
Programming the Memory Hierarchy Revisited: Supporting
Irregular Parallelism in Sequoia ∗

Michael Bauer
Computer Science Department,

Stanford University
mebauer@cs.stanford.edu

John Clark
Computer Science Department,

Stanford University
jpclark@stanford.edu

Eric Schkufza
Computer Science Department,

Stanford University
eschkufz@cs.stanford.edu

Alex Aiken
Computer Science Department,

Stanford University
aiken@cs.stanford.edu

Abstract
We describe two novel constructs for programming parallel ma-
chines with multi-level memory hierarchies:call-up, which allows
a child task to invoke computation on its parent, andspawn, which
spawns a dynamically determined number of parallel children until
some termination condition in the parent is met. Together weshow
that these constructs allow applications with irregular parallelism to
be programmed in a straightforward manner, and furthermorethese
constructs complement and can be combined with constructs for
expressing regular parallelism. We have implemented spawnand
call-up in Sequoia and we present an experimental evaluation on a
number of irregular applications.

1. Introduction
For most of the past two decades clusters of single processorma-
chines have been a very popular high-performance computingplat-
form. These machines are typically programmed using a message
passing library such as MPI [1] or a partitioned global address
space (PGAS) language such as UPC or Titanium [2, 3]. Charac-
teristic of both programming models is that the programmer is pre-
sented with a two-level memory hierarchy: memory is dividedinto
a processor’s local memory, where accesses are guaranteed to be
relatively fast, and the global or remote memory of all the other pro-
cessors in the cluster, accesses to which are likely to be slow. With
the transition to multicore, however, clusters of multicore machines
are becoming much more common, and these machines present at
least three interesting levels of memory: the individual core, on-

∗ This work was supported in part by grants from the Departmentof En-
ergy’s Predictive Science Academic Alliance Program (PSAAP), the Army
High Performance Research Center (AHPCRC), and a generous grant of
time on the Cerillos supercomputer through the Los Alamos National Lab’s
Institutional Computing Program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’11, February 12–16, 2011, San Antonio, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0119-0/11/02. . . $5.00

void task<inner> matmul(in float A[M][P],
in float B[P][N],
inout float C[M][N])

{
// Code to name submatrices of A, B, and C
// called Ablks, Bblks, and Cblks, respectively
// block sizes are given by U, V, and X

// Compute all blocks of C in parallel.
mappar (int i=0 to M/U, int j=0 to N/V) {

mapseq (int k=0 to P/X) {
// Invoke the matmul task recursively
// on the subblocks of A, B, and C.
matmul(Ablks[i][k],Bblks[k][j],Cblks[i][j]);

}
}

}
void task<leaf> matmul(in float A[M][P],

in float B[P][N],
inout float C[M][N])

{
// Compute matrix product directly
for (int i=0; i<M; i++)

for (int j=0; j<N; j++)
for (int k=0; k<P; k++)

C[i][j] += A[i][k] * B[k][j];
}

Figure 1. Dense matrix multiplication in Sequoia.

chip, and global memory. The Roadrunner petaflop supercomputer
has four or five memory levels, depending on how one counts [4].
These recent, and likely lasting, changes in machine organization
have led to interest in programming models for multi-level memory
hierarchies that go beyond the two-level view of memory as simply
local or global.

Sequoia is a programming system designed for machines with
multi-level memory hierarchies. In previous work, the focus of Se-
quoia was on regular applications, and the issue of how to program
irregular applications was explicitly left open [5]. In this paper we
present programming constructs designed to support irregular com-
putations on machines with multi-level memory hierarchies, and
we describe an implementation of these ideas as extensions to Se-
quoia. The extensions are conservative in the sense that Sequoia

programs that do not use the new features perform exactly as be-
fore. Furthermore, the extensions complement Sequoia’s existing
support for regular parallel computations, allowing straightforward
implementations of programs that require a mix of regular and ir-
regular parallelism.

To set the stage, we briefly describe how a canonical regular
application, dense matrix multiply, is implemented in Sequoia.
An analysis of the assumptions underlying the constructs used
in this example illustrates the limitations of Sequoia for irregular
computations.

The key parts of a Sequoia program for matrix multipli-
cation are given in Figure 1. This program defines twotasks,
task<leaf> matmul andtask<inner> matmul; task is a key-
word andmatmul is the task name, which has two implementations
calledinner andleaf. A task is the basic unit of computation and
locality in Sequoia. Tasks areisolated: tasks cannot refer to global
variables or take pointer arguments, and so they cannot directly
refer to data in use by other tasks. Tasks communicate via param-
eters passed to and results returned from calls to other tasks. We
refer to the caller as theparent task and the callee as thechild
(or sub-) task. Task parameter passing is copy-in, copy-out (i.e.,
call-by-value-result [6]).

During compilation, each task in the source program is assigned
to a specific memory (and a specific processor) in the target ma-
chine. At runtime, all of a task’s inputs and storage for its outputs
are resident in the assigned memory. When a parent task and its
children are assigned to different memories by the compiler, the
child task call at runtime results in communication as the task call’s
arguments are copied to the child task’s memory at the start of the
task, and the results are copied back to the parent task’s memory
when the child terminates. Thus, task calls express the movement
of data through the memory hierarchy.

Parallelism is expressed viamappar, a looping construct that
declares each loop iteration can be executed independentlyof any
other. In Figure 1,task<inner> matmul uses amappar to com-
pute each submatrix of the output arrayC in parallel. Inside the
mappar the analogous, but sequential,mapseq construct accumu-
lates the partial results for each subblock ofC using a sequence
of recursive calls tomatmul on subblocks ofA andB. The recur-
sive call tomatmul invokes eithertask<inner> matmul or, if we
have proceeded far enough in the divide and conquer computation,
task<leaf> matmul, which is represented here by a naive triply-
nested loop. (Which variant is called depends on the number of
memory levels of the target machine and is decided in a separate
mappingphase by either the programmer or the compiler.) A snap-
shot of the running program for a three-level machine looks like
the tree of task invocations shown in Figure 2. The program de-
fines a tree-shaped task hierarchy, with large problems nearthe root
and progressively smaller problems at lower levels of the tree until
task<leaf> matmul is executed at the leaves of the computation.
More background details of Sequoia are discussed in Section2.

While Sequoia has other important parallel control constructs
(e.g., reductions), for the purposes of discussing regularvs. irreg-
ular computation, we need only focus on themappar statement in
the inner variant of matmul. An important detail is an implied
barrier at the end of themappar: All of the parallel instances of the
statement inside themappar must complete before execution con-
tinues to the statement after themappar. The example in Figure 1
illustrates two assumptions underlyingmappar:

1. The working set of of each subtask is computed in advance.Task
isolation implies that all of the inputs to a task must be known
at the time a task is invoked. Furthermore, to guarantee thatthe
child task has sufficient space to complete its computation,at
least an upper bound on the size of a task’s result must also be
known before task invocation.

matmul

large matrix multiply

A B C

matmul

medium matrix multiply

matmul

medium matrix multiply

small matrix multiply small matrix multiply small matrix multiply small matrix multiply

. . .

.

Figure 2. An example task hierarchy for a machine with three
levels of memory.

2. The number of subproblems is computed in advance.The num-
ber of parallel subtasks is fixed on entry to themappar. If the
subtasks return results to the parent that represent new parallel
work, that work can only be done after themappar is complete.

