
A Practical 
Concurrent Binary 

Search Tree

Nathan Bronson, Jared Casper, 
Hassan Chafi, and Kunle Olukotun

Stanford University

1

PPoPP 2010



SnapTree

Optimistically concurrent
 Linearizable reads and writes, invisible readers

Good performance and scalability
 31% single-thread overhead vs. Java‟s TreeMap

 Faster than ConcurrentSkipListMap for many 
operation mixes and thread counts

Fast atomic clone
 Lazy copy-on-write with structural sharing

Provides snapshot isolation for iteration

2



Concurrent binary tree challenges

 Every operation accesses the root, so concurrent reads 
must be highly scalable

 Optimistic concurrency allows invisible readers

 It‟s hard to predict on first access whether a node will 
be modified later

 STMs avoid the deadlock problem of lock upgrades

 Multiple links must be updated atomically

 STMs provide atomicity and isolation across writes

Software Transactional Memory (STM) addresses all 
these problems, but has high single-thread overheads 

3



Tailoring STM ideas for trees

1. Provide no transactional interface to the outside world

2. Reason directly about semantic conflicts

3. Change the algorithm to avoid dynamically-sized txns

4. Inline control flow and metadata
 No explicit read set or write buffer, no indirection

5. Move safety into the algorithm
 No deadlock detection, privatization safety, or opacity in the STM

4

generality

d
yn

am
ic

 s
af

et
y

tree
algorithm

STM

refactor
inline +

discard



Bad: Searching in a single big txn

 Optimistic failure  start over

 Concurrent write anywhere on the path  start over

5

14

10

11

19

begin

commit



commit

Better: Nest for partial rollback

 Optimistic failure  partial rollback

 Concurrent write anywhere on the path  partial rollback

6

14

10

11

19

begin

commit

begin

begin

commit

begin

commit



Even better: Hand-over-hand txns

 Hand-over-hand optimistic validation

 Commit early to mimic hand-over-hand locking

7

14

10

11

19

begin

commit

begin

commit

begin

commit

begin

commit



Overlapping non-nested txns?

a = Atomic.begin();
r1 = read_in_a;
b = Atomic.begin();

r2 = read_in_b;
a.commit();

...
b.commit();

 “read-only commit” == “roll back if reads are not valid”*
 Just a conditional non-local control transfer

 This gives a meaning, but what about correctness?

* - A bit sloppy, but generally accurate for STMs that linearize
during commit

8

What does this mean?



Correctness of hand-over-hand

Explicit state = current node n

 Implicit state = range of keys rooted at n
 Guarantees that if a node exists, we will find it

What concurrent
mutations are possible?

9

14

10

11

19

n = 14, branch  (-,)

n = 10, branch  (-,14)

n = 11, branch  (10,14)



Conflict between search and rotation

Branch rooted at x grows  search at x is okay
Branch rooted at y shrinks  search at y is invalid

10

x

A B

C

y

y

B C

A

x



Best: Tree-specific validation

 Hand-over-hand optimistic validation

 Version number only incremented during „shrink‟

11

14

10

11

19

begin

shrunk?

begin

shrunk?

begin

shrunk?

begin

shrunk?



Updating with fixed-size txns

 Insert can be the end of a hand-over-hand chain

 Restoring balance in one fixed-size txn is not 
possible
 Red-black trees may recolor O(log n) nodes

 AVL trees may perform O(log n) rotations

 Solution  relaxed balance
 Extend rebalancing rules to trees with multiple defects

 Possible for red-black trees and AVL trees, AVL is simpler

 Defer rebalancing rotations
 Originally this was done on a background thread
 We will rebalance immediately, just in separate txns

 Tree will be properly balanced when quiescent

12



Node search(K key) {
Txn txn = Atomic.begin();
return search(txn, root, key);

}
Node search(Txn parentTxn, Node node, K key) {

int c = node == null ? 0 : key.compareTo(node.key);
if (c == 0) {
parentTxn.commit();
return node;

} else {
Txn txn = Atomic.begin();
Node child = c < 0 ? node.left : node.right;
parentTxn.commit();
return search(txn, child, key);

}
}

Inlining example: recursive search

13

transactional

read barriers

hand-over-hand

transactions



Node RETRY = new Node(null); // special value

Node search(K key) {
while (true) {
Txn txn = Atomic.begin();
Node result = search(txn, root, key);
if (result == RETRY) continue;
return result;

}
}
Node search(Txn parentTxn, Node node, K key) {

int c = node == null ? 0 : key.compareTo(node.key);
if (c == 0) {
if (!parentTxn.isValid()) return RETRY;
return node;

} else {
...

Inlining STM control flow

14



class Node { volatile long version; ... }
final Node rootHolder = new Node(null);

Node search(K key) {
while (true) {
long v = rootHolder.version;
if (isChanging(v)) { awaitUnchanging(rootHolder); continue; }
Node result = search(rootHolder, v, rootHolder.right, key);
if (result == RETRY) continue;
return result;

}
}
Node search(Node parent, long parentV, Node node, K key) {
int c = node == null ? 0 : key.compareTo(node.key);
if (c == 0) {
if (parent.version != parentV) return RETRY;
return node;

} else {
...

Inlining txn state + barriers

15

Inlined read barrier

Inlined read set

Inlined validation



Atomic clone()

Goal: snapshot isolation for consistent iteration

Strategy: use copy-on-write to share nodes

1. Separate mutating operations into epochs
 Nodes from an old epoch may not be modified

 Epoch tracking resembles a striped read/write lock
 Tree reads ignore epochs
 Tree writes acquire shared access

2. Mark lazily
 Initially, only mark the root

 Mark the children before making a copy

3. Copy lazily
 Make private copies during the downward traversal

16



Cloning with structural sharing

17



Cloning with structural sharing

18



Cloning with structural sharing

19



Lazy marking and copy-on-write

20



Lazy marking and copy-on-write

21



Lazy marking and copy-on-write

22



Lazy marking and copy-on-write

23



Lazy marking and copy-on-write

24



SnapTree performance

25
8 cores, 16 hardware threads. Skip-list and lock-tree are from JDK 1.6 



ConclusionConclusion – Questions?

Optimistic concurrency tailored for trees
 Specialization of generic STM techniques

 Specialization of the tree algorithm

Good performance and scalability
 Small penalty for supporting concurrent access

 Fast atomic clone
 Provides snapshot isolation for iteration

Code available at

http://github.com/nbronson/snaptree

26



Deleting with fixed-size txns

Nodes with two children cause problems

Successor must be spliced
in atomically, but it might
be O(log n) hops away

Many nodes must
be shrunk

External tree?

Wastes n-1 nodes

27



“Partially external” trees

Unlink when convenient

During deletion, during rebalancing

Retain as routing node when inconvenient

 If fixed-size transaction is not sufficient for unlink

28



Node counts for randomly built trees

29


