that
both balance adjustments are performed atomically and without
deadlock. Figure 2 shows one way to express this using CCSTM.

3.1 References – Ref[A] and Ref.Bound[A]

The most fundamental data type in CCSTM is Ref[A], which
mediates access to an STM-managed mutable value. Read-only
methods are separated into a covariant Source trait and write-
only methods are separated into a contravariant Sink trait. The
current transactional context is passed during each method call via
an implicit parameter. Reads and writes on a reference may be
performed with the get and set methods, respectively, or with the
more concise apply() and := operators. Section 8.1 discusses the
choice of method names in more detail.

Non-transactional access to the contents of a reference are pro-
vided by a view returned by nonTxn. This view implements meth-
ods that parallel those of the reference, but that don’t require a Txn.
We say that the view is bound to the non-transactional context, so
the view trait is named Ref.Bound. Views may also be bound to a
transactional context via Ref.bind. These bound references do not
require a Txn parameter, but may only be used until the end of the
transaction. Figure 3 shows the subclassing relationship between
the traits that implement unbound and bound references, and some
of their methods. The separation between Ref, Source, and Sink,
and the operator syntax for accesses are modeled after Spiewak’s
Scala STM [17]. The Ref↔ Ref.Bound duality is unique to CC-
STM, as far as is known by the authors.

Bound views for non-transactional access create a syntactic
difference between transactional and non-transactional reads and
writes. This allows the expert programmer to selectively relax iso-
lation by performing a non-transactional access inside an atomic
block, without requiring an escape action. The non-isolated access

CCSTM: A Library-Based STM for Scala 2 2010/3/18



Source

get (implicit txn: Txn): A
apply() (implicit txn: Txn) = get
...
bind (implicit txn: Txn): Source.Bound[A]
nonTxn: Source.Bound[A]

+A

Sink

set (v: A)(implicit txn: Txn): Unit
:= (v: A)(implicit txn: Txn) = set(v)
...
bind (implicit txn: Txn): Sink.Bound[A]
nonTxn: Sink.Bound[A]

-A

Ref
...
bind (implicit txn: Txn): Ref.Bound[A]
nonTxn: Ref.Bound[A]

A

Source.Bound

get: A
apply() = get
...
unbind: Source[A]
context: Option[Txn]

+A

Sink.Bound

set (v: A): Unit
:= (v: A) = set(v)
...
unbind: Sink[A]
context: Option[Txn]

-A

Ref.Bound
...
unbind: Ref[A]
context: Option[Txn]

A

˜̃
˜̃
˜̃

Figure 3. Traits that provide access to an STM-managed memory location. Transactional access can occur through either Ref or a
Ref.Bound returned from Ref.bind, non-transactional access occurs through a Ref.Bound returned from Ref.nonTxn. Source[+A]
and Sink[-A] decompose the covariant and contravariant operations of Ref[A].

is visually differentiated by including the token nonTxn. In Sec-
tion 4.1 we will introduce unrecordedRead, a way of relaxing
isolation for reads while retaining the ability to validate them.

3.2 Declaring and executing an atomic block
CCSTM’s atomic blocks are functions with type (Txn => Z).
Transactional execution is provided by passing a block to the
atomic method of the STM object. This method creates or joins
a transaction, passes the transaction context to the block, attempts
to commit the transaction, and retries the block if the transaction
could not be committed.

We have found two idiomatic ways to make the block’s Txn ar-
gument available as an implicit value. For inline transactions, the
most concise code adds the implicit modifier to a closure’s pa-
rameter2, as shown in Figure 2 on Lines 45 to 48. This syntax can
be shortened even further if STM.atomic is imported. If the trans-
action’s body consists only of a call to a method that threads the im-
plicit Txn parameter, the method can be passed to STM.atomic by
partially applying it. In this style the Account.transfer method
might be decomposed into:

def transfer(src: Account, dst: Account, m: Money) {
STM.atomic(transferInTxn(src, dst, m)(_))

}
def transferInTxn(src: Account, dst: Account,

m: Money)(implicit txn: Txn) {
src.withdraw(amount)
dst.deposit(amount)

}

The decision to statically bind CCSTM’s transactions to Ref
invocations was made for performance reasons. To dynamically
scope the transactions, the current transaction must be identified
by each read and write barrier. This is an extremely frequent op-
eration. Bytecode rewriting STMs have two options for efficiently
performing this lookup: they can add a field to the system-wide
Thread class, or they can weave a Txn parameter into the trans-
actional version of every method. A library-based STM running
on the JVM must restrict itself to ThreadLocal, which navigates
from the Thread to a thread-local hash table, and from there to

2 This syntax is new in Scala 2.8.

the dynamically scoped value. We do not include a detailed exper-
imental comparison, but we have observed that the cost of a single
ThreadLocal lookup can increase the per-read cost by up to 50%
over performing statically-bound reads in a large transaction.

