Programming the Memory Hierarchy Revisited: Supporting
Irregular Parallelism in Sequoia *

Michael Bauer

Computer Science Department,
Stanford University

mebauer@cs.stanford.edu

John Clark

Computer Science Department,
Stanford University

jpclark@stanford.edu

Eric Schkufza

Computer Science Department,
Stanford University

eschkufz@cs.stanford.edu

Alex Aiken

Computer Science Department,
Stanford University

aiken@cs.stanford.edu

Abstract

We describe two novel constructs for programming parallet m
chines with multi-level memory hierarchiesall-up, which allows
a child task to invoke computation on its parent, apdwn which
spawns a dynamically determined number of parallel childnetil
some termination condition in the parent is met. Togetheshav
that these constructs allow applications with irregulaagialism to
be programmed in a straightforward manner, and furtherriwse
constructs complement and can be combined with constrocts f
expressing regular parallelism. We have implemented spawch
call-up in Sequoia and we present an experimental evaluatica
number of irregular applications.

1. Introduction

For most of the past two decades clusters of single procesaer
chines have been a very popular high-performance compptatg
form. These machines are typically programmed using a ngessa
passing library such as MPI [1] or a partitioned global addre

space (PGAS) language such as UPC or Titanium [2, 3]. Charac-

teristic of both programming models is that the programmere-
sented with a two-level memory hierarchy: memory is divid&d

a processor’s local memory, where accesses are guaramtdsd t
relatively fast, and the global or remote memory of all thesotpro-
cessors in the cluster, accesses to which are likely to be ¥lith
the transition to multicore, however, clusters of multEanachines

are becoming much more common, and these machines present at

least three interesting levels of memory: the individualecmn-

* This work was supported in part by grants from the DepartnodriEn-
ergy’s Predictive Science Academic Alliance Program (P&jAhe Army
High Performance Research Center (AHPCRC), and a generans of
time on the Cerillos supercomputer through the Los Alamosodal Lab’s
Institutional Computing Program.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’11, February 12-16, 2011, San Antonio, Texas, USA.
Copyright© 2011 ACM 978-1-4503-0119-0/11/02. . . $5.00

void task<inner> matmul(in float A[M][P],
in float B[P][N],

inout float C[M][N])

// Code to name submatrices of A, B, and C
// called Ablks, Bblks, and Cblks, respectively
// block sizes are given by U, V, and X

// Compute all blocks of C in parallel.
mappar (int i=0 to M/U, int j=0 to N/V) {
mapseq (int k=0 to P/X) {
// Invoke the matmul task recursively
// on the subblocks of A, B, and C.
matmul (Ablks[i] [k] ,Bblks[k] [j],Cblks[i]l[j]);
}
}
}
void task<leaf> matmul(in float A[M][P],
in float B[P]I[N],
inout float C[M][N])
{
// Compute matrix product directly
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<P; k++)
Cli1[j] += A[i][x] =* B[k][j];

Figure 1. Dense matrix multiplication in Sequoia.

chip, and global memory. The Roadrunner petaflop superctenpu
has four or five memory levels, depending on how one counts [4]
These recent, and likely lasting, changes in machine azg&on
have led to interest in programming models for multi-leveimory
hierarchies that go beyond the two-level view of memory agpbdy
local or global.

Sequoia is a programming system designed for machines with
multi-level memory hierarchies. In previous work, the feaf Se-
quoia was on regular applications, and the issue of how tgrpr
irregular applications was explicitly left open [5]. In ghpaper we
present programming constructs designed to support ilegam-
putations on machines with multi-level memory hierarchigsd
we describe an implementation of these ideas as extensidhs-t
quoia. The extensions are conservative in the sense thabBeq

programs that do not use the new features perform exactlyas b
fore. Furthermore, the extensions complement Sequoiastiex
support for regular parallel computations, allowing graforward
implementations of programs that require a mix of regulat &n
regular parallelism.

To set the stage, we briefly describe how a canonical regular
application, dense matrix multiply, is implemented in Saqu
An analysis of the assumptions underlying the construced us
in this example illustrates the limitations of Sequoia foegular
computations.

The key parts of a Sequoia program for matrix multipli-
cation are given in Figure 1. This program defines ttasks
task<leaf> matmul andtask<inner> matmul; task is a key-
word andmatmul is the task name, which has two implementations
calledinner andleaf. A task is the basic unit of computation and
locality in Sequoia. Tasks aisolated tasks cannot refer to global
variables or take pointer arguments, and so they cannottljire
refer to data in use by other tasks. Tasks communicate venpar
eters passed to and results returned from calls to othes.t&¥&
refer to the caller as thparenttask and the callee as tlohild
(or sub) task. Task parameter passing is copy-in, copy-out (i.e.,
call-by-value-result [6]).

During compilation, each task in the source program is agslg
to a specific memory (and a specific processor) in the target ma
chine. At runtime, all of a task’s inputs and storage for isputs
are resident in the assigned memory. When a parent task sind it
children are assigned to different memories by the compiler
child task call at runtime results in communication as tis& tzall's
arguments are copied to the child task's memory at the stahieo
task, and the results are copied back to the parent task'songem
when the child terminates. Thus, task calls express the mere
of data through the memory hierarchy.

