
CCSTM: A Library-Based 
Software Transactional 

Memory for Scala

Nathan Bronson, Hassan Chafi
and Kunle Olukotun

Stanford University

1

ScalaDays 2010



The Context

Solution should be:

Easy to use
Composable
Testable
Performant
Scalable

2

How do threads coordinate their

access to shared mutable state?

1: Don’t do it?

2: Locks?



Software Transactional Memory*

Atomic execution of multiple loads and stores
 Declarative syntax

 Accesses needn’t be known ahead of time

 Parallel execution whenever possible

3

// Thread B – push y

atomic begin

val n new Node(y)

n.next head

head n

end

// Thread A – push x

atomic begin

val n new Node(x)

n.next head

head n

end

* - The ideal



Wikipedia: Atomicity (programming)

In concurrent programming, an 

operation is linearizable, atomic, 

indivisible or uninterruptible if it 

appears to take effect instantan-

eously.

4



So Far

Atomic blocks are like a magic replacement 

for locks

No serialization on coarse-grained locks

No complicated fine-grained locking schemes

No worrying about deadlock

5



Parallel Execution of Transactions

Q: How can TM execute atomic blocks in 

parallel if their read and write sets are not 

known in advance? 

6

// Thread A

atomic begin

... // lots of work

x = 1

end

// Thread B

atomic begin

... // lots of work

x = 2

end

A: Speculatively, fixing 

with rollback+retry

// Thread B

atomic begin

... // lots of work

x = 2

atomic begin

... // lots of work

x = 2

end



Supporting Speculative Execution

Transactional reads
 Loads must be remembered, to check for conflicts

Transactional writes
Both original and speculatively-modified versions 

of data must be retained
Undo log: original version on the side
Write buffer: speculative version on the side

Control flow
Non-local control transfer is possible from any 

memory access to the beginning of the transaction

7



Ideal STM (Graded by the User)

8

Ease of use
 Simple mental model …

− … so long as you avoid I/O (hard to roll back)
A-

Composability of code using transactions
 Nesting has expected semantics, no deadlocks A

Testability
 Invariants are preserved throughout a transaction, 

even if other code doesn’t synchronize properly
A+

Performance
− Single-thread overheads are higher than locks B

Scalability
 Reads often scale better than locks

 Writes often scale like the best fine-grained locking
A



Compiling an Atomic Block for STM

9

atomic begin

val n new Node(x)

n.next head

head n

end

val txn = new Txn()

do {

try {

txn.begin()

val n = new Node(x)(txn)

val tmp = txn.readAnyRef[Node](

this, HeadOffset)

txn.write(n, NextOffset, tmp)

txn.write(this, HeadOffset, n)

} catch {

case RollbackError => {}

case ex => txn.userException(ex)

}

} while (!txn.attemptCommit())



Who Instruments the Code?

Scala source

Class files

Loaded bytecode

Machine code

10

Scalac or plugin?

Bytecode rewriting?

VM JIT?



How Do We Compile Atomic Blocks?

11

Loads and stores 
inside atomic are 

redirected to STM

“Inside” is a 

dynamic scope

Two copies of 

every method 

are needed



How Do We Compile Atomic Blocks?

12

STM creates 

illusion of atomicity 

and isolation

Too slow to send 

all non-txn 

accesses to STM

Type system 
extended to 

segregate txn and 
non-txn data

User error 
loss of atomicity, 
values from thin 
air, “catch fire”

or



Ideal STM (Graded by Martin)

13

Ease of language integration
− Strong atomicity and isolation require 

extensions to the type system

Composability of implementations
− Only one STM can be used in a VM

Testability
− Tight integration requires a large up-front 

design before users can provide feedback

Performance
− Code that doesn’t use transactions may have 

reduced performance, especially during startup

Scalability
− If any part of a system uses STM, all of the 

classes must be instrumented

ne
e
d
s

im
pr

ov
e
m
e
nt



Can We Pass Both Classes?

Transactional memory 

is a nice abstraction for 

the user

Can we provide most

of the benefit without 

intrusive language 

modifications?

14



CCSTM: Library-Based STM

No instrumentation, so STM must be called explicitly

Managed data encapsulated by Ref[A]

15

Deeply-Integrated CCSTM

Mutable

shared state
var x =  val x = Ref()

Read  = x  = x()

Write x =  x := 

Atomic 

block

atomic {



}

STM.atomic { implicit t =>



}



trait Ref[A] – Implementations

Decomposed into Source[+A] and Sink[-A]

 From Daniel Spiewak’s Scala STM

Storage Ref-s store a mutable value directly
 TBooleanRef, TByteRef, … TAnyRef[A]

 object Ref’s apply(v) picks the right implementation

 Internal representation is flexible
 TPairRef[A,B] deconstructs and reconstructs its value

 StripedIntRef, LazyConflictIntRef reduce conflicts

Proxy Ref-s are constructed on demand
 TArray[A] avoids long-term boxing

 TxnFieldUpdater instances create Ref-s for any 
property with volatile semantics

16



trait Ref[A] – More Operations 

def get: A – non-operator read

def map[Z](f: A => Z): Z – no rollback if f(get) doesn’t change

def unrecordedRead: UnrecordedRead[A] – no conflict checking

def await(pred: A => Boolean) – retries txn if !pred(get)

def set(v: A) – non-operator write

def transform(f: A => A) – equivalent to set(f(get))

def transformIfDefined(pf: PartialFunction[A,A]): 
Boolean – generalizes compareAndSet

def tryWrite(v: A): Boolean – fails instead of blocking

def getAndSet(v: A): A – returns the previous value

…

17



Scoping of the Current Txn

How is the active Txn found by Ref’s methods?