3.3 Dynamic scoping for nested transactions
Statically scoped transactions using an implicit Txn are invisible
when making calls to Ref, but they add clutter when decompos-
ing the work of an atomic block into methods. Each method that
expects to be run in a transaction must declare the implicit param-
eter. This mechanism also makes it difficult to make methods that
can be called from both inside and outside a transaction. For ex-
ample, the expected behavior for a call to deposit from a non-
transactional context is clear, but this won’t be allowed. The worst
pitfall of the purely-static approach comes if a transaction is active
but is not available in the lexical scope, leading the user to create a
new transaction that is not nested in the active one!

The solution is for Ref’s method to bind the Txn statically,
while STM.atomic searches the thread’s dynamic scope for an
active Txn. This means that a method that should be callable from
either context may omit the implicit Txn parameter and create a
new atomic block. When called from a transactional context the
new atomic block will be nested or subsumed in the outer one. With
this strategy deposit might be coded:

def deposit(m: Money) {
assert(m >= 0)
STM.atomic { implicit t =>
_balance := _balance() + m

}
}

The current CCSTM implementation flattens nested transac-
tions, so when called from the atomic block in transfer this ver-
sion of deposit will perform its work in the outer context. If called
when no transaction is active on the thread (regardless of the static
scope) it will create a new transaction.

4. Advanced Functionality
A CCSTM Ref provides both a value that names a specific memory
location, and a namespace for operations beyond loads and stores.

CCSTM: A Library-Based STM for Scala 3 2010/3/18



4.1 Relaxed isolation
Some algorithms can benefit from transactional reads that are not
guaranteed to be consistent, but that still observe speculative stores
made by the current transaction. The inconsistent value may be
used to make a heuristic decision, such as a hash table resize,
algorithm-specific knowledge may be used to guarantee atomic
behavior of the transaction despite a subsequent invalidation, as in
early release when searching a binary tree, or life cycle callbacks
may validate using specific knowledge.

Previous TM systems have provided several mechanisms for
relaxing atomicity and isolation. Early release allows reads to
be removed from the read set prior to commit [10]. Escape ac-
tions suspend the current transaction temporarily [6]. Open nested
transactions allow the actions of a nested transaction to be com-
mitted in a non-nested fashion. CCSTM supports early release
and escape actions for individual accesses. Escape action are im-
plemented by simply using a nonTxn bound view from inside
a transaction. Early release is supported in a principled man-
ner by Source.Bound.releasableRead. This method returns a
ReleasableRead instance that bundles the requested value with a
method that removes the record of the access from the transaction’s
read set. This interface eliminates the danger that an algorithm will
remove a read that it did not perform, but it still requires careful
reasoning to guarantee correctness after the read has been released.

As an alternative to a releasable read, CCSTM includes a new
abstraction, unrecordedRead. This method performs a transac-
tional read, but instead of adding an entry to the read set it bundles
the read’s meta-data into an UnrecordedRead instance. The caller
may then use this instance to manually validate that the returned
value is still valid.

Like many STMs, CCSTM performs transactional reads by as-
sociating a version number with each managed memory location,
recording the version prior to a transactional read, and checking
during validation that the version number remains unchanged. An
UnrecordedRead contains the read value and the prior version, but
rather than automatically validating the read during commit, vali-
dation is exposed to the programmer via the method stillValid.
An unrecorded read is considered to still be valid if the only
changes that have been made to the referenced memory location
were performed by the read’s transaction. This definition also pro-
duces a meaning for unrecorded reads of the nonTxn bound view:
stillValid will return true only if no change has been made to
the managed value. This leverages the STM’s meta-data to solve
the ABA problem3.

4.2 Semantic conflict detection for reads
Unrecorded reads can be paired with life cycle callbacks to imple-
ment Abstract Nested Transactions [9]. For the simple case where
a single transactional read is modified by an idempotent function,
Ref provides map[Z](f: T => Z): Z. A transactional call to
x.map(f) returns the same value as f(x.get), but no rollback
is triggered by a conflicting write to x if the result of the mapping
does not change. Without this semantic conflict detection, the STM
must initiate rollback any time x is changed concurrently, even if
that change is masked by the application of f.

Consider the branch taken by Figure 2’s Line 37 during an at-
tempt to withdraw 1,000 Money from an account with a balance of
500. At this point _balance will be included in the transaction’s
read set, so a concurrent deposit of 100 will cause the withdrawal
transaction to be rolled back despite not changing the withdrawal’s
outcome. Although only a single bit of information about the bal-
ance was retained, the STM must conservatively assume that any

3 The ABA problem is when an observer falsely concludes that a value has
not changed, because the watched value went from A to B, then back to A.

51 class Ref[T] {
52 ...
53 def map[Z](f: T => Z)(implicit t: Txn): Z = {
54 val u0 = unrecordedRead
55 val result = f(u0.value)
56 t.addReadResource(new Txn.ReadResource {
57 var u = u0 // latest unrecorded read
58
59 def valid(t2: Txn) = {
60 if (u.stillValid) {
61 true
62 } else {
63 // reread and compare to original
64 u = unrecordedRead
65 (result == f(u.value))
66 }
67 }
68 }, 0, false)
69 result
70 }
71 }

Figure 4. Ref.map implemented by unrecordedRead and a
ReadResource callback. The callback is invoked during read set
validation. Conflicting changes to the reference do not require the
transaction to be rolled back if f(get) does not change.

change invalidates the speculative execution. If we move the in-
equality application into a predicate applied by map, however, the
STM can recompute that bit and determine that the withdrawal
transaction is still valid:

// if (_balance() < m) ...
if (_balance.map(_ < m)) ...

