
On Fast Parallel Detection of Strongly Connected
Components (SCC) in Small-World Graphs

Sungpack Hong
Oracle Labs

Redwood Shores, CA
sungpack.hong@oracle.com

Nicole C. Rodia
Pervasive Parallelism

Laboratory
Stanford University

Stanford, CA
nrodia@stanford.edu

Kunle Olukotun
Pervasive Parallelism

Laboratory
Stanford University

Stanford, CA
kunle@stanford.edu

ABSTRACT
Detecting strongly connected components (SCCs) in a directed graph
is a fundamental graph analysis algorithm that is used in many sci-
ence and engineering domains. Traditional approaches in parallel
SCC detection, however, show limited performance and poor scal-
ing behavior when applied to large real-world graph instances. In
this paper, we investigate the shortcomings of the conventional ap-
proach and propose a series of extensions that consider the funda-
mental properties of real-world graphs, e.g. the small-world prop-
erty. Our scalable implementation offers excellent performance on
diverse, small-world graphs resulting in a 5.01x to 29.41x parallel
speedup over the optimal sequential algorithm with 16 cores and
32 hardware threads.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming; G.2.2 [Discrete Mathematics]: Graph The-
ory—graph algorithms

General Terms
Algorithms, Performance

Keywords
strongly connected components (SCC), multicore, parallel algo-
rithms, graph algorithms, small-world graphs

1. INTRODUCTION
In graph theory, a strongly connected component (SCC) of a di-

rected graph is a maximal subgraph where there exists a path be-
tween any two vertices in the subgraph. Since any directed graph
can be decomposed into a set of disjoint SCCs, the study of large
graphs frequently uses SCC detection of the target graph as a fun-
damental analysis step. Target real-world graphs include the Web
graph and social networks [11, 12, 17], and those found in di-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC ’13, November 17-21, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503246

verse scientific applications, including formal verification [14], re-
inforcement learning [16], 3D mesh element refinement [22], and
complex food web analysis [3].

Tarjan’s algorithm [28], the classic sequential method for SCC
detection, is an asymptotically optimal linear-time algorithm. Un-
fortunately, Tarjan’s algorithm is difficult to parallelize because it
extends the depth-first search (DFS) traversal of the graph, which
is inherently sequential [26].

Several studies [13, 22, 9, 8] have investigated parallel or dis-
tributed SCC algorithms. Fleischer et al. [13] devised a practi-
cal parallel algorithm, the Forward-Backward (FW-BW) algorithm,
which motivated further enhancements in following research. The
FW-BW algorithm achieves parallelism by partitioning the given
graph into three disjoint subgraphs which can be processed inde-
pendently in a recursive manner. McLendon et al. [22] added a
simple extension to this algorithm, the Trim step, which resulted in
a significant performance improvement.

Barnat et al. [9] proposed the recursive OBF algorithm to im-
prove the degree of parallelism compared to the original FW-BW
algorithm. However, their method [8] did not give a large per-
formance improvement over McLendon et al.’s when applied to
real-world graphs with few large-sized SCCs. Barnat et al. [8]
demonstrate a CUDA implementation based on forward reachabil-
ity that outperforms the sequential Tarjan’s algorithm, but concede
that none of their implementations on a quad-core system were able
to outperform Tarjan’s algorithm.

Although these algorithms show a degree of parallel performance
in distributed environments, their parallel performance in shared-
memory environments is much lower than that of the optimal se-
quential algorithm, especially when applied to large real-world graph
instances. As shown in this paper, this is because the characteris-
tics of real-world graphs differ substantially from synthetic graphs,
such as trees or meshes, for which those algorithms were originally
designed. Studies [11, 7, 29] have identified several fundamental
characteristics of real-world graphs, in particular the small-world
property (Section 2.2).

In this paper, we first review McLendon et al.’s parallel algo-
rithm (FW-BW-Trim) before we explain the characteristics of real-
world graph instances (Section 2). Next, we introduce our series
of extensions to the conventional FW-BW-Trim algorithm, which
account for those characteristics (Section 3). We discuss issues in
implementing these algorithms, which can significantly impact per-
formance (Section 4). In our experiments (Section 5), we run our
extended algorithm on a set of small-world graph instances and ob-
serve the effectiveness of each extension for the characteristics of
those instances. Our results show that our methods not only im-
prove the absolute performance of the original FW-BW-Trim algo-

Graph G

Pivot u

BWG(u)

FWG(u)

SCCG(u)

a

b
c

d e

(a) (b)

Figure 1: The two main ideas of the conventional FW-BW-Trim algo-
rithm: (a) Forward and Backward reachability and (b) Trimming.

rithm, but also extract a higher degree of parallelism.
Our specific contributions are as follows:
• We identify the performance limitations of the conventional

FW-BW-Trim algorithm on large real-world graph instances
(Sections 2 and 3).
• We propose a set of extensions to the conventional algorithm,

which consider characteristics of those real-world instances,
including the small-world property (Section 3).
• We explain the performance-critical implementation details

of the conventional algorithm and extensions (Section 4).
• We analyze the effect of our extensions with varying small-

world graph shapes (Section 5). To our knowledge, we dem-
onstrate the first parallel SCC algorithm which outperforms
Tarjan’s algorithm on a shared-memory multiprocessor ma-
chine on such graphs.

2. BACKGROUND

2.1 Conventional FW-BW-Trim Algorithm
In this section, we review FW-BW-Trim, a conventional paral-

lel SCC detection algorithm [22]. The FW-BW-Trim algorithm
extends its predecessor, the original FW-BW algorithm [13], by
adding the Trim step, which detects size-1 SCCs to improve per-
formance.

The original FW-BW algorithm is based on the observations in
Lemma 1 [13]. Given a directed graph G, let FWG(i) be the sub-
set of vertices in G which are reachable from vertex i. Let BWG(i)
be the subset of vertices in G from which i is reachable.