Parallelism is expressed vimppar, a looping construct that
declares each loop iteration can be executed independafalyy
other. In Figure 1task<inner> matmul USeS amappar to com-
pute each submatrix of the output arr@yin parallel. Inside the
mappar the analogous, but sequentiapseq construct accumu-
lates the partial results for each subblockmiising a sequence
of recursive calls tamatmul on subblocks oft andB. The recur-
sive call tomatmul invokes eithetask<inner> matmul or, if we
have proceeded far enough in the divide and conquer conipuitat
task<leaf> matmul, which is represented here by a naive triply-
nested loop. (Which variant is called depends on the number o
memory levels of the target machine and is decided in a stpara
mappingphase by either the programmer or the compiler.) A snap-
shot of the running program for a three-level machine lodks |
the tree of task invocations shown in Figure 2. The program de
fines a tree-shaped task hierarchy, with large problemstheaoot
and progressively smaller problems at lower levels of the tmtil
task<leaf> matmul is executed at the leaves of the computation.
More background details of Sequoia are discussed in Se2tion

While Sequoia has other important parallel control cortitu
(e.g., reductions), for the purposes of discussing regudairreg-
ular computation, we need only focus on #ppar statement in
the inner variant ofmatmul. An important detail is an implied
barrier at the end of theappar: All of the parallel instances of the
statement inside theappar must complete before execution con-
tinues to the statement after theppar. The example in Figure 1
illustrates two assumptions underlyingppar:

1. The working set of of each subtask is computed in advaias.
isolation implies that all of the inputs to a task must be know
at the time a task is invoked. Furthermore, to guaranteettieat
child task has sufficient space to complete its computation,

matmul

large matrix multiply

matmul matmul

medium matrix multiply

medium matrix multiply

Figure 2. An example task hierarchy for a machine with three
levels of memory.

2. The number of subproblems is computed in advafbe.num-
ber of parallel subtasks is fixed on entry to theppar. If the
subtasks return results to the parent that represent neadlgdar
work, that work can only be done after theppar is complete.

For our purposes, these two properties can be taken as the def
inition of a regular parallel computation; we consider alpem
where either the number of subproblems is unknown, or the in-
put/output size of the subproblems is unknown in advancégto
irregular. For assumption (1), there are two common situntiin
which the working set of a task is not known in advance:

e There is a large input data set, but the task only uses a small
portion of it, and it is necessary for performance reasoseta
the task only that small subset. Unfortunately, the taskmaes
the subset it needs, so the input working set is unknown &efor
task invocation. Algorithms that benefit from caching often
have this structure. Effectively, we would like the pareot t
function as a cache for the child, allowing the child to comepu
what it needs and then pull additional data from the pararit, b
isolation prevents this pattern from being expressed tijrec

The output is potentially large relative to the input, so imso

that the problem size a task can handle is limited by the dize o
the output (which must fit in the memory level allocated to the
task), not the input. Some search problems where one or a few
subtasks may return the entire answer are in this categeiy, a
any problem that has the character of decompressing thé inpu
We would like child tasks to be able to off-load partial resul

to the parent and then continue executing, thereby enabling
children to work on (usually more efficient) larger problem
sizes, but again task isolation requires that the entirpudtis
kept at the child and returned on task completion.

The dual problems of unknown input and unknown output size
affect not just performance but also how programs are writte
Consider a problem in which the input for the natural task one
would like to write is unknown. The only way to express this in
Sequoia is to write two tasks. The first tagkcomputes the data
that is needed and returns an output describing that dateesetp
the parent. The parent then launches a second Baslith all of
the input data that finishes the job. Essentially, one endgriting
an event-driven system, where events are requests to teatgar
more data and the tasks are stages of computation betweets.eve
Unfortunately, the problem is even somewhat worse: not onlgt
we program in an event-driven style, but each stage is spncted
by the barrier at the end of mappar, meaning that no typ&3

least an upper bound on the size of a task’s result must also betask can begin until all typel tasks have completed. Of course,

known before task invocation.

if there is more than one unknown input we may need to have more

than two stages in our pipeline of events, further compaundie
programming problem.

One way to solve this problem is to adopt programming con-
structs such as threads or the processes in PGAS languageseh
not isolated—for example, threads can share arbitrare stéth
one another. Isolation, however, is a great property to haset
dramatically simplifies both program reasoning and the d@np
scheduling problem in multi-level machines. What we defsiren
explicit, but limited, way to “break out” of isolation.

To relax assumption (1) when needed, we propose the ability

of child tasks tocall-up to the parent. That is, just as parents can
invoke tasks on the children @ll-dowr), we add the symmetric
ability for children to invoke tasks on parents. Call-up laies
complete isolation, but it does so explicitly and, as we Isbexé,
has a natural semantics. Note that with call-up child tasksstll
isolated from each other; the change is in the relationshipohild
task to its parent task.