By allowing the programmer to express more of her intention to
CCSTM, map can avoid rollbacks and lead to better scalability,
especially for transactions that have already performed a substantial
quantity of work. Figure 4 shows how map may be implemented
using unrecordedRead and a validation handler.

4.3 All of the ways to read and/or write
What follows is the complete list of the access operations provided
by Ref.Bound. Many of these methods have equivalents in Ref
that take an implicit Txn, although to reduce the API’s surface
area some methods are not mirrored. Every access operation in
Ref is present in Ref.Bound. All of the methods are defined
for both transactional and non-transactional contexts, even if they
are mainly useful only for one of those. Source.Bound declares
methods that read, Sink.Bound declares methods that write, and
Ref.Bound declares methods that simultaneously read and write.
Several of the methods that read and write are both more concise
and more efficient than a simple transaction.

Source.Bound:

apply(): T
Equivalent to get.

get: T
Reads the value managed by the bound Ref. If this view is
bound to a non-transactional context, the read will be strongly
atomic and isolated with respect to all transactions, and will
linearize before returning.

map[Z](f: T => Z): Z
Returns f(get), possibly reevaluating f to avoid rollbacks (f
must be idempotent).

await(p: T => Boolean)
Blocks until p(get) is true. Transactional contexts block by
rolling the transaction back using retry, the modular blocking
primitive. Non-transactional contexts just block.

CCSTM: A Library-Based STM for Scala 4 2010/3/18



unrecordedRead: UnrecordedRead[T]
Returns an instance that wraps the value that would be returned
by get, but does not add anything to the transaction’s read set
(if any).

releasableRead: ReleasableRead[T]
Reads the value managed by the bound Ref, and returns that
value in an instance that allows the corresponding read set entry
(if any) to be removed.

Sink.Bound:

:=(v: T)
Equivalent to set(v).

set(v: T)
Updates the value managed by the bound Ref. If this view is
bound to a non-transactional context, this method will linearize
the store before returning.

tryWrite(v: T): Boolean
Immediately performs an update and returns true, or does noth-
ing and returns false.

Ref.Bound extends Source.Bound with Sink.Bound:

readForWrite: T
Returns the same value as that returned by get, but adds the
bound Ref to the write set of the transaction context, if any.

getAndSet(v: T): T
Atomically invokes set(v) and returns the old value.

compareAndSet(b: T, v: T): Boolean
Atomically performs (b == get) && { set(v); true }

compareAndSetIdentity(b: T, v: T): Boolean
Atomically performs (b eq get) && { set(v); true }

weakCompareAndSet(b: T, v: T): Boolean
Either performs compareAndSet or returns false.

weakCompareAndSetIdentity(b: T, v: T): Boolean
Either performs compareAndSetIdentity or returns false.

transform(f: T => T)
Atomically replaces the stored value v with f(v).

getAndTransform(f: T => T): T
Atomically replaces the value v stored in the Ref with f(v),
returning the old value.

tryTransform(f: T => T): Boolean
Immediately atomically transforms this reference and returns
true, or returns false.

transformIfDefined(pf: PartialFunction[T,T]): Boolean
Atomically replaces the value v stored in the bound Ref with
f(v) if pf.isDefinedAt(v), returning true, otherwise leaves
the value unchanged and returns false.

4.4 Conditional retry
CCSTM supports the retry and orElse primitives introduced by
Harris et al. in Haskell’s STM [7], although the current lack of par-
tial rollback when nesting makes them less expressive than the orig-
inal. The retry primitive causes the surrounding transaction to be
rolled back, but retry is postponed until at least one of the values
read by the transaction has changed. orElse combines two trans-
actions, attempting the second if the first calls retry, then block-
ing both transactions if the second calls retry. Intuitively, a call to
retry is a dead end; the STM will restart the transaction only af-
ter it might take a different path. Similarly, orElse composes two
alternatives that are each satisfactory, and requests that whichever
one can avoid the dead end should be executed.

Currently, CCSTM encodes retry as a method of the STM ob-
ject, and combines composition and execution of atomic blocks into

STM.atomicOrElse[Z](blocks: (Txn => Z)*): Z. While
we have experimented with an implicit conversion from (Txn =>
Z) to an AtomicBlock that provides a rich interface, we have
not yet found a syntax that works well. If retry is used without
orElse, then the normal STM.atomic method may be used.