LEMMA 1. Let G = (V,E) be a directed graph with i ∈ V a
vertex in G. Then FWG(i)∩BWG(i) is a unique SCC in G. More-
over, for every other SCC s in G, either s ⊂ FWG(i) \ BWG(i),
s ⊂ BWG(i) \ FWG(i), or s ⊂ V \ (FWG(i) ∪BWG(i)).

Lemma 1 states that from any node i in graph G, SCCG(i), the
unique SCC that contains i, can be identified from the intersec-
tion of two sets: the forward reachable set of i and the backward
reachable set of i, where we call i the pivot node. Furthermore, the
remaining nodes can now be partitioned into three subgraphs (for-
ward reachable only, reverse reachable only, and non-reachable)
where each subgraph can be processed independently in a recursive
manner. Figure 1(a) provides a visual explanation of this idea. The
computational complexity of the FW-BW algorithm is O(n+m)
for each partition, which detects a single SCC [8].

The parallelism of the FW-BW algorithm comes from its recur-
sive application to each partition. Since there cannot be an SCC that
belongs to more than one partition, each partition can be processed
independently, in parallel. Furthermore, since each partition pro-
duces three additional partitions, it is expected that quickly, there

would be sufficient independent tasks to consume all of the parallel
processing elements in a system.

Parallelism from such independent tasks can be easily exploited
via work queues, where each task in the queue can be assigned to an
available compute element. Note that any of these three partitions
of the graph can be an empty set; if empty set production is the
frequent case, the number of independent tasks may grow more
slowly than expected.

The key observation behind the Trim [22] step is that a triv-
ial SCC (i.e. SCC of size one) is easy to identify: it has either
zero incoming edges or zero outgoing edges in the current parti-
tion. Therefore, one can easily identify such trivial SCCs only by
looking at the number of neighbors, rather than by computing two
reachable sets, which is computationally more expensive.

2.2 Fundamental Characteristics of
Real-World Graphs

The Trim step can be repeated iteratively, since trimming a node
can cause other nodes to become trivial SCCs. Figure 1(b) illus-
trates this idea. In the figure, nodes c, d, and e can be identified as
trivial SCCs quickly, as they have zero in- or out-degree and thus
cannot form a cycle. The trimming of node c in turn makes node b
a trivial SCC, whose trimming also makes node a trivial.

Algorithm 1: FW-BW-Trim(G, SCC)
In-Out: G: a graph (a subgraph of the original input graph)
In-Out: SCC: a collection of node sets; each set corresponds

to an SCC of the original graph
Trim(G, SCC)
if |Nodes(G)| = 0 then return;
u← pick any node in G ; /* pivot */
FW ← Forward-Reach(G, u)
BW ← Backward-Reach(G, u)
S ← FW ∩BW
SCC ← SCC ∪ {S}
begin in parallel

FW-BW-Trim(FW \ S, SCC)
FW-BW-Trim(BW \ S, SCC)
FW-BW-Trim(G \ (FW ∪BW), SCC)

end

Algorithm 2: Trim(G, SCC)
In-Out: G: a graph (a subgraph of the original input graph)
In-Out: SCC: a collection of node sets; each set corresponds

to an SCC of the original graph
repeat

foreach n ∈ G do
if In-degreeG(n) = 0 ∨ Out-degreeG(n) = 0 then

SCC ← SCC ∪ {{n}}
G← G \ {n}

until G not changed

The FW-BW-Trim algorithm is described in Algorithm 1; Algo-
rithm 2 shows details of the Trim step. Although Trim is a simple
idea, it greatly improves the performance of the previous FW-BW
algorithm, especially for real-world graphs [8]. Therefore, to un-
derstand its effectiveness, one must comprehend the characteristics
of real-world graphs.

Recently, it has been revealed that real-world graphs have fun-
damentally different characteristics than traditional artificial graphs

Figure 2: Distribution of SCC sizes in the LiveJournal network.

such as trees, meshes, or hypercubes [29, 7, 11, 17]. Real-world
graphs are empirical graphs in which no explicit structure has been
enforced, but which naturally originate and arbitrarily grow. Ex-
amples of such graphs are social networks, web graphs, citation
networks, and protein molecule interaction graphs.

Several interesting properties of these real-world graphs have
been identified so far. Of particular importance, the small-world
property states that the diameter of such graphs is very small even
for very large graph instances [29]. This is not a mere observation:
it has been shown that by simply re-wiring only a few edges in an
arbitrary way, the diameter of any graph rapidly shrinks. This ex-
plains why the vast majority of large real-world graphs have this
property – by nature, they are constructed from arbitrary relation-
ships [29]. 1

Additionally, in such real-world graphs there exists one giant
SCC whose size is O(N), where N is the number of nodes in the
graph [11]. The remaining SCCs are small-sized, and the distri-
bution of SCC size is skewed such that tiny-sized SCCs are much
more frequent than large-sized ones [17].

As an illustrative example, Figure 2 shows a histogram of the
SCC sizes in a real-world graph instance, which is the link relation-
ship of a blog sphere named LiveJournal [19]. This figure shows
two aforementioned characteristics of real-world graph SCC struc-
ture: the existence of a single giant SCC and the power-law distri-
bution of SCC sizes. The size of the largest SCC (3,828,682) has
the same order as the number of nodes in the graph (4,847,571),
and the graph has the same order of size-1 SCCs (947,776). The
large number of size-1 SCCs explains why the simple Trim step
is so effective for SCC detection – it very quickly identifies size-1
SCCs, which are most prevalent in real-world graph instances.

3. OUR EXTENSIONS
In this section, we discuss our extensions to the conventional

FW-BW-Trim algorithm, which account for the characteristics of
real-world graphs.