STM participates in the compilation of all code
Option 1: Add a Txn parameter during translation

Option 2: Add a currentTxn field to Thread

Unavailable to a library-based STM

Dynamic lookup
Option 3: ThreadLocal

Undesirable performance overhead

Static lookup
Option 4: Ref’s methods take an implicit Txn

Hinders composability

18



Our Solution: Hybrid Scoping

Dynamic scoping for atomic blocks
 Using ThreadLocal

Static scoping for Ref’s methods
 Using an implicit Txn parameter

(Omitted from the method list two slides ago)

Don’t have an implicit Txn available?
Just declare a new atomic block

 If no txn was active, you probably needed one anyway

 If a txn is in the dynamic scope, the new block nests

19



Single-Operation Transactions

What happens if a Ref method is called outside an atomic 
block?

1. Compile time error?
Makes it harder to accidentally omit atomic blocks

2. Execute as if in its own transaction?
Convenient, especially with Ref’s powerful methods

3. Both of the above
Add an alternate syntax for single-operation txns

Ref.single returns a
view with methods that
mirror Ref’s, but that
need no implicit Txn

20

STM.atomic { implicit t =>

x := x() + 1

}

is equivalent to
x.single.transform { _ + 1 }



CCSTM (Graded by the User)

21

Ease of use
 Clean and concise for new code

− Existing code must be modified
(A-) B+

Composability
 Just as good as deeply-integrated STM (A) A

Testability
 Local reasoning still possible

− No checking that shared mutable state is in Ref
(A+) A

Performance
− Still has a single-thread performance penalty

 Single-operation transactions are optimized
(B) B+

Scalability
 Easier to provide advanced conflict-avoidance 

strategies
(A) A+



CCSTM (Graded by Martin)

22

Ease of language integration
 None needed 

Composability of implementations
 Coexistence of STMs is fine

− Atomic blocks from different STMs don’t nest


Testability
 CCSTM can be used independently 

Performance
 Components only pay for what they use 

Scalability
 Only components using CCSTM are aware of it 



Scala Features We Enjoyed

 Operator overloading – concise reads and writes

 Anonymous methods – concise atomic blocks

 Type inference – less clutter when declaring Ref-s

 Mixins – reduced code duplication

 Implicit parameters – improves performance, allows static checking of Ref
usage

 Companion object factory methods, class manifests – storage 
optimizations for Ref[A] and TArray[A]

 Abstract type constructors – lets TxnFieldUpdater handle fields of 
generic classes

 JVM integration – allowed use of advanced features from 
java.util.concurrent.atomic

 @specialized – future performance enhancements?

23



Questions?

http://ppl.stanford.edu/ccstm

24



Dealing with Shared Mutable State

Solution #1 – Avoid mutable state entirely
Programs are functions from input to output

No variables, just values

Problem: User must (re)create their own 
abstractions to model identity

Identity: a stable logical entity associated 
with a series of different values over 
time*

25

* - from Rich Hickey, http://clojure.org/state



Dealing with Shared Mutable State

Solution #1 – Avoid mutable state entirely

Solution #2 – Avoid shared mutable state
Use explicit inter-thread (inter-actor) 

communication

Mutable state is directly accessed only by its 
owning context

Problem: Coordination between multiple 
actors can be complicated

Problem: Best data-to-actor binding might 
be contrived or dynamic

26



Dealing with Shared Mutable State

Solution #1 – Avoid mutable state entirely

Solution #2 – Avoid shared mutable state

Solution #3 – Prevent conflicting accesses
Protect accesses using locks

Problem: Not declarative
Code shows one synchronization strategy, not a 

desired property of the program

Problem: Simplicity scalability tradeoff
Coarse-grained locks simple, doesn’t scale

Fine-grained locks tricky, might scale

Problem: Not composable
Correctness is a whole-program property

27



Dealing with Shared Mutable State

Solution #1 – Avoid mutable state entirely

Solution #2 – Avoid shared mutable state

Solution #3 – Prevent conflicting accesses

Solution #4 – Back up and retry after a conflict
Software transactional memory

28

// Thread 1

atomic {

x.bal = x.bal - 20

y.bal = y.bal + 20

}

// Thread 2

atomic {

y.bal = y.bal - 20

x.bal = x.bal + 20

}


