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GPUs Are Ubiquitous 
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 GPUs are in many supercomputers today 

 

 GPUs are great 

 High floating point performance 

 High memory bandwidth 

 

 Why is programming them so challenging? 

 Explicit data movement through memory hierarchy 

 Difficult to overlap computation and memory accesses 



Outline 
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 Experiments 
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GPU Architecture/Programming 

Off-Chip DRAM 

On-Chip Memory 

Shared Memory Shared Memory Shared Memory Shared Memory 

Data Data Data Data 

CTA CTA CTA CTA SM SM SM SM 
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Warp Definition 

 Each CTA is decomposed into warps 

 A warp is 32 contiguous threads in the same CTA 

 

 

 

 

 

 SM performs scheduling at warp-granularity 

 Each warp has its own program counter 

 All threads in a warp execute in lock-step 

 Intra-warp divergence has performance penalty 

 Inter-warp divergence has no performance penalty 

Warp 0 Warp 1 Warp 2 Warp 3 
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Motivating Benchmark 
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Motivating Benchmark 

 Modified SAXPY kernel, staging data through shared 

 Variable amount of arithmetic 

 Fixed amount of data transferred and number of warps 

7 Increasing compute 

intensity 



GPU Performance Challenges 

Memory System Bottlenecks 

 Instruction Issue 

 Memory Level Parallelism 

(MLP) 

 

 Data Access Patterns 

 Coalescing 

Computational Bottlenecks 

 Long-latency memory 

accesses 

 

 Synchronization 

overheads 

 

 Data Access Patterns 

 Control Divergence 

Goal: remove entanglement between the bottlenecks 
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GPU Programmability Challenges 

 Mismatch CTA size/shape and shared data size/shape 

 Leads to thread divergence (lots of ‘if’ statements) 

Goal: decouple CTA size/shape from data size/shape 
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Warp Specialization 

 Differentiate warps into compute and DMA* 

 

 DMA warps 
 Maximize MLP 

 

 Compute warps 
 No stalls due to memory 

 

 Producer-consumer synchronization 
 Enable better overlapping of compute and memory accesses 

 

 CudaDMA objects to manage warp specialization 
 Describe data transfer patterns 

 Independent of warp count 

 
10 * D. Merrill and A. Grimshaw. Revisiting Sorting for GPGPU Stream Architectures. 



CudaDMA  API 
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CudaDMA API 

 Declare CudaDMA object 

to manage shared buffer 

 

 Separate DMA and 

compute warps 

 

 Provide synchronization 

primitives 

 

 Perform repeated transfer 

operations 

class cudaDMA 

{ 

public: 

  // Base constructor 

  __device__ cudaDMA ( 

    const int dmaID, 

    const int num_dma_threads, 

    const int num_comp_threads, 

    const int thread_idx_start); 

public: 

  __device__ bool owns_this_thread(); 

public: 

  // Compute thread sync functions 

  __device__ void start_async_dma(); 

  __device__ void wait_for_dma_finish(); 

public: 

  // DMA thread sync functions 

  __device__ void wait_for_dma_start(); 

  __device__ void finish_async_dma(); 

public: 

  __device__ void execute_dma( 

      void *src_ptr, void *dst_ptr); 

}; 

12 



CudaDMA Application Structure 

 Declare shared buffer at 

kernel scope 

 Declare CudaDMA 

object to manage buffer 

 Split DMA warps from 

compute warps 

 Load buffer using DMA 

warps 

 Process buffer using 

compute warps 

 Iterate (optional) 

__global__  

void cuda_dma_kernel(float *data) 

{ 

   __shared__ float buffer[NUM_ELMTS]; 

   cudaDMA dma_ld(0,NUM_DMA_THRS, 

     NUM_COMPUTE_THRS, NUM_COMPUTE_THRS); 

 

   if (dma_ld.owns_this_thread()) { 

      // DMA warps 

      for (int i=0; i<NUM_ITERS; i++) { 

        dma_ld.wait_for_dma_start(); 

        dma_ld.execute_dma(data,buffer); 

        dma_ld.finish_async_dma(); 

      } 

   } 

   else { // Compute warps 

      for (int i=0; i<NUM_ITERS; i++) { 

        dma_ld.start_async_dma(); 

        dma_ld.wait_for_dma_finish(); 

        process_buffer(buffer); 