3.1 Baseline Implementation using Parallel
Trim

We prepare an efficient implementation of the conventional FW-
BW-Trim algorithm and set it as our baseline (Algorithm 3); it has
a few small enhancements over Algorithm 1. These improvements
include parallelization of the Trim step, the use of additional data
structures to avoid directly modifying the input graph, and a work
queue to support parallelism in recursion, described below.
1On the other hand, graphs that represent physical entities, e.g.
road networks, do not have the small-world property; Note that it
is not allowed to add an edges between any two arbitrary nodes in
such graphs. Also such graphs tend to have rather limited sizes.

Algorithm 3: Baseline(G, SCC)
Input : G, the original input graph
Output: SCC, a collection of node sets
Local : Color, color value assigned to each node in G
Local : mark, boolean value assigned to each node in G
/* initialization */
∀ n ∈ G: Color(n)← 0,mark(n)← false

Par-Trim(G, SCC, Color, mark)
Recur-FWBW(G, 0, SCC, Color, mark)
until work queue is empty do in parallel

c← pop a color from the work queue
Recur-FWBW(G, c, SCC, Color, mark)

Algorithm 4: Par-Trim(G, SCC, Color, mark)
Input : G, the original input graph
In-Out: SCC, a collection of node sets
In-Out: Color, color value assigned to each node in G
In-Out: mark, boolean value assigned to each node in G
repeat

foreach n ∈ G, mark(n) = false do in parallel
/* only count neighbors with same color as n */
if In-degree(n,Color) = 0 ∨
Out-degree(n,Color) = 0 then

Color(n)← -1
SCC ← SCC ∪ {{n}} ; mark(n)← true

until Color not changed

The Baseline algorithm (Algorithm 3) has two phases: first, it
performs the Trim operation in parallel on multiple disconnected
nodes, shown in Algorithm 4, and second, it applies the conven-
tional recursive FW-BW algorithm, shown in Algorithm 5, using
a work queue. Since there are many size-1 SCCs in a real-world
graph, the parallel trim step greatly increases the degree of par-
allelism by identifying these SCCs before executing the FW-BW
algorithm. Although Par-Trim is invoked once at the beginning
of Algorithm 3, the actual trimming is iteratively applied inside
the Par-Trim kernel. The example in Figure 1(b) demonstrates this
idea: the trimming of nodes c, d, and e can be completed in parallel,
followed by iterative trimming of nodes b and a.

For performance reasons, we do not mutate the input graphs di-
rectly. Instead, we use two auxiliary data structures: mark and
Color. When the SCC of a node is identified, instead of detaching
the node from the rest of the graph, we simply set the mark value
of the node to true, and the node is considered detached thereafter.
Similarly, when we partition the graph, we assign the same Color
value to nodes belonging to the same partition; each partition is
assigned a unique Color value. Therefore, two nodes of different
Color values are considered disconnected, even when there exists
an edge between them in the original graph. Algorithm 4 and Al-
gorithm 5 show how these data structures are used, and their imple-
mentation is discussed in Section 4.

Recursion parallelism for the Recur-FW-BW kernel is imple-
mented through a work queue. At the end of Algorithm 5, the three
remaining partitions (c, cfw, cbw), other than the newly identified
SCC, are pushed into the shared work queue. Every worker thread
in the system grabs a partition (i.e. Color) from the work queue and
processes it concurrently with respect to other worker threads. The
program is finished when all the workers become idle and no work
items remain in the queue.

Algorithm 5: Recur-FWBW(G, c, SCC, Color, mark)
Input : G, the original input graph
Input : c, a color value
In-Out: SCC, a collection of node sets
In-Out: Color, color value assigned to each node in G
In-Out: mark, boolean value assigned to each node in G
pivot← choose a random node s.t. Color(pivot) = c
if pivot = NIL then return
cfw, cbw, cscc ← a new color value (each)
S ← ∅
traverse G from pivot using forward edges

when visiting node n do
if Color(n) = c then

Color(n)← cfw
else prune traversal beyond n;

end
traverse G from pivot using reverse edges

when visiting node n do
if Color(n) = c then

Color(n)← cbw

else if Color(n) = cfw then
S ← S ∪ {n} ; mark(n)← True
Color(n)← cscc

else prune traversal beyond n;

end
SCC ← SCC ∪ {S}
push c, cfw, cbw into the work queue

3.2 Method 1: Two-Phase Parallelization
Section 2.2 introduced two important properties of SCC struc-

tures in real-world graphs: (1) there exists a giant SCC whose size
is O(N), and (2) there are many small sized SCCs, where the num-
ber of SCCs of a given size decreases drastically as the size grows.
Moreover, studies of the SCC structure in small-world graphs also
revealed that the giant SCC can be considered the center, to which
most of the other small SCCs are attached [11, 17].

What is the implication of this SCC structure to the performance
of the conventional FW-BW-Trim algorithm? Most of all, it causes
workload imbalance in the algorithm. The conventional implemen-
tation of the FW-BW-Trim algorithm lets each thread find one SCC
at a time, though there exists one O(N)-sized giant SCC in the
graph. Worse, it is very likely that this giant SCC is identified at
the beginning because other small SCCs are weakly connected to
this giant SCC. Consequently, while the large SCC is being identi-
fied by one thread, all the other threads stay idle since there are no
other tasks.

Based on the above observations, we adopt another two-phase
parallelization strategy. In phase 1, we exploit data-level paral-
lelism, letting every thread work on the same partition of the graph;
all threads are used to find reachable sets. In phase 2, we return to
the conventional implementation, which exploits task-level paral-
lelism. The transition between phase 1 and phase 2 occurs when
the giant SCC has been identified (i.e. an SCC containing, say 1%
of the nodes of the original graph), or after a predefined number of
iterations.

