
CudaDMA: Optimizing GPU Memory

Bandwidth via Warp Specialization

Michael Bauer (Stanford) Henry Cook (UC Berkeley)

Brucek Khailany (NVIDIA Research)

1

GPUs Are Ubiquitous

2

 GPUs are in many supercomputers today

 GPUs are great

 High floating point performance

 High memory bandwidth

 Why is programming them so challenging?

 Explicit data movement through memory hierarchy

 Difficult to overlap computation and memory accesses

Outline

 Overview of GPU Architecture

 Motivating Benchmark

 CudaDMA API

 Methodology

 Experiments

 Conclusions

3

GPU Architecture/Programming

Off-Chip DRAM

On-Chip Memory

Shared Memory Shared Memory Shared Memory Shared Memory

Data Data Data Data

CTA CTA CTA CTA SM SM SM SM

4

Warp Definition

 Each CTA is decomposed into warps

 A warp is 32 contiguous threads in the same CTA

 SM performs scheduling at warp-granularity

 Each warp has its own program counter

 All threads in a warp execute in lock-step

 Intra-warp divergence has performance penalty

 Inter-warp divergence has no performance penalty

Warp 0 Warp 1 Warp 2 Warp 3

5

Motivating Benchmark

6

Motivating Benchmark

 Modified SAXPY kernel, staging data through shared

 Variable amount of arithmetic

 Fixed amount of data transferred and number of warps

7 Increasing compute

intensity

GPU Performance Challenges

Memory System Bottlenecks

 Instruction Issue

 Memory Level Parallelism

(MLP)

 Data Access Patterns

 Coalescing

Computational Bottlenecks

 Long-latency memory

accesses

 Synchronization

overheads

 Data Access Patterns

 Control Divergence

Goal: remove entanglement between the bottlenecks

8

GPU Programmability Challenges

 Mismatch CTA size/shape and shared data size/shape

 Leads to thread divergence (lots of ‘if’ statements)

Goal: decouple CTA size/shape from data size/shape

9

Warp Specialization

 Differentiate warps into compute and DMA*

 DMA warps
 Maximize MLP

 Compute warps
 No stalls due to memory

 Producer-consumer synchronization
 Enable better overlapping of compute and memory accesses

 CudaDMA objects to manage warp specialization
 Describe data transfer patterns

 Independent of warp count

10 * D. Merrill and A. Grimshaw. Revisiting Sorting for GPGPU Stream Architectures.

CudaDMA API

11

CudaDMA API

 Declare CudaDMA object

to manage shared buffer

 Separate DMA and

compute warps

 Provide synchronization

primitives

 Perform repeated transfer

operations

class cudaDMA

{

public:

 // Base constructor

 __device__ cudaDMA (

 const int dmaID,

 const int num_dma_threads,

 const int num_comp_threads,

 const int thread_idx_start);

public:

 __device__ bool owns_this_thread();

public:

 // Compute thread sync functions

 __device__ void start_async_dma();

 __device__ void wait_for_dma_finish();

public:

 // DMA thread sync functions

 __device__ void wait_for_dma_start();

 __device__ void finish_async_dma();

public:

 __device__ void execute_dma(

 void *src_ptr, void *dst_ptr);

};

12

CudaDMA Application Structure

 Declare shared buffer at

kernel scope

 Declare CudaDMA

object to manage buffer

 Split DMA warps from

compute warps

 Load buffer using DMA

warps

 Process buffer using

compute warps

 Iterate (optional)

__global__

void cuda_dma_kernel(float *data)

{

 __shared__ float buffer[NUM_ELMTS];

 cudaDMA dma_ld(0,NUM_DMA_THRS,

 NUM_COMPUTE_THRS, NUM_COMPUTE_THRS);

 if (dma_ld.owns_this_thread()) {

 // DMA warps

 for (int i=0; i<NUM_ITERS; i++) {

 dma_ld.wait_for_dma_start();

 dma_ld.execute_dma(data,buffer);

 dma_ld.finish_async_dma();

 }

 }

 else { // Compute warps

 for (int i=0; i<NUM_ITERS; i++) {

 dma_ld.start_async_dma();

 dma_ld.wait_for_dma_finish();

 process_buffer(buffer);