As a (hopefully) contrived example, the bank could use modular
blocking to withdraw money from exactly one of a number of
accounts, blocking until success:

class Account {
...
def withdrawOrRetry(m: Money

)(implicit t: Txn) {
if (_balance() < m) STM.retry
_balance := _balance() - m

}
}
object Account {
def withdrawFromSomeone(m: Money, srcs: Account*) {

val blocks = srcs map { s =>
{ (t: Txn) => s.withdrawOrRetry(m)(t) } }

STM.atomicOrElse(blocks: _*)
}

}

5. Semantics
CCSTM provides strong semantic guarantees for the memory lo-
cations that it manages, but does not attempt to hide the fact that
transactions may be executed more than once. All accesses to Ref
instances are strongly isolated and atomic, and transactions guaran-
tee opacity. CCSTM does not handle or prevent irrevocable actions
inside transactions. Instead, it provides a rich set of life cycle call-
backs that allow a variety of strategies to be implemented.

5.1 Strong isolation
One of the benefits of the reference-based approach is that it avoids
isolation problems between transactional and non-transactional ac-
cesses to the same memory location, without requiring any changes
to the underlying type system.

At its most basic, a software transactional memory is a way
of isolating a group of memory accesses and verifying that those
accesses are equivalent to some serial execution. The STM barriers
that perform the transactional reads and writes include code that
blocks or rolls back any accesses that violate atomicity or isolation.
If non-transactional code bypasses the barriers and accesses an
STM-managed memory location directly, however, the barriers can
no longer detect all violations.

There are three potential responses to the weak isolation be-
tween direct memory accesses and concurrent transactions:

• The runtime can provide strong isolation and atomicity by redi-
recting all memory accesses to barriers, even non-transactional
accesses. While there has been some research in using dynamic
recompilation to reduce the performance penalty of strong iso-
lation, these require either deep integration with the VM’s
JIT [16] or a substantial warmup period [1].

• The language can declare that a conflicting concurrent access
from both inside and outside a transaction is an error. This
doesn’t sound too onerous, but the optimistic nature of trans-
actions means that failed speculations must also be considered:
inconsistent transactions may execute conflicting accesses from
an impossible branch, or they may execute conflicting accesses
after they have become doomed. Restrictions on commit or-
der can prevent some of the most surprising behaviors [13], but
the resulting systems still require whole-program reasoning to
guarantee correctness. The privatization and publication prob-
lems refer to isolation failure for specific idioms.

CCSTM: A Library-Based STM for Scala 5 2010/3/18



• The type system can prevent direct access to any memory lo-
cation that might be touched transactionally [14]. This can take
the form of extending the type and access rules on normal mu-
table memory locations, or of encapsulating transactionally-
managed data as private variables of some sort of cell, as in
Haskell [8] and Clojure [11]. We refer to the latter approach as
a reference-based STM.

Scala favors safety and compile-time checking of program cor-
rectness, so the authors are of the opinion that it is only natural to
employ types to avoid the problems of weak isolation. In the long
term, an extension to Scala’s types seems possible, but in the short
term a reference-based approach seems the most practical. CC-
STM provides strong isolation by encapsulating all transactionally-
managed memory locations inside references.

5.2 Opacity
A subtle issue with STM is that, unless special care is taken, only
committed transactions are guaranteed to be consistent. Specula-
tive transactions may observe an inconsistent state and only sub-
sequently detect that they should roll back. These ‘zombies’ can
produce surprising behavior by taking impossible branches or per-
forming transactional accesses to the wrong object. This problem is
greatly magnified in a reference based STM, because the STM can-
not provide a sandbox that isolates all actions taken by the zombie.
The read of a single impossible value may produce an infinite loop,
so a transparent STM must either prevent inconsistent reads or in-
strument back edges to periodically revalidate the transaction. Only
the first option is available to an STM implemented as a library.

The TL2 [2] and LSA [15] algorithms use a global time-stamp
to efficiently validate a transaction after each read, guaranteeing
consistency for all intermediate states. This correctness property is
formalized as opacity [5]. CCSTM is based on SwissTM [3], which
adds eager detection of write-write conflicts to TL2’s validation
algorithm.

5.3 Irrevocable actions and structural conflicts
One of the side effects of CCSTM’s alternate syntax for transac-
tional barriers is that it avoids creating the impression that the STM
can magically parallelize all existing sequential code, or that atomic
blocks are always a better replacement for locks. There are both se-
mantic and practical reasons why this is not the case, even for STMs
with deep integration into the VM.

The semantic problems with hiding rollback and retry come
from actions that the STM cannot isolate or undo, such as I/O or
calls to external libraries. CCSTM does not try to automatically
handle irrevocable actions. Instead, it provides handlers that allow
user code to implement a variety of strategies. Five types of call-
backs may be registered with a transaction:

• before-completion – invoked before the transaction attempts to
commit, regardless of whether it is already doomed;

• read-resource – invoked each time the transaction’s read set
is validated (CCSTM can avoid validation for most read-only
transactions);

• write-resource – participates in a two-phase commit, voting on
the outcome and then receiving the consensus decision;

• after-commit – invoked after the transaction has committed, but
before the application has been informed of the success; and

• after-rollback – invoked after the transaction has rolled back,
but before it is retried or failure is reported to the application.