For our purposes, these two properties can be taken as the def-
inition of a regular parallel computation; we consider a problem
where either the number of subproblems is unknown, or the in-
put/output size of the subproblems is unknown in advance, tobe
irregular. For assumption (1), there are two common situations in
which the working set of a task is not known in advance:

• There is a large input data set, but the task only uses a small
portion of it, and it is necessary for performance reasons tosend
the task only that small subset. Unfortunately, the task computes
the subset it needs, so the input working set is unknown before
task invocation. Algorithms that benefit from caching often
have this structure. Effectively, we would like the parent to
function as a cache for the child, allowing the child to compute
what it needs and then pull additional data from the parent, but
isolation prevents this pattern from being expressed directly.

• The output is potentially large relative to the input, so much so
that the problem size a task can handle is limited by the size of
the output (which must fit in the memory level allocated to the
task), not the input. Some search problems where one or a few
subtasks may return the entire answer are in this category, as is
any problem that has the character of decompressing the input.
We would like child tasks to be able to off-load partial results
to the parent and then continue executing, thereby enabling
children to work on (usually more efficient) larger problem
sizes, but again task isolation requires that the entire output is
kept at the child and returned on task completion.

The dual problems of unknown input and unknown output size
affect not just performance but also how programs are written.
Consider a problem in which the input for the natural task one
would like to write is unknown. The only way to express this in
Sequoia is to write two tasks. The first taskA computes the data
that is needed and returns an output describing that data request to
the parent. The parent then launches a second taskB with all of
the input data that finishes the job. Essentially, one ends upwriting
an event-driven system, where events are requests to the parent for
more data and the tasks are stages of computation between events.
Unfortunately, the problem is even somewhat worse: not onlymust
we program in an event-driven style, but each stage is synchronized
by the barrier at the end of amappar, meaning that no typeB
task can begin until all typeA tasks have completed. Of course,
if there is more than one unknown input we may need to have more

than two stages in our pipeline of events, further compounding the
programming problem.

One way to solve this problem is to adopt programming con-
structs such as threads or the processes in PGAS languages that are
not isolated—for example, threads can share arbitrary state with
one another. Isolation, however, is a great property to have, as it
dramatically simplifies both program reasoning and the compiler
scheduling problem in multi-level machines. What we desireis an
explicit, but limited, way to “break out” of isolation.

To relax assumption (1) when needed, we propose the ability
of child tasks tocall-up to the parent. That is, just as parents can
invoke tasks on the children (acall-down), we add the symmetric
ability for children to invoke tasks on parents. Call-up violates
complete isolation, but it does so explicitly and, as we shall see,
has a natural semantics. Note that with call-up child tasks are still
isolated from each other; the change is in the relationship of a child
task to its parent task.

Turning to assumption (2), consider a situation where the num-
ber of parallel subtasks is initially small, but each subtask generates
more jobs of the same kind. This is a common pattern; every work-
list algorithm has this flavor, where there is a set of jobs to do, and
each job may generate new jobs. Using onlymappar, a worklist
algorithm can only be executed in phases, where all the jobs on
the worklist at the beginning of phasei must complete before we
can begin executing any of the jobs generated during phasei. If a
particular phase has fewer jobs than processors, or about the same
number of jobs as processors but the jobs have high variance in
execution time, utilization will be unnecessarily low.

To mitigate this problem we would like a parallel control con-
struct that does not fix in advance the number of parallel subtasks it
can invoke. We proposespawn, a construct that launches an unspec-
ified number of subtasks until some termination condition ismet in
the parent. Wheremappar is analogous to a parallel boundedfor
loop,spawn is analogous to a parallelwhile loop.

We stress that for regular or nearly regular computations the
constructs provided by the existing Sequoia language are expres-
sive and programs are both very portable and efficient [5, 7, 8].
However, previous work on programming multi-level machines and
on Sequoia in particular does not address the problem of program-
ming irregular applications, which is the focus of this paper. Our
main contributions are:

• we propose two constructs,call-up and spawn, for program-
ming irregular applications on hierarchical memory machines
(Section 3);

• we give a formal operational semantics for a core calculus
including call-up and spawn, showing how these constructs fit
into an overall language design (Section 4);

• we evaluate an implementation (Section 5) of our proposal on
several irregular applications on a cluster, an SMP, and a cluster
of SMPs (Section 6).

Section 7 elaborates on related work, and Section 8 summarizes
with a discussion of design alternatives and future work.

2. Hierarchical Memory
Before presenting our proposal, this section gives some additional
background on Sequoia. Sequoia requires the programmer to tar-
get an abstract parallel machine that is a tree of distinct memory
modules, a representation that extends the Parallel MemoryHierar-
chy [9]. Data transfer between memory modules is conducted via
(potentially asynchronous) block transfers. Data transfer occurs at
all levels of the hierarchy through task arguments, which may be
declaredin (read only),out (write only), orinout (a task argu-
ment that may be both read and written; see Figure 1 for exam-

Shared Memory
Multi-processor

CPU CPU

Main
Memory

...
CPU CPU

Node
Memory

Node
Memory

...

Aggregate Cluster Memory

Cluster

Node
Memory

Node
Memory

...

CPU CPU... CPU CPU...

Cluster + SMP

Aggregate Cluster Memory

Figure 3. Hierarchical memory machines.

ples). Each task defines a namespace that exists entirely within one
memory in the memory hierarchy. Unlike the original Sequoiapro-
posal [5], in our approach there are no restrictions on the computa-
tion a task may perform within a level (see Section 3). There may
be multiple versions, calledvariants of the same task, allowing,
for example, different implementations of the base and inductive
cases in divide-and-conquer algorithms (c.f., theinner andleaf
versions ofmatmul in Figure 1).

The computation tree described by a Sequoia program is ab-
stract. Neither the width (the number of parallel subtasks)nor the
depth of the tree is specified in the program. The communica-
tion protocols used to move data through the machine are alsoab-
stracted through parameter passing.

Parallel machines are also modeled as trees. Amachine descrip-
tion defines for a target machine the number of levels and the num-
ber and size of memories at each level, among other details. The
tree model provides a simple abstraction for programmers toreason
about, but there are important non-tree topologies used in practice,
particularly a cluster of nodes where peers in the cluster commu-
nicate directly with each other rather than through a parent. Fol-
lowing [5], we model clusters usingvirtual levelsthat do not corre-
spond to any single physical memory. A cluster virtual levelis the
sum of all the node memories in the cluster; this forms a distinct
address space which is separate from the individual node memo-
ries, which are the children of the virtual level. Moving data from
the virtual level to a particular child node corresponds to commu-
nication across the cluster, as data stored somewhere in thevirtual
level’s physically distributed address space is moved to belocal to
one node. Figure 3 illustrates three typical hierarchical machines:
a shared memory multiprocessor (SMP), a cluster with a virtual
level that aggregates all of the local node memories, and a common
three-level machine, a cluster of SMPs.

The compilation problem for Sequoia is to map the unbounded,
abstract task tree on to the fixed, definite machine tree. Amapping
assigns tasks in the program to specific levels of the target ma-
chine’s hierarchy. Mappings are either written by hand in a separate
mapping language or are generated automatically by an auto-tuner.
Previous work suggests auto-tuning is always preferable [10], but
the mappings used in this paper are hand-written. Beyond themap-
ping, the compiler performs important optimizations such as coa-
lescing data transfers, copy elimination across levels of the memory
hierarchy, and software pipelining of compute and communication
between adjacent memory levels [7]. The compiler also manages
the tedious task of generating and compiling code for each level
of the hierarchy; as the machines can be heterogeneous multiple
distinct platform compilers may be involved. A simple, portable
run-time interface abstracts away the actual communication mech-
anism between different levels of the memory hierarchy (e.g., MPI
calls, DMAs, simple loads and stores to RAM, etc.) [8].