This strategy is summarized as Method 1 in Algorithm 6. We
omit the detailed description of Par-FWBW since it is almost iden-
tical to Algorithm 5 except that the traversal of the graph is imple-
mented with parallel breadth-first search, and the parallel BFS is
repeated until the giant SCC (e.g. an SCC containing more than

The

Giant

SCC

BW

FW

(a) (b)

Figure 3: SCC structure of small-world graphs: (a) when the giant
SCC is identified and removed, and (b) after the weakly connected com-
ponent detection algorithm has been applied. Each polygon represents
a small-sized SCC. In (a), same color polygons belong to the same set.

1% of nodes) is identified or given the maximum number of trials.
Note that a BFS on small-world graphs results in a small number
of BFS levels, but a large number of nodes in each level that can
be visited in parallel [15]. Also, the algorithm applies parallel Trim
once more after the Par-FWBW step because detection of the giant
SCC may present an opportunity for further trimming.

Algorithm 6: Method1(G, SCC)
Input : G, the original input graph
Output: SCC, a collection of node sets
Local : Color, color value assigned to each node in G
Local : mark, boolean value assigned to each node in G
/* Initialization */
∀ n ∈ G: Color(n)← 0,mark(n)← false

/* Phase 1: parallelism in trims and traversals */
Par-Trim(G, SCC, Color,mark)
Par-FWBW(G, 0, SCC, Color, mark)
Par-Trim(G, SCC, Color,mark)

/* Phase 2: parallelism in recursion */
until work queue is empty do in parallel

c← pop a color from the work queue
Recur-FWBW(G, c, SCC, Color, mark)

3.3 Finding Weakly Connected Components
Method 1 in the previous subsection successfully parallelizes de-

tection of SCCs for most real-world graph instances, as shown in
the experiments (Section 5). This occurs because most of the nodes
in real-world graphs are processed in a data parallel phase of the al-
gorithm.

However, the second phase of the algorithm, the recursive FW-
BW step, is scarcely parallelized even when a large number of
SCCs (e.g. 100,000) are identified in this phase. In fact, especially
when a large proportion of nodes are processed in the second phase,
such limited parallelism diminishes the overall parallel speedup of
Method 1.

The first clue to explain this phenomenon was found in the work
queue logs; the recorded maximum queue depth with single thread-
ed execution is only six, indicating insufficient task-level paral-
lelism. This was counter-intuitive at first, because the FW-BW al-
gorithm is designed to produce three more tasks for each task being
processed. To understand why, again we must consider the shape
of small-world graphs.

Figure 3(a) illustrates a typical SCC structure of small-world

A B A B

(a) (b)

Figure 4: Patterns of size-2 SCCs detected by Trim2. There is a tight
cycle between A and B but either (a) there are no other outgoing edges
from A and B, or (b) there are no other incoming edges to A and B.

graphs according to previous studies [11, 17], where the small SCCs
are connected around the giant SCC. Now consider the moment
when the giant SCC has been identified by the FW-BW algorithm.
Ignoring non-connected SCCs for the time being, the remaining
SCCs are grouped into two sets (colors): the FW-set and the BW-
set. However, many of these SCCs are not connected to each other.
Therefore, recursive application of the FW-BW algorithm to each
set (color) will only identify one SCC to which the pivot belongs,
but does not provide further partitioning. Consequently, the execu-
tion is serialized.

Following is the log of the first five task executions in the re-
cursive FW-BW step when Method 1 is applied to a large graph
instance named Flickr (Section 5). The SCC column indicates the
size of the SCC identified in the iteration, and FW, BW, and Remain
indicate the resulting forward, backward, and remaining set sizes,
respectively. The log verifies that our observation above indeed oc-
curs in Method 1; each task execution identifies only a small SCC
and fails to create additional tasks (i.e. FW and BW sets).

SCC FW BW Remain
2 0 0 125432
5 0 0 125427
11 0 0 125416
3 3 0 125410
...

The above observation, however, also suggests a way to solve
this problem. Once the giant SCC has been identified, the remain-
ing graph is composed of many small components that are discon-
nected from each other. Groups of one or more of these discon-
nected SCCs form weakly connected components (WCCs), where
a WCC is defined as a maximal group of nodes that are mutually
reachable by converting directed edges to undirected edges. There-
fore, we identify all of the weakly connected components over the
whole graph in parallel, and assign each WCC a different color.
Then, each WCC becomes a separate entry in the work queue, re-
sulting in a substantial improvement in the degree of task-level par-
allelism in the recursive FW-BW phase. Figure 3(b) illustrates this
idea.

Algorithm 7 details how to find weakly connected components
in parallel. Once the WCCs are identified, they are pushed into
the work queue. We use Color and mark in the same way as in
Algorithm 4, i.e. the Par-WCC algorithm assigns a node’s out-
neighbors to its WCC only when they are the same color.

3.4 Trim2: Fast Detection of Size-2 SCCs
We also add a fast parallel detection mechanism for size-2 SCCs,

namely Trim2. The idea is that a large subset of size-2 SCCs can
be detected easily by looking only at the neighbors of a given node.
Figure 4 illustrates the patterns of size-2 SCCs identified by this al-
gorithm. The algorithm first identifies all of the nodes which have
a single neighborhood node that is both an incoming neighbor and
an outgoing neighbor, i.e. nodes A and B in Figure 4. Then the
algorithm examines the original node’s sole neighbor. If the neigh-

Algorithm 7: Par-WCC(G, Color, mark)
Input : G, the original input graph
In-Out: Color, color value assigned to each node in G
In-Out: mark, boolean value assigned to each node in G
Local : WCC, head-node value assigned to each node in G
forall n ∈ G, mark(n) = false do in parallel

WCC(n)← n

repeat
foreach n ∈ G, mark(n) = false do in parallel

foreach k ∈ OutNbr(n), Color(k) = Color(n) do
if WCC(k) < WCC(n) then

WCC(n)←WCC(k)

foreach n ∈ G, mark(n) = false do in parallel
k ←WCC(n)
if k 6= n ∧ k 6= WCC(k) then

WCC(n)←WCC(k)

until WCC not changed
foreach n ∈ G, WCC(n) = n do in parallel

c← a new color
foreach k ∈ G, WCC(k) = n do

Color(k)← c

push color c into the work queue

bor has no incoming (or outgoing) edges other than to the original
node, the algorithm identifies these two nodes as an SCC because
there cannot be any larger cycle that contains both nodes.