The practical problem with executing code that was not de-
signed to be executed inside an atomic block is that such code often

contains incidental shared accesses that the STM must treat as con-
flicts. An example of this is the size field of a collection, which is
often accessed by every mutating operation. Unless care is taken to
distribute this variable over multiple memory locations, no concur-
rency will actually be available.

CCSTM provides several mechanisms for reducing transac-
tion conflicts with semantic conflict detection. A sophisticated user
can combine the releasableRead or unrecordedRead primitive
(Section 4.1) with life cycle callbacks to manually implement their
own conflict detection. For simple cases, Ref.map (Section 4.2)
makes it trivial to use Abstract Nested Transactions (ANTs) to
avoid rollback [9]. For the special case of contention on integer val-
ues, CCSTM includes LazyConflictIntRef, which uses ANTs
for all inequality comparisons, increments, and decrements, and
StripedIntRef, which is optimized for low-contention incre-
ment and decrement with occasional reads. Both of these classes
implement Ref[Int].

6. Implementation
CCSTM’s version management and conflict detection use the Swis-
sTM algorithm [3]. Version management is lazy, but write permis-
sion is acquired eagerly. Time-stamps are allocated 51 bits, making
CCSTM effectively immune from counter overflow.

6.1 Meta-data indirection
Meta-data for a managed memory location consists of a single
long. It is assumed that each memory location maps to a unique
meta-data value, but not vice versa. This allows objects with multi-
ple fields to use a single piece of meta-data, and it allows arrays to
choose a variety of granularities of conflict detection. While some
optimizations are possible for situations where the data-to-meta-
data mapping is one-to-one, in informal experiments we found that
the benefits were smaller than the additional indirection costs.

Refs perform their accesses to both data and meta-data through
methods of an internal trait called a Holder. This indirection al-
lows multiple storage strategies to be easily provided, which can
yield an important reduction in the number of live objects in the
VM. For example, if the static or manifest type of the initial value
is known to be an Int, then the Ref factory method will return a
reference whose holder stores the value in an unboxed form. As
a more extreme example, CCSTM provides a transactional array-
like class that internally uses one array for values and one array
for meta-data, eliminating the n intermediate objects that would be
required by an Array[Ref[A]].

6.2 Global time-stamp optimizations
To reduce contention on the shared time-stamp, CCSTM uses
TL2’s GV6 scheme [2]. This mechanism is based on the obser-
vation that, while committed values must be given a time-stamp
later than the version clock that was present at the beginning of the
commit, it is not required that the global clock is actually advanced.
Advancing the global clock reduces the need for validation in later
transactions, but when many threads are using the STM, this goal is
satisfied even if only a fraction of transactions attempt to advance
the current time.

CCSTM performs a novel additional optimization to reduce
the overhead of non-transactional accesses. Unlike a transaction,
a solitary strongly-isolated read or write in a TL2-style STM does
not need to sample the global clock to provide opacity. This means
that we can allow a sequence of non-transactional writes to advance
a reference’s time-stamp to an arbitrary point in the future, without
advancing the global time-stamp. If a transaction attempts to read
such a far-future value it handles it via the normal GV6 mechanism,
by advancing the global time-stamp and then revalidating. To limit

CCSTM: A Library-Based STM for Scala 6 2010/3/18



the potential impact of these booby-trapped references, we only
allow non-transactional writes to advance time-stamps a limited
distance into the future. Even a small window (CCSTM defaults
to 8) dramatically reduces contention on the global time-stamp.

6.3 Avoiding starvation
Optimistic concurrency control is vulnerable to the starving elder
problem, in which a large transaction can never be committed
because it is continually violated by small transactions. CCSTM
uses a simple contention management scheme to prevent this. Each
execution attempt is assigned a random priority that is used to
resolve write-write conflicts. If a transaction has not yet begun
to commit, then a higher priority transaction may doom it and
steal its locks. In addition, transactions that have already failed
several times enter a ‘barging’ mode in which they acquire write
permission during reads. The result is that even large transactions
will eventually succeed, because they will eventually receive the
highest priority in the system.

6.4 Polite blocking
An important design goal for CCSTM is support for incremental
use inside a larger application. This means that busy waiting or ex-
ponential back-off are not suitable mechanisms for blocking. Many
STMs target parallel speedups for only CPU-bound applications,
and so assume that they own all threads and perform all synchro-
nization. CCSTM makes neither of these assumptions, taking care
to block using the normal synchronization primitives of the under-
lying VM.

Blocking may be required to obtain write permission, or be-
cause of an explicit use of the retry primitive. Writers and waiters
must agree on a condition variable that will be used to signal that
the waiter should re-attempt whatever action led to their choice to
block. If the set of condition variables is too small, there will be
many spurious wakeups. If the set is too large, then transaction
commits may need to perform a large amount of extra work.