3. Supporting Irregular Applications
This section gives an informal overview of our constructs for ir-
regular parallelism in programs for hierarchical memory machines;

Section 4 presents a more formal treatment. We illustrate our ideas
using a simple work-list algorithm, shown in Figure 4. We post-
pone an explanation of what this example actually does untilafter
we have presented the programming constructs.

Unlike the original Sequoia design, we allow general object-
oriented (C++) code in any task at any level of the memory hierar-
chy. Thus, tasks may create and use objects and build pointerdata
structures. These are confined to within the task however; argu-
ments to subtasks, with one exception, cannot be pointers orrefer-
ences, or structures (e.g., arrays) that contain pointers or references.

The one exception is that a task may take aparent object, in-
dicated using theparent type qualifier, as an argument. In Fig-
ure 4, thedoWork method (bothinner andleaf variants) takes
a pointer to a worklist objectwl passed from the calling task (not
shown). Parent objects may have no public fields. The only opera-
tion permitted on a parent object is to invoke its public methods. A
parent object method invocation is acall-up: the method executes
in theparent’s address space, not the address space of the task in-
voking the parent object method. In Figure 4, in the leaf variant
of doWork the method invocationwl->addWork(newWork) adds
newWork to the worklistwl maintained in the parent task’s mem-
ory level. Similarly, earlier in the same task the parent method call
wl->getWork(work) pulls work to do off of the work list stored
in the parent. A call-up is synchronous: like a regular function call
in a standard language, the child task is suspended until thecall-up
returns its result from the parent.

Call-up introduces concurrency into the Sequoia programming
model, because multiple children may attempt to execute a call-
up in the parent’s address space simultaneously. We enforcethe
following simple semantics. During subtask execution the parent
blocks, meaning it does not perform any other computation until
the subtask returns (or, in the case of amappar, until all of the
parallel subtasks return). Thus, while call-ups can modifydata
structures in the parent’s heap, there are no races with the parent’s
execution. We also require that all call-ups execute atomically in
some unspecified order in the parent. That is, concurrent call-
ups from multiple children are always serializable in the parent’s
address space. Call-ups may actually be executed in parallel if there
are sufficient resources and it is safe to do so, although our current
implementation does not include any such optimization.

Consider the methodsgetWork andaddWork in Figure 4. These
methods are invoked only in a call-up and so always execute inthe
address space of the parent. (Note that these areleaf tasks, which
with call-ups no longer means that they execute at the leavesof
the machine hierarchy; it only means that these tasks have nosub-
tasks.) Thus, whilegetWork andaddWork modify the worklist data
structure, there is no correctness issue because call-ups are atomic.

The parallel control constructspawn takes two arguments: a
task call and a termination test. Aspawn may launch any number
of instances of the task call, and it may continue to launch new
ones at any time during execution of thespawn. Note that every
spawned subtask is identical, sospawn assumes the use of a call-
up to retrieve different data for each subtask. Aspawn terminates
when (1) its termination test (evaluated in the address space of the
parent) is true, and (2) all subtasks have terminated. Condition (2) is
necessary. Consider the methoddoWork in Figure 4, which spawns
worker tasks that add and remove jobs from a worklist, and which
terminates when the worklist is empty and there are no workertasks
still executing. The worklist may be empty but if there is a subtask
running it may insert one or more new tasks into the worklist;thus,
we need to know that subtasks cannot invalidate the termination
test, which is done by requiring that all subtasks have completed.

We now briefly explain the worklist example. Initially,doWork
spawns some number of worker tasks which all receive a pointer
to the worklist in the parent’s memory through a parent object.

void task<inner> Worklist::doWork(parent Worklist* wl) {
spawn(doWork(wl), wl->isDone());

}
void task<leaf> Worklist::doWork(parent Worklist* wl) {
// Get work[] (an array of size 1):
int* work;
wl->getWork(work);
int unit = work[0];
delete [] work;

// Add work (work[0] new elements, each work[0]-1):
if (unit > 1) {

int* newWork = new int[unit];
for (unsigned int i = 0; i < unit; i++)

newWork[i] = unit-1;
wl->addWork(newWork);
delete [] newWork;

}
}
void task<leaf> Worklist::getWork(out int work[]) {
work = new int[1];
if (list_.empty()) // If the worklist is empty

work[0] = 0; // send no work.
else

work[0] = list_.pop();
}
void task<leaf> Worklist::addWork(in int work[]) {
for (unsigned int i = 0; i <= work[0]; i++)

list_.push(work[i]);
}
bool task<leaf> Worklist::isDone() {
return list_.isEmpty();

}

Figure 4. A paradigmatic worklist implementation.

Each taskdoWork first gets some work using a call-up of the
worklist’s getWork method, and then adds some number of jobs
to the worklist using the worklist’saddWork method. This example
illustrates all of the irregular features discussed in Section 1: the
parent acts as a cache for the children, holding the current worklist;
the children produce varying amounts of output in the form of
new jobs to be placed on the worklist; thespawn construct allows
new work added to the worklist to be allocated to some child task
without the need to first synchronize with all of the children.

There is considerable flexibility in the implementation of
spawn. First, the runtime system is free to launch as many sub-
tasks as necessary to keep the machine busy. Second, the runtime
system can evaluate the termination predicate at any time, including
while there are still child tasks running, to gain information about
whether it is worthwhile to respawn terminated subtasks or not (the
number of times the termination test is evaluated is unspecified,
and so the test should be side-effect free). Our current runtime im-
plementation ofspawn prematurely tests the termination condition
as part of a heuristic for determining when to respawn children (see
Section 5). In addition, this runtime heuristic could be customized
easily by the programmer to match specific applications.

We also enforce two restrictions on call-ups to avoid situations
that are undefined or very difficult to compile well. First, a parent
object only makes sense so long as the parent task instance that
created it is executing; thus, a parent object may be used in any
child (and more generally, any descendant) of the creating parent
task, but may not escape (i.e., outlive) that parent task. The second
restriction is that no call-down may occur within a call-up.That
is, a method that is used as a call-up (i.e., invoked by a parent
object) may have call-ups in its body but not ordinary task calls
(call-downs). Allowing call-downs within call-ups would result in
a difficult scheduling problem, as it would no longer be easy to

statically determine which tasks might run in parallel. Furthermore,
despite considerable experience withspawn, we have yet to find
an example where allowing a call-down within a call-up wouldbe
useful. Both restrictions are easily enforced statically by the type
system.

4. Semantics
This section gives a formal treatment of call-up andspawn. There is
a previously published Sequoia semantics [7] which, unfortunately,
is not expressive enough to describe our extensions; the semantics
presented here is very different. Like [7], however, our program
executions work ontrees of memories. Also following [7], we
model a memoryM as a function from names to values, so rather
than manipulating addresses we use mnemonic variable namesand
M(x) looks up the value of variablex in memoryM . We use the
standard notationM [x← a] to denote the memory that is identical
to M except that the valuea is stored at namex.