The detailed Trim2 algorithm is summarized in Algorithm 8.
Unlike Trim, which is applied multiple times iteratively, we apply
Trim2 only once since it is computationally more expensive. Our
experiments revealed that the Trim2 step provides only a marginal
speedup by itself; however it reduces the execution time of the
following WCC step by up to 50% because it cuts out a chain of
weakly connected size-2 SCCs. For this reason, we include Trim2
only for Method 2, described in Section 3.5.

3.5 Method 2: Putting It Together
Our Method 2, summarized in Algorithm 9, includes all of the

above steps applied in sequence. Here, Par-Trim′ includes the ap-
plication of Par-Trim (iteratively), Par-Trim2 (only once), and Par-
Trim (iteratively). We only apply Par-Trim2 once because it is com-
putationally more expensive than Par-Trim. The primary difference
between Method 1 and Method 2 is the inclusion of the Par-Trim2
and Par-WCC steps. The performance differences between the two
methods are discussed in Section 5.

4. ISSUES IN IMPLEMENTATION
We implement efficiently in C++ our two methods and the Base-

line algorithm from Section 3 as well as Tarjan’s algorithm. There
are several pitfalls in implementing these algorithms and a careless
implementation could result in an order of magnitude lower perfor-
mance.

4.1 Graph and Set Representation
We implemented all of the algorithms in the paper using C++.

For the in-memory graph data structure, we used the compressed
sparse row (CSR) format, which uses two arrays to represent the
graph. A O(N)-sized array stores a pointer to the beginning of
each node’s adjacency list, stored in a single O(M)-sized array
(see Figure 5). Note that CSR is favored in high performance

Algorithm 8: Par-Trim2(G, SCC, Color, mark)
Input : G, the original input graph
In-Out: SCC, a collection of node sets
In-Out: Color, color value assigned to each node in G
In-Out: mark, boolean value assigned to each node in G
foreach n ∈ G, mark(n) = false do in parallel

if In-degree(n,Color) = 1 then
k ← the only InNbr of n
if k ∈ OutNbr(n)∧ In-degree(k,Color) = 1 then

Color(n), Color(k)← -1
mark(n),mark(k)← true
SCC ← SCC ∪ {{n, k}}

else if Out-degree(n,Color) = 1 then
k ← the only OutNbr of n
if k ∈ InNbr(n)∧ Out-degree(k,Color) = 1 then

Color(n), Color(k)← -1
mark(n),mark(k)← true
SCC ← SCC ∪ {{n, k}}

Algorithm 9: Method2(G, Color)
Input : G, the original input graph
Output: SCC, a collection of node sets
Local : Color, color value assigned to each node in G
Local : mark, boolean value assigned to each node in G
/* Initialization */
∀ n ∈ G: Color(n)← 0,mark(n)← false

/* Phase 1: parallelism in trims, traversals and WCC */
Par-Trim(G, SCC, Color, mark)
Par-FWBW(G, 0, SCC, Color, mark)
Par-Trim′(G, SCC, Color, mark)
Par-WCC(G, Color,mark)

/* Phase 2: parallelism in recursion */
until work queue is empty do in parallel

c← pop a color from the work queue
Recur-FWBW(G, c, SCC, Color, mark)

graph analysis problems [6, 15, 8] because it is compact, memory
bandwidth-friendly, and thus best suited for graph traversals.

The CSR representation, however, performs poorly when mod-
ifying the graph structure itself. Therefore, instead of actually re-
moving nodes that are trimmed or whose SCCs are identified, we
maintain the extra data structures mark and Color.

mark is a O(N) boolean array which represents the nodes whose
SCCs are identified and thus are detached from the original graph.
Our algorithm always ignores nodes whose mark value is true;
therefore, setting the mark value of a node has the same effect as
removing the node from the graph representation.

Similarly, Color is a O(N) integer array which represents the
current partitioning of the graph. That is, all the nodes in a (non-
trivial) partition of the graph have the same color value, and a
unique color value is assigned to each partition. For instance, the
construction of the FW-set and BW-set in Algorithm 5 simply as-
signs the same color value to every reachable node. Therefore,
neighborhood nodes whose color is different from the current node
are considered detached.

However, this approach presents an issue when selecting a pivot
from a specific set (Algorithm 5). To select any single node of
a specific color, the complete Color array must be scanned; this

Figure 5: CSR adjacency matrix data structure: the node array stores
pointers to each node’s adjacency list in the edge array.

becomes a very expensive operation when there exist only a few
nodes of that color.

To solve this issue, we adopt a hybrid representation. That is,
while constructing FW-set and BW-set in Algorithm 5, we maintain
a compact representation (i.e. std::set) for each set, in addition
to the Color array. The former is used to choose pivots in the FW-
BW step, while the latter is used to look up membership of a set.
However, we use the hybrid representation only for phase 2 (i.e.
Recur-FWBW) but not for phase 1, since the set size of each color
is sufficiently large in phase 1. Our experiments revealed that such
a hybrid approach resulted in ∼10x better performance than using
one representation only.

4.2 Implementing Graph Traversals
The classic Tarjan’s SCC algorithm is based on a depth-first search

(DFS) traversal of the graph. However, the required recursion depth
for DFS traversal is the size of the largest SCC, which is O(N) for
large real-world graphs. Thus, one must increase the size of the
program stack accordingly, to hundreds of MBs or even a few GBs.
Moreover, Tarjan’s algorithm requires an additional stack (other
than the program stack) on which it places nodes in the order in
which they are visited; the algorithm must check if a node is in this
stack. Like the Color array and std::set representations de-
scribed in 4.1, we implement this stack using both a vector and a
boolean array for fast execution.