 }

 }

}

13

Execution Model

 Use PTX named barriers

 bar.sync

 bar.arrive

 Available on Fermi

 Fine-grained

synchronization

Compute

Warps

DMA

Warps

Named

Barrier 1

Named

Barrier 2

Named

Barrier 1

Named

Barrier 2

Iteration i

Iteration i+1

wait_for_dma_start

bar.sync

finish_async_dma

bar.arrive

start_async_dma

bar.arrive

wait_for_dma_finish

 bar.sync

14

CudaDMA Methodology

15

Buffering Techniques

 Usually one set of DMA
warps per buffer

 Single-Buffering
 One buffer, one warp group

 Double-Buffering

 Two buffers, two warp groups

 Manual Double-Buffering
 Two buffers, one warp group

16

CudaDMA Instances

 CudaDMASequential

 CudaDMAStrided

 CudaDMAIndirect

 Arbitrary accesses

 CudaDMAHalo

 2D halo regions

 CudaDMACustom

17

Access Patterns

 Explicitly state data loading pattern in code

 Decouple implementation from transfer pattern

 Common patterns implemented by experts

 Used by application programmers

 Optimized for high memory bandwidth at low warp

count

18

Experiments

19

Micro-Benchmarks

 Same modified SAXPY kernel shown earlier

 Fix compute intensity (6 B/FLOP), vary warp count

20

BLAS2: SGEMV

 Dense matrix-vector

multiplication

 CudaDMASequential for

loading vector elements

 CudaDMAStrided for

loading matrix elements

 Varied buffering schemes

 Up to 3.2x speedup

21

3D Finite Difference Stencil

 8th order in space, 1st

order in time computation

 Load 2D slices into

shared for each step in

Z-dimension

 Loading halo cells uses

uncoalesced accesses

 Earlier version of

cudaDMAHalo

Figures from: P. Micikevicius. 3D Finite Difference Computation on GPUs Using CUDA.
22

3D Finite-Difference Stencil

 Use DMA warps
for loading halo
cells as well as
main block cells

 Speedups from
13-15%

 Improvement
from more MLP
and fewer load
instructions

23

27.83

33.14

25.22
24.16

29.1

22.3

0

5

10

15

20

25

30

35

512x512x512 640x640x400 800x800x200

Reference CudaDMA

Execution

Time (s)

Problem Size

Conclusions

 CudaDMA

 Extensible API

 Create specialized DMA Warps

 Works best for moderate compute intensity applications

 Decouple transfer pattern from implementation

 Optimized instances for common patterns

 CudaDMASequential, CudaDMAStrided

 CudaDMAIndirect, CudaDMAHalo

 Speedups on micro-benchmarks and applications

24

25

Download CudaDMA:

http://code.google.com/p/cudadma

Tech Talk at NVIDIA Booth on Thursday

at 1pm

Questions?

Backup Slides

26

Asynchronous DMA Engines

 Decouple transfer implementation from specification

 Asynchronous to overlap computation and memory access

 Ironman abstraction for ZPL (software)

 Sequoia runtime interface (software)

 Cell Broadband Engine (hardware)

 Imagine Stream Processor (hardware)

27

Code Example: SGEMV

 BLAS2: matrix-vector
multiplication

 Two Instances of
CudaDMA objects

 Compute Warps

 Vector DMA Warps

 Matrix DMA Warps

28

Synchronization Points

 Compute Warps

 start_async_dma()

 wait_for_dma_finish()

 DMA Warps

 wait_for_dma_start()

 finish_async_dma()

29

Future Work

 Additional CudaDMA Instances

 Indirect memory accesses

 More applications

 Sparse-Matrix operations

 Target for higher-level language/DSL compilers

 Copperhead, Liszt

 Actual hardware DMA engines for GPUs

 Warp-specialization aware programming models

 Compiler implementations

30

Fast Fourier Transforms

 1D, Power of 2 FFTs

 Compared to optimized
CUFFT library (version
4.0)
 32 warps per SM

 CudaDMA (custom
loader)
 24 warps per SM

 16 compute, 8 DMA

 Same performance at
lower warp count

31