A given level of the memory hierarchy has a memoryM , zero
or more sub-machines[T1, . . . , Tn], and two programsP1 andP2:

T := 〈M, C, P1, P2〉
C := [T1, . . . , Tn] n ≥ 0
P := OpM (A = f(B)) | IfM (pred, P1, P2)

| P1; P2 | CopyMi,Mj
(A, B)

| MapparM (k = start : end, P) | SpawnM (P, pred)
| UpM (P) | wait
| resume | −

The program constructs are purposely limited to a core calcu-
lus to keep the semantics small and tractable: standard sequential
constructs (primitive operations, if statements, statement sequenc-
ing), the Sequoia constructs (copying data between memory lev-
els,Mappar, Spawn, and a call-up constructUp), and three oper-
ations needed by the semantics that do not appear in source pro-
grams (wait, resume, and-). Note that every operation that uses
memory is subscripted with the memory level it accesses; a copy
operation is subscripted with two levels, the source and destination
memories, which are always adjacent levels in the hierarchy(i.e.,
parent and child memories). This semantics is at the level ofour im-
plementation’s intermediate language, after source programs have
been desugared and the number of memory levels (depth of the
memory tree) and the number of child memories at each level have
been made explicit in the program.

For a givenconfigurationat a memory level〈M, C, P1, P2〉
there may be two programs executing: onemain taskand one call-
up from the child memory level. This closely reflects our imple-
mentation, which on most platforms implements a memory level
using one thread for the main task and another thread to service
call-ups. The program “−” represents no program—i.e., an idle re-
source. Two special cases are the configurations〈M, C, P,−〉 (or
equivalently〈M, C,−, P 〉) and〈M, C,−,−〉. The former repre-
sents a memory level with a main task but no active call-ups, the
latter represents a memory with no scheduled computation atall;
the memory isidle. No configuration has a call-up without also
having a non-idle main thread.

Notably missing from the core calculus are task calls, which
can be emulated by the other constructs. Given a task definition
task f(in a, out b) { P }, a task call off can be imple-
mented by using copy operations to copy thein parameter to the
corresponding formala in the child memory, executing the bodyP
of f, and then copying theout parameter back tob in the parent
memory. For example,

MapparMi(k = 1 : n, f(x[k], y[k])) ≡
MapparMi(k = 1 : n, copyMi−1,Mi(a, x[k]); P; copyMi,Mi−1(y[k], b)

assuming operations inP are suitably annotated to read and write
data in memory levelMi−1. Call-ups invoked on parent objects can

similarly be expanded into a sequence of primitive operations that
copy arguments from the child to the parent memory, execute the
body of the call-up, and copy the result back to the child.

Table 1 gives a small step operational semantics for the corecal-
culus. Each rule describes one step of execution:〈M, C, P1, P2〉 →
〈M ′, C′, P ′

1, P
′

2〉. The first three rules are for familiar statements:
primitive operationsA = f(B), if statements (only the rule for
a predicate that evaluates totrue is shown; the symmetric rule for
false is also standard), and statement sequencing. The interesting
thing to note about these representative sequential statements is
that they take place in one memory level, having no effect on their
child memories. Notice that most of the rules work by executing
the first statementP1 in a sequenceP1; P2 and transitioning to a
configuration whereP2 remains to be executed. Thus, the rule for
statement sequences simply rearranges statement sequences using
the associativity of “;” to ensure the first statement is primitive and
not itself a statement sequence. To guarantee statements are al-
ways part of a sequence (so that some rule will match) we assume
programs are initially of the formP ;−.

The copy operation comes in two flavors: copying data from
parent to child and from child to parent. Note that copies in either
direction are initiated by the children; on most architectures this is
the more efficient arrangement.

A Mappar has two cases. Ifstart ≤ end and there is an idle
child, a fresh version of theMappar computation can be launched
in that child’s memory. Ifstart > end, then the parent implements a
barrier: the parent’s main task blocks until all children are idle and
the parent has no call-up to service, at which point the main task
continues to the next statement. ASpawn is similar: aSpawn can
launch a fresh copy of the parallel computation on an idle child,
and if all children are idle, the parent has no call-up to service,
and the termination predicate is true, theSpawn can terminate and
the parent’s main task moves on to the next statement. The seman-
tics allows a choice when the termination condition evaluates to
true: theSpawn may terminate (assuming the other conditions for
termination are also met) or some children may be respawned in-
stead. This semantics allows implementations maximum flexibility,
though we expect that implementations will generally not respawn
child tasks when the termination condition istrue.

In summary, the main differences between aMappar andSpawn
are that theMappar has a fixed number of instances to execute
and each child is given a distinct portion of the work at invocation
(represented by the value ofk in the child memory in the [Mappar]
rule), whereas theSpawn launches instances until the termination
predicate is true. Thus,Mappar is like afor loop andSpawn is akin
to awhile loop.

A call-up Up(. . .) launches a computation on the parent if the
parent is not currently executing another call-up (i.e., the parent’s
configuration is of the form〈M, C, P,−〉). The program invoking
the call-up (which may be the child’s main task or another call-up
that the child is handling) must block until the call-up completes,
which is the purpose of inserting await in the child program
and aresume at the end of the call-up program in the parent.
The[Resume] rule restarts the child computation by removing the
wait when the parent reaches theresume. Since only one child
can execute at a time, there is always only onewait that aresume
can match.

The [Swap] rule switches the order of the two programs in a
configuration. All of the rules execute using only the third com-
ponent of a configuration, so this rule has the effect of switching
the active program between the main task and any call-up awaiting
service. It is easy to prove (by induction on the length of an execu-
tion) that if a memory level has two programs neither of whichis
−, then the main task is always either at aSpawn or aMappar; i.e.,
call-ups can only happen inside ofSpawn or Mappar. The[Spawn]

〈Mi, C, OpMi
(A = f(B)); P, U〉 → 〈Mi[A← f(B)], C, P, U〉 [Primitive Op]

Mi(pred) = true

〈Mi, C, IfMi
(pred, P1, P2); P, U〉 → 〈Mi, C, P1;P, U〉

[If]

〈Mi, C, (P1;P2); P3, U〉 → 〈Mi, C, P1; (P2;P3), U〉 [Sequence]

〈Mi, [. . . , 〈M
j

i−1
, Cj , CopyMi,Mi−1

(A, B); P j , Uj〉, . . .], P, U〉 →

〈Mi[A← M
j
i−1

(B)], [. . . , 〈Mj
i−1

, Cj , P j , Uj〉, . . .], P, U〉
[Copy Up]

〈Mi, [. . . , 〈M
j

i−1
, Cj , CopyMi−1,Mi

(A, B); P j , Uj〉, . . .], P, U〉 →

〈Mi, [. . . , 〈M
j

i−1
[A←Mi(B)], Cj , P j , Uj〉, . . .], P, U〉

[Copy Down]

start ≤ end

〈Mi, [. . . , 〈M
j

i−1
, Cj ,−,−〉, . . .], Mappar(k = start : end, P0); P1, U〉 →

〈Mi, [. . . , 〈M
j

i−1
[k ← start], Cj , P0;−,−〉, . . .], Mappar(k = start + 1 : end, P0); P1, U〉

[Mappar]

start > end

C = [〈M1

i−1
, C1,−,−〉, . . . , 〈Mn

i−1
, Cn,−,−〉]

〈Mi, C, Mappar(k = start : end, P0); P1,−〉 → 〈Mi, C, P1,−〉

[Barrier]

〈Mi, [. . . , 〈M
j
i−1

, Cj ,−,−〉, . . .], Spawn(P0, pred); P1, U〉 →

〈Mi, [. . . , 〈M
j

i−1
, Cj , P0;−,−〉, . . .], Spawn(P0, pred); P1, U〉

[Spawn]