For the reachable set computation in the parallel FW-BW step,
we used an efficient implementation of the breadth-first search (BFS)
order graph traversal [15, 10]. Note that after the advent of the
graph500 benchmark suite [1], many efficient implementations of
the BFS traversal have been proposed [23, 27], which may improve
our performance results even further.

On the other hand, for the same computation in the recursive
FW-BW step, we use DFS instead of BFS. This is because the BFS
implementation above, optimized for parallel traversal, has a larger
fixed cost than simple sequential DFS. Also, during reachable set
exploration in the parallel FW-BW step, we do not maintain an un-
bounded set representation (i.e. std::set), but use the Color
array only. This is based on the following observations: (1) the
traversal will go through a huge fraction of nodes in the graph (i.e.
O(N)) and thus the size of each set (FW-set, BW-set, and remain-
ing set) will be large as well, and (2) those sets will be modified by
the following trimming and compacting operations. Therefore, we
defer the construction of sets until the end of the trimming phase,
when we perform a scan of non-marked nodes to construct the ini-
tial work items.

4.3 Managing Parallel Work Items
For the threading library, we used OpenMP for all experiments.

As a reminder, we exploited data-level parallelism in the first phase
of our algorithms, but task-level parallelism in the second phase.
The data-level parallelism is implemented using the parallel
for statement, and the task-level parallelism with a custom work
queue implementation.

For the data-level parallelism, however, it was critical to spe-

Name Description # Nodes # Edges Largest SCC Size Diameter

Livej Links in LiveJournal (Web) [5],[21] 4,848,571 68,993,773 3,828,682 18
Flickr Connection of Flickr users (Social) [24] 2,302,925 33,140,018 1,605,184 7
Baidu Links in Baidu Chinese online encyclopedia (Web) [25] 2,141,300 17,794,839 609,905 5
Wiki Links in English Wikipedia (Web) [4] 15,172,740 131,166,252 4,736,008 6
Friend* Connection of Friendster users (Social) [30] 124,836,180 1,806,067,135 46,941,703 25
Twitter Connection of Twitter users (Social) [18] 41,652,230 1,468,365,182 33,479,734 6
Orkut* Connection of Orkut users (Social) [30] 3,072,627 11,718,583 2,963,298 8
Patents Citation among US Patents [20] 3,774,768 16,518,948 1 22
CA-road* Road network of California [21] 1,965,206 5,533,214 1,168,580 850

Table 1: Real-world graph datasets used in the experiments. * indicates that the original graph is undirected; we randomly assign a direction for
each edge with 50% probability for each direction. The graph diameters are estimated from a random sampling of nodes; the actual diameters are
likely somewhat larger due to outlier nodes.

cially handle the workload imbalance problem. Note that there is
another fundamental characteristic of real-world graphs, the scale-
free property, which means that the graph’s degree distribution fol-
lows a power law [7]. In other words, there exist a few nodes that
have a huge number of neighbors while many nodes have only a
few neighbors. Therefore, statically assigning the same number of
nodes to each thread naturally induces workload imbalance if the
work involves neighborhood exploration. Thus, we used dynamic
load-balancing for the components that involve neighborhood ex-
ploration, but static workload distribution otherwise.

For the task-level parallelism, we used our custom work queue
implementation, which is composed of two levels of queues: a
global queue and per-thread private queues. Initially, each thread
fetches up to K work items from the global queue into its local
queue; whenever the local queue becomes empty, more work is
fetched from the global queue. Each newly generated work item
goes to a local queue first. When the size of a local queue grows
to 2K, K items are moved to the global queue. We set K to 1 for
the Baseline and Method 1, because these algorithms suffer from a
lack of task level parallelism; for Method 2, we set K to 8.

5. EXPERIMENTS
In this section, we evaluate the performance of our methods on

several large real-world graph instances that are available from
public repositories [19, 2]. We have chosen graph instances that
are large enough to parallelize (i.e. more than 10 million edges).
Table 1 summarizes the size of each graph and provides a short
description of the graph instance.

All of our experiments were performed on a commodity server-
class machine with two Intel Xeon E5-2660 (2.20GHz) CPUs, each
of which has 8 cores and 16 hardware threads. There are in total
20 MB of last-level cache and 256 GB of main memory. For all
implementations, we used OpenMP for the threading library and
compiled our code with g++ version 4.4.7 with the -O3 option. Fi-
nally, our servers are running the CentOS Linux (6.4 Final) operat-
ing system.

The plots in Figure 6 summarize the performance of our methods
on the real-world graph instances in Table 1. The y-axis is the
speedup against Tarjan’s optimal sequential algorithm, and the log
scale x-axis is the number of threads.

A first look over all instances (except CA-road, which we will
discuss later) reveals that our methods not only improve the perfor-
mance of the baseline implementation of the FW-BW-Trim algo-
rithm, but also exploit a greater degree of parallelism. Excluding
CA-road, the speedup result varies from 5.01x (Flickr) to 29.41x
(Twitter) using 16 cores and 32 hardware threads. The geometric

mean speedup is 14.05x. Also, we can see that Method 2 provides
further performance improvement over Method 1 for certain graph
instances.

We remind the reader that the machine has two CPU sockets,
where each CPU has 8 cores only. As a result, there is a natural
knee in Figure 6 between 8 threads and 16 threads, since the latter
crosses the socket boundary, i.e. NUMA effect. Similarly, there is
another knee between 16 threads and 32 threads, because the latter
exploits simultaneous multithreading (SMT) using two hardware
threads in each physical core.