Accesses that are blocked by another transaction await notifi-
cation on the Txn instance itself. No such instance is available
for threads blocked by a non-transactional write, or that are per-
forming a conditional retry, so the system also maintains 64 lists
we refer to as ‘wakeup channels’. These channels contain a list of
pending wakeups, which are single-shot gates (similar to a Java
CountDownLatch with a count of 1). Each memory location is as-
sociated with a wakeup channel by hashing its identity. To await
the modification of a memory location, a thread enqueues a new
pending wakeup instance, sets a ‘wakeup pending’ bit in the lo-
cation’s meta-data, rechecks the blocking condition, and then puts
itself to sleep on the gate. If an update notices the wakeup pend-
ing bit, it triggers and removes all of the pending wakeups for the
corresponding channel. A thread may wait on multiple memory lo-
cations simultaneously by enqueuing its pending wakeup instance
to multiple channels. The choice of 64 wakeup channels makes it
easy to accumulate the effects of a transaction in a long. If a sys-
tem makes extremely heavy use of the retry mechanism by hav-
ing many blocked threads, a larger number of channels might be
appropriate.

6.5 JVM versus CLR
Scala is designed to target both the JVM and the CLR virtual ma-
chines. In its current implementation, CCSTM uses the Atomic*
classes from java.util.concurrent to perform atomic compare-
and-swaps and volatile array accesses. The authors are not ex-
perts on the CLR memory model, but we believe that it would be
straightforward to retarget CCSTM to the CLR by using methods
in System::Threading::Interlocked.

7. Performance
CCSTM’s implementation as an unprivileged library introduces
several overheads when compared to a bytecode rewriting STM or
modified VM: Ref adds a level of indirection; JVM erasure adds
boxing overheads for Ref[T] when T is a primitive type; avoiding
boxing for long-term storage requires that the underlying memory
locations be accessed through virtual methods; dynamic scoping in-
volves a hash table lookup, either implicitly inside ThreadLocal
or explicitly with a Thread key; and low-level atomic operations
performed by the STM cannot use the unchecked primitives in
sun.misc.Unsafe. The actual impact of these overheads, how-
ever, is reduced or eliminated by the compiler optimizations of a
modern JVM and the out-of-order superscalar pipeline of a modern
processor.

To verify that CCSTM’s library-based design does not impose
a prohibitive performance penalty, we compared it to Deuce STM
and Multiverse, STMs for the JVM that perform bytecode rewrit-
ing during class loading [12, 18]. We performed a direct encoding
of Deuce STM’s bank benchmark into Scala+CCSTM, and com-
pared this version to the Java original running under the bytecode
rewriting STMs. (While the example code in this paper uses an im-
mutable Money numeric type, the evaluated benchmark uses 32-bit
floating point values like the original.) Deuce STM provides two
algorithms, TL2 and LSA, each of which has optional contention
management (CM). For each configuration and thread count, we
report the throughput of a Deuce STM algorithm as the maximum
of the throughput with no CM or with CM (Polka for TL2, Times-
tamp for LSA). For almost all configurations we tested, CM re-
duced throughput. CCSTM and Multiverse were tested using their
default configuration. The bank benchmark includes its own har-
ness, which we configured so that no overdrafts were triggered.
We used a 20 second warmup, and then measured the number of
transactions committed during 10 seconds, averaging across three
invocations of the JVM.

Experiments were run on a Dell Precision T7500n with two
quad-core 2.66Ghz Intel Xeon X5550 processors, and 24GB of
RAM. Hyper-Threading was enabled, yielding a total of 16 hard-
ware thread contexts. We used Scala version 2.8.0.Beta1. We ran
our experiments in Sun’s Java SE Runtime Environment, build
1.6.0_16-b01, using the HotSpot 64-Bit Server VM with dynamic
escape analysis and compressed object pointers enabled. Deuce
STM was version 1.3.0. Multiverse was version 0.4.

For the low-contention experiment (Figure 5) we set the num-
ber of accounts to 64 times the number of threads. For the high-
contention experiment (Figure 6) we set the number of accounts to
the number of threads. Single-threaded execution is not included in
the high-contention setup, as it has no contention. Because at most
16 threads are executing at any time, high-contention runs have
fewer conflicts at 32 and 64 threads than for lower thread counts,
and so can continue to scale so long as blocked threads do not con-
sume too many resources. This effect is present to a lesser degree
for the low-contention runs, where CCSTM’s throughput continues
to rise gradually as its rollback rate drops from 1.0% at 16 threads
to 0.5% at 32 and 0.3% at 64.

For low contention configurations, Deuce STM and CCSTM
have similar performance and scalability, so long as the multi-
threading level is less than or equal to one. Under high contention
Deuce STM substantially outperforms CCSTM, so long as each
thread gets its own hardware context. This is because Deuce STM
never yields, sleeps, or blocks, which avoids the cost of context
switches. At thread counts 32 and 64, however, threads must share
processing resources and this strategy results in a catastrophic per-
formance drop off. Multiverse uses an exponential back off algo-
rithm using Thread.sleep. This approach handles high multi-
threading levels better than busy-waiting, but results in extra con-

CCSTM: A Library-Based STM for Scala 7 2010/3/18



1 2 4 8 16 32 64

Threads

0

2

4

6

8

T
h
ro

u
g
h
p
u
t 

(M
 t

x
n
s
/s

e
c
)

Deuce-LSA Deuce-TL2 Multiverse CCSTM

Figure 5. Throughput for the bank benchmark in a low contention
scenario, on a machine with 16 hardware thread contexts. The
number of accounts is 64 times the number of threads.