      } 

   } 

} 
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Execution Model 

 Use PTX named barriers 

 bar.sync 

 bar.arrive 

 Available on Fermi 

 

 Fine-grained 

synchronization 

Compute 

Warps 

DMA 

Warps 

Named 

Barrier 1 

Named 

Barrier 2 

Named 

Barrier 1 

Named 

Barrier 2 

Iteration i 

Iteration i+1 

wait_for_dma_start 

bar.sync 

finish_async_dma 

bar.arrive 

start_async_dma 

bar.arrive 

wait_for_dma_finish 

  bar.sync 
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CudaDMA Methodology 
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Buffering Techniques 

 Usually one set of DMA 
warps per buffer 

 

 Single-Buffering 
 One buffer, one warp group 

 

 Double-Buffering 

 Two buffers, two warp groups 

 

 Manual Double-Buffering 
 Two buffers, one warp group 
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CudaDMA Instances 

 CudaDMASequential 

 

 CudaDMAStrided 

 

 CudaDMAIndirect 

 Arbitrary accesses 

 

 CudaDMAHalo 

 2D halo regions 

 

 CudaDMACustom 
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Access Patterns 

 Explicitly state data loading pattern in code 

 

 Decouple implementation from transfer pattern 

 

 Common patterns implemented by experts 

 Used by application programmers 

 

 Optimized for high memory bandwidth at low warp 

count 
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Experiments 
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Micro-Benchmarks 

 Same modified SAXPY kernel shown earlier 

 Fix compute intensity (6 B/FLOP), vary warp count 
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BLAS2: SGEMV 

 Dense matrix-vector 

multiplication 

 

 CudaDMASequential for 

loading vector elements 

 

 CudaDMAStrided for 

loading matrix elements 

 

 Varied buffering schemes 

 

 Up to 3.2x speedup 
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3D Finite Difference Stencil 

 8th order in space, 1st 

order in time computation 

 

 Load 2D slices into 

shared for each step in 

Z-dimension 

 

 Loading halo cells uses 

uncoalesced accesses 

 Earlier version of 

cudaDMAHalo 

Figures from: P. Micikevicius. 3D Finite Difference Computation on GPUs Using CUDA. 
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3D Finite-Difference Stencil 

 Use DMA warps 
for loading halo 
cells as well as 
main block cells 

 

 Speedups from 
13-15% 

 

 Improvement 
from more MLP 
and fewer load 
instructions 
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Conclusions 

 CudaDMA 

 Extensible API 

 Create specialized DMA Warps 

 Works best for moderate compute intensity applications 

 Decouple transfer pattern from implementation 

 Optimized instances for common patterns 

 CudaDMASequential, CudaDMAStrided 

 CudaDMAIndirect, CudaDMAHalo 

 Speedups on micro-benchmarks and applications 
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Download CudaDMA: 

http://code.google.com/p/cudadma 

 

Tech Talk at NVIDIA Booth on Thursday 

at 1pm 

 

Questions? 



Backup Slides 
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Asynchronous DMA Engines 

 Decouple transfer implementation from specification 

 Asynchronous to overlap computation and memory access 

 

 Ironman abstraction for ZPL (software) 

 

 Sequoia runtime interface (software) 

 

 Cell Broadband Engine (hardware) 

 

 Imagine Stream Processor (hardware) 
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Code Example: SGEMV 

 BLAS2: matrix-vector 
multiplication 

 

 Two Instances of 
CudaDMA objects 

 

 Compute Warps 

 

 Vector DMA Warps 

 

 Matrix DMA Warps 
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Synchronization Points 

 Compute Warps 

 start_async_dma() 

 wait_for_dma_finish() 

 

 DMA Warps 

 wait_for_dma_start() 

 finish_async_dma() 

29 



Future Work 

 Additional CudaDMA Instances 

 Indirect memory accesses 

 

 More applications 

 Sparse-Matrix operations 

 

 Target for higher-level language/DSL compilers 

 Copperhead, Liszt 

 

 Actual hardware DMA engines for GPUs 

 

 Warp-specialization aware programming models 

 Compiler implementations 
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Fast Fourier Transforms 

 1D, Power of 2 FFTs 

 

 Compared to optimized 
CUFFT library (version 
4.0) 
 32 warps per SM 

 

 CudaDMA (custom 
loader) 
 24 warps per SM 

 16 compute, 8 DMA 

 

 Same performance at 
lower warp count 
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