To better understand the performance behavior shown in Fig-
ure 6, we plot in Figure 7 the execution time breakdown of each
method for all of the graph instances. The y-axis in the plots is the
execution time measured in milliseconds. Thus, each vertical bar
segment represents the time spent in each phase of the algorithm.

Figures 6 and 7 first show that the Baseline method does not
scale. As explained in Section 3, a singe thread processes the gi-
gantic SCC in each graph, thus the recursive FW-BW phase (the
topmost segment) rarely exploits parallelism.

To the contrary, the parallel FW-BW phase of Method 1 (Sec-
tion 3.2) detects the largest SCC of the graph in parallel, which is
essential to achieve overall speedup. You can see this in Figure 7,
where the second to bottom segments (Par-FWBW) scale down as
we increase the number of threads, representing a diminishing frac-
tion of the total execution time. Consequently, Method 1 provides
a fair amount of parallel speedup as shown in Figure 6.

Next we look at the cases where Method 2 provides an addi-
tional performance benefit over Method 1, including Livej, Flickr,
Baidu, and Twitter. Notice that in Figure 7(b), the execution time
of the recursive FW-BW phase (the topmost segment) for Method
1 does not scale down even with more threads. The reason for this
phenomenon has been explained in Section 3.3: each step in the re-
cursive FW-BW phase does not partition the remaining graph well,
failing to provide sufficient parallelism.

Figures 6 and 7 also confirm that Method 2 successfully solves
this issue. As can be seen in Figure 7(b), the execution time of
the recursive FW-BW phase now scales down in Method 2, due to
introduction of the parallel WCC phase. Our execution log also
confirms that at the beginning of the recursive FW-BW phase there
are about 10,000 work items in the queue, providing sufficient task-
level parallelism. Moreover, the parallel WCC phase itself is well
parallelized, as its execution time decreases with increasing number
of threads.

Therefore, the actual benefits of Method 2 over Method 1 de-
pend on the structure of the graph instance. To illustrate this point,
Figure 8 shows the fraction of nodes whose SCCs are identified
by each phase. Noticeably, the more nodes identified by the recur-

(a) Livej (b) Flickr (c) Baidu

(d) Wiki (e) Friend (f) Twitter

(e) Orkut (h) Patent (i) CA-road
Figure 6: Performance results on real-world graph instances. The y-axis is speedup compared to the optimal sequential algorithm (i.e. Tarjan’s).
The x-axis is in log scale. Note that each of two CPU sockets has only 8 cores; 16-thread execution exploits two sockets and 32-thread execution uses
simultaneous multithreading. The Baseline (Algorithm 3) uses parallel trim and the recursive FW-BW algorithm; Method 1 (Algorithm 6) utilizes
two-phase parallelization (data-level and task-level); Method 2 (Algorithm 9) adds parallel trim2 and parallel WCC.

sive FW-BW step, the more performance benefits are achieved by
Method 2.

Finally, we discuss the case of the CA-road graph. The graph
does not share the same characteristics as the other graph instances
because it is (almost) planar by its nature. Therefore, the assump-
tions that we have made in Section 3 do not stand for this non-
small-world graph instance. First, the graph has a large diameter
(∼ 1000) and thus does not possess the small-world property. Sec-
ond, even though the graph still has a giant SCC, it also has many
more large-sized SCCs than small-world graphs (see Figure 9).

Figure 9 shows the SCC structure of all graphs used in the exper-
iments discussed in this section. Notice that there is a single giant
connected component whose size is O(N), the most frequent SCCs
are size one, and there are SCCs of other sizes in between for all
graph instances except Patent. These in-between-sized SCCs dif-
ferentiated scalability between Method1 and Method2 (Figure 6),
as described in Sections 3.3 and 3.4.

Patent is a special case with no cycles in the graph. However, this
is a natural phenomenon due to the way the graph is constructed:

Figure 8: Fraction of nodes whose SCC is identified at each phase of
execution for Method 2.

(a) Livej (b) Flickr (c) Baidu

(d) Wiki (e) Friend (f) Twitter

(e) Orkut (h) Patent (i) CA-road

Figure 7: Execution time breakdown for all methods on all graph instances. Par-Trim′ accounts for applying Trim only for Method 1 but applying
Trim, Trim2 and Trim in sequence for Method 2.

a patent can only cite other patents that come before it, thus pre-
venting any cycles. Note that the SCC structure of this graph was
identified by the Trim operation.

CA-road also shows a noticeably different distribution, since it
is not a small-world graph. Having a large diameter, the graph has
many more non-trivial SCCs than the other graphs. Moreover, the
size of these SCCs is larger as well.

As a result, the parallel FW-BW step provides rather limited par-
allel speedup in this case because the level-synchronous BFS does
not scale up well in such graphs [15]. Moreover, the performance
of Method 2 decreases as the execution time of the WCC algorithm
increases; the algorithm requires a large number of iterations for
convergence when applied on non-small-world graphs.

Thus, both methods, although they still scale, do not perform
as well as Tarjan’s method for CA-road. Nevertheless, we remind
the reader that in the common case, users have a priori knowledge
about the property of their graphs, small-world or not. Also, small-

world graphs draw more research interest because they are the dom-
inant class of natural large graph instances for many important ap-
plications where the graphs are constructed by arbitrary relation-
ships. For example, all of the large graph instances other than the
road networks in public repositories [19, 2] have the small-world
property.

In summary, our experiments validate the success of our methods
in parallelizing SCC detection algorithms for small-world graphs
because our methods effectively exploit fundamental characteris-
tics of those graphs.

6. CONCLUSIONS
In this paper, we analyze the performance shortcomings of the

conventional FW-BW-Trim algorithm when applied to small-world
graph instances. We propose three simple extensions to the con-
ventional algorithm that take advantage of small-world graph prop-
erties to address the deficiencies in existing algorithms. Conse-

(1) Livej (2) Flickr (3) Baidu

(4) Wiki (5) Friend (6) Twitter

(7) Orkut (8) Patent (9) CA-road

Figure 9: Distribution of SCC sizes of the graph instances that are used in our experiments.

quently, our extensions result in significant parallel and sequential
performance improvements on small-world graph instances to de-
liver state-of-the-art parallel SCC detection performance.