Mi(pred) = true
C = [〈M1

i−1
, C1,−,−〉, . . . , 〈Mn

i−1
, Cn,−,−〉]

〈Mi, C, Spawn(P0, pred); P1,−〉 → 〈Mi, C, P1,−〉

[Spawn End]

〈Mi, [. . . , 〈M
j

i−1
, Cj , Up(P j

0
); P j

1
, Uj〉, . . .], P,−〉 → 〈Mi, [. . . , 〈M

j

i−1
, Cj , wait;P j

1
, Uj〉, . . .], P, P

j
0
; resume〉 [CallUp]

〈Mi, [. . . , 〈M
j

i−1
, Cj , wait; P j , Uj〉, . . .], resume, U〉 → 〈Mi, [. . . , 〈M

j

i−1
, Cj , P j , Uj〉, . . .],−, U〉 [Resume]

〈Mi, C, P, U〉 → 〈Mi, C, U, P 〉 [Swap]

〈Mj

i−1
, Cj , P j , Uj〉 → 〈M

′j

i−1
, C

′j , P
′j , U

′j〉

〈Mi, [. . . , 〈M
j

i−1
, Cj , P j , Uj〉, . . .], P, U〉 → 〈Mi, [. . . , 〈M

′j

i−1
, C

′j , P
′j , U

′j〉, . . .], P, U〉

[Parallel]

Table 1. Operational semantics.

and[Mappar] rules do not modify the parent memory; thus, there
can never be races between a call-up and the parent task. However,
it is possible for a copy operation in a child task and a call-up from
a different child task to race on an access to the parent’s address
space. A form of this problem already exists in Sequoia, in that par-
allel subtasks are forbidden from aliasingout parameters; i.e., two
parallel child task calls may not write the same output location [5].
We extend this restriction to cover call-ups as well: no child task
may overwrite a parallel child task’s input or output arguments, ei-
ther throughout or inout parameters or call-ups. While a suitable
static analysis could conservatively check this restriction, our cur-
rent implementation assumes, but does not enforce, this rule.

Finally, the[Parallel] rule expresses that computation steps
can take place in child memories, not just at the parent; thisis the
rule that models parallel execution at each level of the memory
hierarchy.

5. Implementation
A Sequoia runtime sits between two adjacent levels of the memory
hierarchy and provides a separate interface for both the parent and
the children [8]. We have added two new calls:SpawnChild to
the parent interface andCallParent to the child interface. The
declarations of these new calls are shown below.

SpawnChild(TaskID taskid, ChildID start, ChildID end,
TerminationID_t termid);

CallParent(ChildID myid, void *parent_ptr,
CallupID callid);

SpawnChild enables a parent task to spawn tasks onto child
nodes;CallParent enables a child node to invoke a call-up on
a parent object. We briefly discuss the implementation of both
methods.

SpawnChild takes a task to spawn, a range of child nodes
on which to spawn tasks, and a termination test. The goals of a
good implementation are in tension: to both keep the children busy
but also to terminate as soon as possible. We employ a simple
heuristic to determine whether a task should be respawned ona
given child following the completion of the child’s task. Wesay a
child hasfinishedwhen its currently assigned task is finished but
it has not been evaluated for respawn. A child hascompletedwhen
the runtime system has evaluated the child for respawn and decided
not to respawn the child. When a child has finished it is enqueued
for possible respawn. The runtime continually dequeues finished
children and evaluates whether to respawn them or not. If more
than half the of the children have completed, then the runtime does
not respawn the child and adds it to the list of completed children.
If fewer than half the children have completed, the runtime checks
the termination test. If the test isfalsethe child and all completed
children are respawned (to maintain high utilization); if the test
is true the child is added to the list of completed children. When
all children have completed, the termination test is checked again;
if true the SpawnChild call terminates; iffalse all children are
respawned. We note that other reasonable respawn heuristics exist,
and nothing prevents a user from modifying a runtime to include
an application-specific heuristic.

When a child invokesCallParent, a task is enqueued at the
parent’s level. A dedicated thread in the parent pulls the call-up off
the queue, executes it, and then sends the results back down to the
child. Since call-ups are handled sequentially by a single thread of
control at the parent this trivially maintains the atomicity property
of call-ups. We see two potential future optimizations for executing
call-ups. The first is to leverage the isolation property of tasks to
allow the compiler to prove statically when it is safe for call-ups to
execute in parallel. The second possibility is to use transactional
memory to optimistically execute call-ups in parallel and detect
conflicts dynamically.

If a call toCallParent discovers that the parent pointer passed
is not local to the current runtime’s address space, the runtime will
recursively callCallParent on its parent runtime. This will con-
tinue passing the call-up up the memory hierarchy until it reaches
the runtime containing the object pointed to by the parent pointer.
Children can thereby perform call-ups to any of their ancestor lev-
els in the memory hierarchy. By using call-ups to parent pointers at
different levels, the programmer has the capability to create hierar-
chical data caching schemes for deep memory hierarchies.

5.1 Supporting Virtual Levels

Virtual parent levels must implement a distributed shared memory
on top of the physically disjoint child memories, usually using
MPI. Generally these are the most involved Sequoia runtimes,
and present additional challenges for implementingSpawnChild
andCallParent. By default, MPI process zero is designated to
execute the parent’s program and to hold the parent’s data (with the
exception of distributed arrays). We make two exceptions tothis
rule to achieve better performance in virtual levels.

The first exception is respawning tasks in a virtual level. Ifa
task is going to be respawned, it should be done so as quickly
as possible to keep processors busy, but in a distributed setting
the latency of communicating with the parent is significant.We

therefore modify the respawn heuristic described above forvirtual
levels. The runtime operating at each child node keeps trackof the
last respawn decision made by the parent. When a child finishes,
it locally decides whether to respawn or not using the previous
instruction it received. It then communicates to the parent(node 0)
that it has finished its task and asks whether to respawn. Whenthe
decision from the parent comes back it is cached for determining
whether to respawn the next time. This simple form of software
pipelining hides the latency of respawn in a distributed environment
where the common case is that a task is respawned many times.

The other exception to having node 0 perform all the parent’s
work is for some call-ups. In the case where a call-up touches
only part of a of distributed array that resides on a single node, the
runtime passes the call-up to that node for execution. This “owner-
computes” optimization is safe because any other call-ups touching
the same data will also be sent to the same node and serialized
locally. The performance gain that we see from this approachin
Section 6.3 is motivation for enhancing our ability to determine
when it is safe for call-ups to be performed in parallel. All other
call-ups are still handled exclusively by node 0; our runtime assigns
a different and lighter load of tasks from aspawn statement to node
0 to allow it devote more resources to servicing call-ups.

6. Applications and Evaluation
We have implemented call-up and spawn in Sequoia++, an exten-
sion of Sequoia. In this section, we evaluate the performance of
three representative irregular applications written in Sequoia++: a
boolean satisfiability solver (SAT), a sparse matrix-vector multiply
(SMVM), and a parallel sample sort. We benchmark these appli-
cations on a multi-core SMP, a cluster of Opterons, and a cluster
of SMPs. The SMP is an 8-node machine, with 128 GB of main
memory. Each node in the SMP is a 4-core AMD Opteron, clocked
at 2.3 GHz, with a shared 512 Kb L2 cache. The Cerillos clusterat
Los Alamos National Labs consists of 360 nodes, connected byIn-
finiBand. Each node in the cluster consists of two dual-core AMD
Opterons, clocked at 1.8 Ghz, with a shared 1024 Kb L2 cache and
8 GB of main memory. For the cluster experiments we use only 1
core of the dual-core chips and a Sequoia cluster runtime; for our
cluster of SMP experiments we treat each dual-core chip as a 2
core SMP (running a Sequoia SMP runtime) and the rest of the ma-
chine as a cluster of these small SMPs (running a Sequoia cluster
runtime).