1 2 4 8 16 32 64

Threads

0

1

2

3

4

T
h
ro

u
g
h
p
u
t 

(M
 t

x
n
s
/s

e
c
)

Deuce-LSA Deuce-TL2 Multiverse CCSTM

Figure 6. Throughput for a high contention scenario. The number
of accounts is equal to the number of threads. Each transaction
touches two accounts.

text switches as threads awake to recheck their blocking condi-
tion. Sleeping works very well for low thread counts of the high-
contention configuration, because it leads to intervals of uncon-
tended single-threaded execution. CCSTM’s blocking synchroniza-
tion implementation is the most expensive at low thread counts, but
it yields a robust scaling curve.

The three STMs have different algorithms, feature sets and
engineering tradeoffs, so these experiments do not allow us to
exactly measure the overhead imposed by the library-based design.
They do demonstrate, however, that the practical overheads that
exist are small enough to be tolerable. We leave as future work
a breakdown of the costs inside CCSTM.

8. Discussion and Future Work
STM research is mature enough that the most difficult design deci-
sions for CCSTM were all found in the interface.

8.1 Read barrier syntax
The most difficult syntactic choice was the method name for a
transactional read. Four alternatives were considered:

1. elem – A pair of methods elem and elem_= could be used to
provide the illusion that transactional data was actually stored in
a variable of Ref. This approach is self-consistent, but is much
too verbose.

2. An implicit conversion from Ref[A] to A – This is the most
concise, but it interferes with further implicit conversions, and
with type inference for generic methods or data structures. If
x is a Ref[String] holding "foo", for example, ("foo" ==
x) would return false.

3. unary_! – A unary operator is the most concise explicit way of
denoting a read, and prefix forms of these are the only ones that
don’t trigger Scala’s line merging heuristic. Initially we settled
on a ! prefix for reads. This works well for arithmetic expres-
sions, but it can be confusing when used in a conditional test, as
in (!x == "foo"). It also does not chain well, requiring ex-
tra parentheses: (!x).length. Because of these problems, we
found ourself often reverting to the more verbose forms (x.get
== "foo") and x.get.length.

4. apply() – This is the only operator-like method that can safely
occur at the end of the line, which allows it to be placed after
the expression that produces the Ref to read. This means that
it chains properly in complex operations. We initially avoided
using apply() for read barriers, because inclusion of optional
parentheses on a method call is often used in Scala to draw
attention to side effects. We decided that using () in read
barriers was warranted, however; although read barriers don’t
perform any visible mutation, their access to shared mutable
state does require extra care. The current CCSTM code base
uses apply() for concise transactional reads.

For fields that are almost always accessed inside an atomic
block, we sometimes found it convenient to create transactional
accessor methods. The full Ref is published via a longer name for
non-transactional or advance operations, while the basic property
name is available within a transaction using Scala’s basic field
syntax:

class Node {
val nextRef: Ref[Node] = ..
def next(implicit txn: Txn): Node = nextRef()
def next_=(v: Node)(implicit txn: Txn) {

nextRef := v
}

}

8.2 Dynamically scoped non-transactional reads
The bound view returned by Ref.nonTxn makes non-transactional
reads and writes explicit. This makes those accesses visible in the
code, and allows the compiler to statically check that the remain-
ing transactional accesses only occur within the static scope of a
Txn. This also allows the implementation of escape actions. An ex-
pert user may use the nonTxn view inside a transaction to perform
reads and writes that bypass an active transaction context. The ver-
bosity of explicit calls to nonTxn makes non-transactional accesses
inconvenient, but this may actually be beneficial if it discourages
premature optimization using relaxed isolation.

The main disadvantage that we have observed is that code com-
posability is hindered by the escape action semantics of nonTxn.
The advanced Ref.Bound operations such as transform and
getAndSet (Section 4) allow some small transactions to be rewrit-
ten as a single operation, but this changes the semantics if there is
an active transaction. This is similar to the problem that led us to
use dynamic scoping for nesting (Section 3.3), but with less possi-
bility to amortize the costs of the required ThreadLocal lookup.
We may add a third binding mechanism that requests a transac-
tional binding (like Ref.bind) if a dynamic lookup finds an active

CCSTM: A Library-Based STM for Scala 8 2010/3/18



transaction or a non-transactional binding (like Ref.nonTxn) if
none is found.

8.3 Partial rollback of nested transactions
We plan to extend CCSTM’s implementation to support partial
rollback. This is important to properly support composition with
orElse, and it is also required to provide failure atomicity (roll-
back without retry after a user exception). The only changes to the
CCSTM API required for partial rollback are for the life cycle call-
backs, which must be extended to allow notification of the commit
or rollback of a nested context prior to the completion of the top
level transaction.