As a next step, we plan to implement our algorithm in a dis-
tributed environment. Our extensions can be easily implemented in
such an environment as they only require data from direct neigh-
bors.

7. ACKNOWLEDGEMENTS
This research is supported by DARPA contract, Oracle order

US1226344; DARPA Contract, SEEC: Specialized Extremely Ef-
ficient Computing, Contract #HR0011-11-C-0007; DARPA Con-
tract, Xgraphs; Language and Algorithms for Heterogeneous Graph
Streams, FA8750-12-2-0335; Army contract AHPCRC W911NF-
07-2-0027-1; NSF grant, BIGDATA: Mid-Scale: DA: Collabora-
tive Research: Genomes Galore - Core Techniques, Libraries, and
Domain Specific Languages for High-Throughput DNA Sequenc-
ing, IIS-1247701; NSF grant, SHF: Large: Domain Specific Lan-
guage Infrastructure for Biological Simulation Software, CCF-
1111943; Stanford PPL affiliates program, Pervasive Parallelism
Lab: Oracle, AMD, Intel, NVIDIA, and Huawei. Authors also
acknowledge additional support from Oracle. The views and con-

clusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA or the U.S.
Government.

8. REFERENCES
[1] Graph 500 benchmark. http://graph500.org.
[2] Koblenz network collection.

http://konect.uni-koblenz.de.
[3] S. Allesina, A. Bodini, and C. Bondavalli. Ecological

subsystems via graph theory: the role of strongly connected
components. Oikos, 110(1):164–176, 2005.

[4] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. Ives. DBpedia: A nucleus for a web of open data. In
Proc. Int. Semantic Web Conf., pages 722–735, 2008.

[5] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan.
Group formation in large social networks: membership,
growth, and evolution. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 44–54. ACM, 2006.

[6] D. Bader and K. Madduri. Snap, small-world network
analysis and partitioning: An open-source parallel graph

framework for the exploration of large-scale networks. In
IEEE IPDPS, 2008.

[7] A. Barabási and R. Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999.

[8] J. Barnat, P. Bauch, L. Brim, and M. Ceška. Computing
strongly connected components in parallel on cuda. In
Parallel & Distributed Processing Symposium (IPDPS),
2011 IEEE International, pages 544–555. IEEE, 2011.

[9] J. Barnat, J. Chaloupka, and J. van de Pol. Improved
distributed algorithms for scc decomposition. Electronic
Notes in Theoretical Computer Science, 198(1):63–77, 2008.

[10] S. Beamer, K. Asanović, and D. Patterson.
Direction-optimizing breadth-first search. In Proceedings of
the International Conference on High Performance
Computing, Networking, Storage and Analysis, page 12.
IEEE Computer Society Press, 2012.

[11] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph
structure in the web. Computer networks, 33(1):309–320,
2000.

[12] F. Chung and L. Lu. Connected components in random
graphs with given expected degree sequences. Annals of
combinatorics, 6(2):125–145, 2002.

[13] L. Fleischer, B. Hendrickson, and A. Pınar. On identifying
strongly connected components in parallel. Parallel and
Distributed Processing, pages 505–511, 2000.

[14] R. Hojati, R. Brayton, and R. Kurshan. Bdd-based debugging
of designs using language containment and fair ctl. In
Computer Aided Verification, pages 41–58. Springer, 1993.

[15] S. Hong, T. Oguntebi, and K. Olukotun. Efficient parallel
graph exploration for multi-core cpu and gpu. In IEEE PACT
2011.

[16] S. Kazemitabar and H. Beigy. Automatic discovery of
subgoals in reinforcement learning using strongly connected
components. Advances in Neuro-Information Processing,
pages 829–834, 2009.

[17] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution
of online social networks. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery
and data mining KDD 06, volume 106. ACM Press, 2006.

[18] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a
social network or a news media? In Proc. Int. World Wide
Web Conf., pages 591–600, 2010.

[19] J. Leskovec. Stanford network analysis library.
http://snap.stanford.edu/snap.

[20] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible
explanations. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data
mining, pages 177–187. ACM, 2005.

[21] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters. Internet
Mathematics, 6(1):29–123, 2009.

[22] W. McLendon III, B. Hendrickson, S. Plimpton, and
L. Rauchwerger. Finding strongly connected components in
distributed graphs. Journal of Parallel and Distributed
Computing, 65(8):901–910, 2005.

[23] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu
graph traversal. In Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel
Programming, pages 117–128. ACM, 2012.

[24] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Growth of the flickr social network. In
Proceedings of the 1st ACM SIGCOMM Workshop on Social
Networks (WOSN’08), August 2008.

[25] X. Niu, X. Sun, H. Wang, S. Rong, G. Qi, and Y. Yu.
Zhishi.me – weaving Chinese linking open data. In Proc. Int.
Semantic Web Conf., pages 205–220, 2011.

[26] J. H. Reif. Depth-first search is inherently sequential.
Information Processing Letters, 20(5):229–234, 1985.

[27] N. Satish, C. Kim, J. Chhugani, and P. Dubey. Large-scale
energy-efficient graph traversal: a path to efficient
data-intensive supercomputing. In Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis, page 14. IEEE Computer
Society Press, 2012.

[28] R. Tarjan. Depth-first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146–160, 1972.

[29] D. Watts and S. Strogatz. Collective dynamics of
small-world networks. Nature, 393(6684), 1998.

[30] J. Yang and J. Leskovec. Defining and evaluating network
communities based on ground-truth. In Proceedings of the
ACM SIGKDD Workshop on Mining Data Semantics, pages
3:1–3:8, 2012.