In our experiments we use the same number of cores (4, 8,
16, or 32) across all three platforms. Figure 5 plots performance
of the three applications across the three architectures, and Figure
6 details profiling information displaying the percentage of time
spent in each phase of the computation on different memory levels.

6.1 SAT

The satisfiability problem (SAT) is to determine if there is an
assignment of true/false to the boolean variables of a propositional
formula that makes the formula true. Most parallel SAT solvers
decompose the search space by generating partial assignments and
delegating the resulting sub-problems to a sequential solver [11].
While the data sizes are small, the solution time of the subproblems
is extremely variable, making good load balancing critical.

Our SAT implementation is a worklist algorithm similar to
Figure 4. The worklist is initialized withn partial solutions, the
complete assignments of thelog

2
n most common variables. We

then perform aspawn over the elements in the worklist. Children
remove a partial solution from the worklist, and attempt to complete
the solution using MiniSat [12]. A child may discover its problem
is satisfiable (in which case it uses a call-up to notify the parent)
or unsatisfiable (in which case the child simply returns). Another
possibility is that the child exceeds a preset time bound, inwhich

(a) Speedup for SAT.

(b) Speedup for SMVM.

(c) Speedup for sample sort.

Figure 5. Speedup for each application over an optimized, purely
sequential algorithm on three different platforms. Figure(c) also
contains a line illustrating the speedup achieved by a best-effort
sorting implementation using only the regular language features of
Sequoia.

case the child splits the problem in two, continuing to work on
one of the subproblems and pushing the other one to the parent’s
worklist using a call-up.

Recently the annual SAT competitions have introduced a track
for parallel solvers; the SAT speedups in Figure 6 are averages
over runs on all the 2007 contest problems. To date the parallel
SAT contest has been held on 4-way SMPs, and our implementa-
tion is competitive, achieving a 3.5X average speedup on a 4-core
SMP. (Our leaf sequential solver, MiniSat, is regarded as one of the
best open source solver, though there are faster closed source and
proprietary solvers.) Performance tails off at larger degrees of par-
allelism (because more of the subproblems represent speculative
work that would not be done by the sequential solver), but con-

tinues to improve on the cluster and cluster of SMPs, reaching a
maximum of about 14X speedup on 32 processors on the cluster.
Interestingly, the SMP does not do so well, topping out at 7.4X
speedup on 16 processors. MiniSat caches a significant amount of
state and the 4:1 processor-to-L2 cache ratio on the SMP results
in more L2 misses than on the cluster and cluster of SMPs where
the processor-to-L2 cache ratios are 1:1 and 2:1 respectively. Child
tasks spend almost their entire execution performing useful work
and less than 1% of their time performing call-ups, indicating that
call-ups do not represent a bottleneck to performance for SAT. For
brevity, this data is omitted from Figure 6.

6.2 Sparse Matrix-Vector Multiply

Sparse Matrix-Vector Multiplication (SMVM) is a standard kernel
used in many scientific applications. Sparse matrices are commonly
used to represent large data sets where many of the entries are
zero. The distribution of non-zeroes is usually non-uniform, result-
ing in some parts of the matrix having higher densities of nonzero
elements than others. Irregularity in the data representation, and
a generally low compute-to-communication ratio, makes SMVM
challenging to parallelize. There has been extensive work in opti-
mizing SMVM computations for both sequential [13] and parallel
machines with shared [14] and distributed address spaces [15].

In our implementation of SMVM, sparse matrices are repre-
sented in the standard compressed-sparse-row format. While other
implementations of SMVM attempt to modify the data representa-
tion depending on the matrix [15] we do not customize our code
for the input matrix. We achieve parallelism in SMVM by dividing
the set of dot products that must be computed into chunks. Since
each dot product has a variable number of nonzero elements tobe
multiplied, load balancing is performed in a manner similarto our
SAT implementation. We use aspawn statement to launch tasks
onto the child processors. Children then call-up and retrieve a set
of rows on which to operate. Children that complete their rows con-
tinue to call-up to get additional dot products to perform. Note that
unlike amappar, where iterations are assigned to processors stati-
cally by the compiler, the use ofspawn decides dynamically which
dot products will be evaluated on which processors based on load.

As our benchmarks we chose five matrices from the University
of Florida Sparse Matrix Library [16]:atmosmodd, nlpkkt80,
Freescale1, ldoor, andnlpkkt120. These matrices come from
real-world applications and range in size from 8.8 to 50 million
nonzero elements with varying sparsity patterns.

Our reference implementation makes use of the OSKI library
for sparse matrix-vector multiplication [13]. OSKI is a purely se-
quential sparse matrix library capable of dynamically tuning it-
self for a given matrix at runtime. We set the OSKI library to
ALWAYS TUNE AGGRESSIVELY but we do not include OSKI’s tun-
ing time in the reference execution time. This can only make our
implementation appear worse, and thus our speedups with respect
to OSKI are likely a lower bound on what a user would experience
in practice.

In Figure 6, the tightly coupled SMP is able to overcome the
parallel overhead at low numbers of processors, but the other two
platforms catch up at large machine sizes as memory bandwidth
becomes a factor. At 32 processors, all three platforms haveap-
proximately the same speedup (a mean of 3.4X-3.8X), which is
comparable to the performance of other recent efforts [14,15]. For
example, in [15], speedups (including the time for tuning) range
from 2X to 11X with a mean of 4X on 32 nodes. We achieve our
best raw performance on the Cluster of SMPs configuration run-
ning theldoor matrix multiplication at a sustained rate of 1.57
GFLOPS with 32 child tasks.

The cluster and cluster of SMPs perform better at 32 nodes than
the SMP due to additional threads on the SMP being scheduled on

(a) Profile for SMVM.

(b) Profile for sample sort.

Figure 6. Percentage of time spent in different phases of each computation. Each group of columns corresponds to a different platform
and each column to a different memory level within that platform. TheCall-up Execute component indicates the amount of time spent
in useful work performing call-ups while theCall-up Wait component indicates the amount of time call-ups from a levelspent waiting
in a queue before being executed. TheIdle field indicates time that a parent level spent waiting to handle call-ups while child tasks were
executing. The remaining fields are identical to [5].

the same socket and causing higher contention for memory band-
width. Knowing that memory bandwidth is often the bottleneck for
SMVM, we can clearly see in Figure 6 that call-ups are not the per-
formance bottleneck for the SMP configuration as the child tasks
spend significant portions of their time performing useful work and
no more than 30% of their execution performing call-ups. Thesame
cannot be said for the two cluster configurations as we can seethe
percentage of time children spend waiting for call-ups to execute
increases progressively with the number of leaf-level tasks. On the
Cluster of SMPs with 32 leaves, children spend in excess of 67%
of their time simply waiting for their call-up to execute. The reason
for the increased waiting time is the extra latency to communicate
call-ups and their arguments over the network. This additional la-
tency decreases the parent’s call-up bandwidth as each call-up now
requires additional time to execute. As future research we plan to
investigate methods of performing call-ups in parallel.