8.4 @specialized

The @specialized annotation has the potential to reduce box-
ing overheads for read and write barriers that access a primitive
type [4]. CCSTM already avoids long-term boxing by using sep-
arate implementations of Ref for each primitive (selecting using
a ClassManifest during creation if the type is not statically
known), but boxing occurs during the reused portions of the bar-
rier code. The current implementation of @specialized interacts
non-trivially with the manual specialization of Ref that is already
performed, but restructuring of CCSTM’s concrete classes may en-
able performance improvements.

9. Conclusion
STM’s high level programming model addresses many of the chal-
lenges of shared memory multithreading, but to be most useful its
benefits should be provided in a pay-as-you-go fashion. CCSTM
accomplishes this by providing transactional memory as a normal
Scala library.

CCSTM uses Scala’s features to embed STM as a DSL, rather
than using bytecode rewriting or VM modifications to transparently
redirect loads and stores. Its syntax is concise, and its performance
is on par with bytecode rewriting STMs. The references that encap-
sulate transactionally-managed memory locations add some clutter
to the user’s code, but they also provide a natural way for the pro-
grammer to take advantage of more sophisticated features such as
semantic conflict detection. The implementation is careful to avoid
busy-waiting or polling when a transaction is blocked, delivering
good performance despite contention and high multithreading lev-
els. CCSTM demonstrates that a library-based STM can be usable
and performant.

A. Code
Source code for CCSTM is available under a BSD license from
http://github.com/nbronson/ccstm .

Acknowledgments
The authors would like to thank Daniel Spiewak and Peter Veentjer
for their helpful feedback during the design phase of CCSTM.

This work was supported by the Stanford Pervasive Parallelism
Lab, by Dept. of the Army, AHPCRC W911NF-07-2-0027-1, and
by the National Science Foundation under grant CNS–0720905.

References
[1] N. G. Bronson, C. Kozyrakis, and K. Olukotun. Feedback-directed

barrier optimization in a strongly isolated stm. In POPL ’09: Pro-
ceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 213–225, New York, NY,
USA, 2009. ACM.

[2] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC
’06: Proceedings of the 20th International Symposium on Distributed
Computing, March 2006.

[3] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching transactional
memory. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implementation,
pages 155–165, New York, NY, USA, 2009. ACM.

[4] I. Dragos and M. Odersky. Compiling generics through user-directed
type specialization. In ICOOOLPS ’09: Proceedings of the 4th work-
shop on the Implementation, Compilation, Optimization of Object-
Oriented Languages and Programming Systems, pages 42–47, New
York, NY, USA, 2009. ACM.

[5] R. Guerraoui and M. Kapalka. On the correctness of transactional
memory. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pages
175–184, New York, NY, USA, 2008. ACM.

[6] T. Harris. Exceptions and side-effects in atomic blocks. In 2004
PODC Workshop on Concurrency and Synchronization in Java Pro-
grams, July 2004.

[7] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 48–60, New York, NY, USA, 2005. ACM.

[8] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 48–60, New York, NY, USA, July 2005. ACM Press.

[9] T. Harris and S. Stipic. Abstract nested transactions. In TRANS-
ACT ’07: 2nd Workshop on Transactional Computing, aug 2007.

[10] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Software
transactional memory for dynamic-sized data structures. In Twenty-
Second Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, 2003.

[11] R. Hickey. The Clojure programming language. In Proceedings of the
2008 symposium on Dynamic languages. ACM New York, NY, USA,
2008.

[12] G. Korland, N. Shavit, and P. Felber. Noninvasive Java concurrency
with Deuce STM (poster). In SYSTOR ’09: The Israeli Experimental
Systems Conference, may 2009. Further details at http://www.
deucestm.org/.

[13] V. Menon, S. Balensieger, T. Shpeisman, A.-R. Adl-Tabatabai, R. L.
Hudson, B. Saha, and A. Welc. Practical Weak-Atomicity Semantics
for Java STM. In SPAA ’08: Proceedings of the 20th ACM Symposium
on Parallel Algorithms and Architectures, 2008.

[14] K. F. Moore and D. Grossman. High-level small-step operational se-
mantics for transactions. In POPL ’08: Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages, pages 51–62, New York, NY, USA, 2008. ACM.

[15] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with ea-
ger validation. In In Proceedings of the 20th International Symposium
on Distributed Computing (DISC’06), pages 284–298, 2006.

[16] F. T. Schneider, V. Menon, T. Shpeisman, and A.-R. Adl-Tabatabai.
Dynamic optimization for efficient strong atomicity. In OOPSLA
’08: Proceedings of the 23rd ACM SIGPLAN conference on Object-
Oriented Programming Systems, Languages, and Applications, New
York, NY, USA, October 2008. ACM.

[17] D. Spiewak. scala-stm. http://github.com/djspiewak/scala-stm.
[18] P. Veentjer and A. Philips. Multiverse. http://multiverse.codehaus.org.

CCSTM: A Library-Based STM for Scala 9 2010/3/18