6.3 Sample Sort

Sample sort is considered to be one of the most efficient comparison-
based sorting algorithms for distributed memory architectures [17].
It is a generalization of Quicksort, which recursively decomposes
its input inton > 2 partitions, and sorts each independently. Be-
cause partitions are generated based on pivots randomly selected at
runtime, there is no guarantee that partitions will be the same size
or require the same time to sort. Sample sort is the most complex of

our three applications and consists of a mix of sequential, regular,
and irregular parallel phases:

• Phase 1 Sequentially select a random subset of the input array
as splitters.

• Phase 2 A mappar over the the input array gives subtasks equal-
size subsets of input elements; subtasks compute the partition
for each element based on the splitters selected in phase 1.

• Phase 3 In a spawn over the input array, subtasks compute the
size of the output partitions: they request a subset of the ele-
ments, perform a prefix sum over their offsets in the partitions
calculated in phase 2, and reduce their results using a call-up. In
a secondspawn children again request a subset of the elements
and write them to the appropriate partition using the previously
calculated offsets.

• Phase 4 In a spawn over the partitions generated in phase 3,
subtasks request a partition from the parent, sort the elements
using C++’s STL sort, and write the results back using a call-up.

Our sample sort achieves good absolute performance on all three
platforms; at 32 processors performance ranges from 9X speedup
on the cluster of SMPs to 17X on the SMP over the sequential
C++ STL sorting algorithm; across all platforms leaf task (level 0)
utilization is never less than 51% (for the 32 node Cluster ofSMP’s
experiment) indicating that the majority of the execution time is
spent performing useful parallel work. We achieve our maximum

sorting performance on the SMP machine at a rate of 126 million
keys per second with 32 leaf tasks.

As an interesting experiment we also wrote a best-effort sort
using only the regular features of Sequoia. The results in Figure
5 show that obtaining good sorting performance is difficult when
using only the regular features of Sequoia, indicating the need for
additional language features to parallelize irregular code.

7. Related Work
Sequoia is designed to give the programmer explicit controlover
data locality and communication for programming machines with
multi-level memory hierarchies. The language accomplishes this
goal through isolated tasks that encapsulate data and control in
one level of the hierarchy. Complete isolation is problematic for
problems where task working sets are most naturally computed by
the tasks themselves, and we have proposed extensions to Sequoia
that allow selective exceptions to pure isolated tasks.

The PGAS family of languages, such as Split-C [18], Co-Array
Fortran [19], UPC [20], and Titanium [3] present a single program
address space with SPMD semantics with one thread per processor.
Thus, the threads are not isolated from one another; any thread may
reference any accessible data in the global address space, and there
is no special problem in expressing irregular algorithms. Currently
these languages provide only a two-level memory hierarchy.

More recent parallel language efforts [21–23] support locality
cognizant programming through the concept of distributions (from
ZPL [24]). While also PGAS languages, these designs also pro-
vide more abstract and dynamic notions ofplace (X10) or locale
(Chapel) than the more static SPMD languages discussed above,
and while we are unaware of any studies to confirm it, our intu-
ition is that irregular algorithms should be easier to express in these
languages. These are still two-level languages, however.

A recent effort proposes Hierarchical Place Trees (HPT) as a
unification of the Sequoia and X10 programming models [25]. Like
Sequoia, HPT models machines as a tree of memories. Instead of
call-up, however, HPT presents a form of global address space
as in X10. At any level of the memory hierarchy, data can be
referenced at any ancestor level—while not truly global across
the machine, this model allows for tasks to read or write extra
data outside of their own locale/place if necessary. This model can
be simulated using call-up by writing tasks that are remoteread
andwrite methods for parent levels of the memory hierarchy. We
considered extending Sequoia with a model similar to HPT, but
ultimately decided that call-up was both more flexible and inmany
cases more efficient: once we have paid the cost to move to another
memory location within the machine, it will often be cheaperto
perform a computation locally on the data, rather than simply
return the data and perform the computation somewhere else.(For
example, in the worklist algorithm adding or removing elements
from the worklist involves more than memory references.) The
difference in design stems in part from a difference in philosophy
about the underlying architectures: if processing elements are only
or primarily at the leaves of the memory hierarchy, then HPT is
a close match to the machine. However, if interior nodes of the
machine tree have their own processors then call-up allows us to
take advantage of these to carry out computation at those levels.

Hierarchically Tiled Arrays (HTA) [26] accelerate existing se-
quential languages with an array data type expressing multiple lev-
els of tiling for locality and parallelism, but also permit arbitrary el-
ement access and therefore can directly express at least some irreg-
ular algorithms. The HTA approach specifies locality by annotating
a data type which is less flexible and less portable than Sequoia’s
approach of using task composition.

Stream processing languages [27, 28] also build upon a two-
tiered memory model [29], choosing to differentiate between on

and off-chip storage. Sequoia tasks are a generalization ofstream
programming kernels. Tasks and kernels share similaritiessuch as
isolation, a local address space, and well-specified working sets,
but differ in the ability of tasks to arbitrarily nest. Because these
languages enforce strong isolation, they have difficultiessimilar to
Sequoia in expressing highly irregular computations.

Sequoia’s control flow, when encountering a parallel mapping
of subtasks, resembles the thread-less abstraction of concurrency in
Cilk [30], X10 [21], Chapel [22], and Fortress [23]. Sequoia’s con-
trol flow is constrained in comparison to most of these languages
since, for example, the calling task cannot proceed until all subtasks
complete (similar to the common usage of OpenMP [31] loops).
The addition ofspawn covers many (perhaps most) of the parallel
loop patterns that could not be expressed in Sequoia. Cilk inlets
provide a restricted form of call-up, allowing an atomic computa-
tion to be performed on the final result of a task (e.g., to perform a
reduction across task results).

Previous efforts to model memory hierarchies include the Uni-
form Memory Hierarchy Model (UMH) [32], which abstracted
uniprocessor machines as sequences of memory modules of in-
creasing size. The Parallel Memory Hierarchy Model (PMH) [9]
extended this abstraction to parallel architectures by modeling ma-
chines as trees of memories. Historically, interest in non-uniform
memory access models has been motivated by the analysis of algo-
rithm performance [33, 34]. In Sequoia, hierarchical memory is a
fundamental aspect of the programming model, required to achieve
both performance and portability across a wide range of architec-
tures. Sequoia has also been influenced by the idea of space-limited
procedures [35], a methodology for programming machines mod-
eled using the PMH model.

8. Discussion and Future Work
Sequoia is an attempt to strike a practical balance between perfor-
mance and portability. In future machines locality is likely to be-
come ever more important, and memory hierarchies are likelyto
become more complex and diverse—we will have everything from
relatively simple two-level multi-core machines to supercomputers
with many more levels of memory. The central tenet of Sequoia
is that the programmer should have control over and be able to
reason about locality and communication. By encapsulatingboth
within a task, and by carefully avoiding any explicit machine de-
pendencies in source programs, Sequoia allows programmersto
express locality- and communication-aware algorithms that never-
theless map well to a wide variety of machines.

For regular problems this design works extremely well, but in
some sense it cannot work for irregular problems. The fact that
the working sets of tasks must be known before task execution
is exactly the property that many irregular applications violate, at
least if we do not want to write tasks in a low-level event-driven
style. Adding parent objects and call-up allow tasks to escape
their isolated context and communicate with their parent (and,
recursively, any ancestor in the computation tree). The escape from
isolation is explicit and tightly constrained, and the semantics are
apparently as simple as possible: the only source of concurrency
is within the parent’s address space, and even then call-upsmust
execute atomically. Furthermore, the parts of programs that do
not use call-up behave exactly as in the original Sequoia design.
Thus, call-up andspawn can be seen as providing the missing
duals of call-down andmappar, increasing the expressiveness of
the language without changing its character or imposing costs when
the features are not used.

One alternative to call-ups is to allow tasks access to data in the
address space of any ancestor task. As discussed in Section 7this
is the approach adopted by HPT. Call-ups can also only accessan-
cestor memories, but there are some differences between using di-

rect memory references and call-up. First, call-ups provide a con-
currency semantics, guaranteeing atomicity of the invokedtasks,
while direct memory references have the usual memory model is-
sues around concurrent reads/writes in parallel machines.Second,
call-ups can do more than read or write a single piece of data;once
we have shifted to another location in the memory hierarchy,we
can also perform an arbitrary computation on that data or amortize
communication overhead by performing a bulk-transfer of data. A
disadvantage of call-up is that access to the memory of remote an-
cestors must go through multiple recursive call-ups, whilea HPT-
based system can presumably more directly avoid any overhead in
bypassing intermediate levels to go directly to some data more than
one level removed in the memory hierarchy.

9. Conclusion
We have introducedspawnand call-up as new features for ex-
pressing irregular parallelism within the Sequoia programming lan-
guage. We have described the operational semantics for bothspawn
and call-up within the Sequoia programming model. Our imple-
mentations of a series of irregular applications using spawn and
call-up have illustrated competitive performance with other paral-
lel codes. We also have demonstrated that spawn and call-up are
the dual to the regular constructs already present in Sequoia, giving
programmers the tools necessary to parallelize all phases of their
code when programming deep memory hierarchies.

Acknowledgments
The authors would like to thank Evan Cox for his work on the
implementation of Sequoia++, and the Department of Energy for
access to the Cerillos supercomputer at Los Alamos NationalLabs.

References
[1] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,

MPI-The Complete Reference. MIT Press, 1998.

[2] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren,
“Introduction to UPC and Language Specification,” Center for
Computing Sciences, IDA, Technical Report CCS-TR-99-157,1999.

[3] K. Yelick et al., “Titanium: A high-performance Java dialect,” in
Workshop on Java for High-Performance Network Computing, 1998.

[4] K. Barker et al., “Entering the PetaFLOP era: The architecture and
performance of Roadrunner,” inSupercomputing, 2008.

[5] K. Fatahalianet al., “Sequoia: Programming the Memory Hierarchy,”
in Supercomputing, November 2006.

[6] A. Aho, R. Sethi, and J. D. Ullman,Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[7] T. Knight et al., “Compilation for explicitly managed memory
hierarchies,” inSymposium on Principles and Practice of Parallel
Programming, 2007, pp. 226–236.

[8] M. Houstonet al., “A portable runtime interface for multi-level memory
hierarchies,” inSymposium on Principles and Practice of Parallel
Programming, 2008, pp. 143–152.

[9] B. Alpern, L. Carter, and J. Ferrante, “Modeling parallel computers as
memory hierarchies,” inProgramming Models for Massively Parallel
Computers, 1993.

[10] M. Ren, J. Y. Park, M. Houston, A. Aiken, and W. Dally, “A
tuning framework for software-managed memory hierarchies,” in Int’l
Conference on Parallel Architectures and Compilation Techniques,
2008, pp. 280–291.

[11] Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: a parallelSAT solver,”
vol. 6, pp. 245–262, 2008.

[12] N. Eén and N. Sörensson, “An extensible SAT-solver,”in Theory and
Applications of Satisfiability Testing, 2004, pp. 333–336.

[13] R. Vuduc, J. Demmel, and K. Yelick, “OSKI: A library of automati-
cally tuned sparse matrix kernels,” inInst. of Physics Publishing, 2005.

[14] A. Buluç et al., “Parallel sparse matrix-vector and matrix-transpose-
vector multiplication using compressed sparse blocks,” inSymposium
on Parallelism in Algorithms and Architectures, 2009, pp. 233–244.

[15] S. Lee and R. Eigenmann, “Adaptive runtime tuning of parallel
sparse matrix-vector multiplication on distributed memory systems,”
in Supercomputing, 2008, pp. 195–204.

[16] T. A. Davis, “University of florida sparse matrix collection,” NA
Digest, vol. 92, 1994.

[17] N. Leischner, V. Osipov, and P. Sanders, “GPU sample sort,” CoRR,
vol. abs/0909.5649, 2009.

[18] D. Culler et al., “Parallel programming in Split-C,” inSupercomput-
ing, 1993, pp. 262–273.

[19] R. W. Numrich and J. Reid, “Co-array Fortran for parallel program-
ming,” SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 1–31, 1998.

[20] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks,
and K. Warren, “Introduction to UPC and language specification,” UC
Berkeley Technical Report: CCS-TR-99-157, 1999.

[21] P. Charleset al., “X10: An object-oriented approach to non-uniform
cluster computing,” inConference on Object Oriented Programming
Systems Languages and Applications, 2005, pp. 519–538.

[22] D. Callahan, B. L. Chamberlain, and H. P. Zima, “The Cascade
high productivity language,” inInt’l Workshop on High-Level Parallel
Programming Models and Supportive Environments, 2004, pp. 52–60.

[23] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu,G. Steele,
and S. Tobin-Hochstadt., “The Fortress language specification version
0.707. Technical report,” Sun Microsystems, 2005.

[24] S. J. Deitz, B. L. Chamberlain, and L. Snyder, “Abstractions for
dynamic data distribution,” inInt’l Workshop on High-Level Parallel
Programming Models and Supportive Environments, 2004, pp. 42–51.

[25] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical place trees:
A portable abstraction for task parallelism and data movement,” in
Workshop on Languages and Compilers for Parallel Computing, 2009.

[26] G. Bikshandiet al., “Programming for parallelism and locality with
hierarchically tiled arrays,” inSymposium on Principles and Practice of
Parallel Programming, 2006, pp. 48–57.

[27] P. Mattson, “A programming system for the Imagine MediaProces-
sor,” Ph.D. dissertation, Stanford University, 2002.

[28] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: Stream computing on graphics
hardware,”ACM Trans. Graph., vol. 23, no. 3, pp. 777–786, 2004.

[29] F. Labonte, P. Mattson, I. Buck, C. Kozyrakis, and M. Horowitz, “The
stream virtual machine,” inInt’l Conference on Parallel Architectures
and Compilation Techniques, September 2004.

[30] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall,
and Y. Zhou, “Cilk: An efficient multithreaded runtime system,” in
Symposium on Principles and Practice of Parallel Programming, 1995.

[31] L. Dagum and R. Menon, “OpenMP: An industry-standard API for
shared-memory programming,”IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, 1998.

[32] B. Alpern, L. Carter, E. Feig, and T. Selker, “The uniform memory
hierarchy model of computation,”Algorithmica, vol. 12, no. 2/3, pp.
72–109, 1994.

[33] H. Jia-Wei and H. T. Kung, “I/O complexity: The red-bluepebble
game,” inSymposium on Theory of Computing, 1981, pp. 326–333.

[34] J. S. Vitter, “External memory algorithms,” inHandbook of Massive
Data Sets. Kluwer Academic Publishers, 2002, pp. 359–416.

[35] B. Alpern, L. Carter, and J. Ferrante, “Space-limited procedures:
A methodology for portable high performance,” inInt’l Working
Conference on Massively Parallel Programming Models, 1995.