Turning to assumption (2), consider a situation where tha-nu
ber of parallel subtasks is initially small, but each sub@enerates
more jobs of the same kind. This is a common pattern; everkwor
list algorithm has this flavor, where there is a set of jobsdpahd
each job may generate new jobs. Using onéippar, a worklist
algorithm can only be executed in phases, where all the jobs o
the worklist at the beginning of phagenust complete before we
can begin executing any of the jobs generated during phdée
particular phase has fewer jobs than processors, or abestatine
number of jobs as processors but the jobs have high variance i
execution time, utilization will be unnecessarily low.

To mitigate this problem we would like a parallel control eon
struct that does not fix in advance the number of paralleleskstit
can invoke. We proposspawn a construct that launches an unspec-
ified number of subtasks until some termination conditiomé in
the parent. Whereappar is analogous to a parallel boundeer
loop, spawn is analogous to a parallehile loop.

We stress that for regular or nearly regular computatiores th
constructs provided by the existing Sequoia language greesx
sive and programs are both very portable and efficient [5].7, 8
However, previous work on programming multi-level maclsiaed
on Sequoia in particular does not address the problem ofaneg
ming irregular applications, which is the focus of this paygeur
main contributions are:

* we propose two constructsall-up and spawn for program-
ming irregular applications on hierarchical memory maekin
(Section 3);

e we give a formal operational semantics for a core calculus
including call-up and spawn, showing how these construtts fi
into an overall language design (Section 4);

e we evaluate an implementation (Section 5) of our proposal on
several irregular applications on a cluster, an SMP, andst@l
of SMPs (Section 6).

Section 7 elaborates on related work, and Section 8 sumesariz
with a discussion of design alternatives and future work.

2. Hierarchical Memory

Before presenting our proposal, this section gives soméiandl
background on Sequoia. Sequoia requires the programmaer-to t
get an abstract parallel machine that is a tree of distincharg
modules, a representation that extends the Parallel MeHhtienar-
chy [9]. Data transfer between memory modules is conduci@d v
(potentially asynchronous) block transfers. Data trangéeurs at
all levels of the hierarchy through task arguments, whicly ina
declaredin (read only),out (write only), orinout (a task argu-

ment that may be both read and written; see Figure 1 for exam-

Aggregate Cluster Memol Aggregate Cluster Memol

Node
Memory

Node
Memory

CPU CPU

Shared Memory Cluster

" Cluster + SMP
Multi-processor

Figure 3. Hierarchical memory machines.

ples). Each task defines a namespace that exists entirdliywite
memory in the memory hierarchy. Unlike the original Sequmia:
posal [5], in our approach there are no restrictions on thmemda-
tion a task may perform within a level (see Section 3). Theagy m
be multiple versions, calledariants of the same task, allowing,
for example, different implementations of the base and dtide
cases in divide-and-conquer algorithms (c.f., ih@er andleaf
versions ofnatmul in Figure 1).

The computation tree described by a Sequoia program is ab-
stract. Neither the width (the number of parallel subtasi®)the
depth of the tree is specified in the program. The communica-
tion protocols used to move data through the machine areaflso
stracted through parameter passing.

Parallel machines are also modeled as treemaghine descrip-
tion defines for a target machine the number of levels and the num-
ber and size of memories at each level, among other detdiks. T
tree model provides a simple abstraction for programmemsason
about, but there are important non-tree topologies usedaictipe,
particularly a cluster of nodes where peers in the clustenrno-
nicate directly with each other rather than through a par€al-
lowing [5], we model clusters usingrtual levelsthat do not corre-
spond to any single physical memory. A cluster virtual légehe
sum of all the node memories in the cluster; this forms amtsti
address space which is separate from the individual nodeanem
ries, which are the children of the virtual level. Moving ddtom
the virtual level to a particular child node corresponds dmmu-
nication across the cluster, as data stored somewhere inrthal
level's physically distributed address space is moved timbal to
one node. Figure 3 illustrates three typical hierarchicathines:

a shared memory multiprocessor (SMP), a cluster with a afrtu
level that aggregates all of the local node memories, andrarem
three-level machine, a cluster of SMPs.

The compilation problem for Sequoia is to map the unbounded,
abstract task tree on to the fixed, definite machine tremafsping
assigns tasks in the program to specific levels of the target m
chine’s hierarchy. Mappings are either written by hand iepesate
mapping language or are generated automatically by antangs-
Previous work suggests auto-tuning is always preferaldg [ut
the mappings used in this paper are hand-written. Beyonthtpe
ping, the compiler performs important optimizations sushcaa-
lescing data transfers, copy elimination across levele@ftemory
hierarchy, and software pipelining of compute and commatioo
between adjacent memory levels [7]. The compiler also mesiag
the tedious task of generating and compiling code for eae#l le
of the hierarchy; as the machines can be heterogeneousplaulti
distinct platform compilers may be involved. A simple, @it
run-time interface abstracts away the actual communieatiech-
anism between different levels of the memory hierarchy. (&1
calls, DMAs, simple loads and stores to RAM, etc.) [8].

3. Supporting Irregular Applications

This section gives an informal overview of our constructsife
regular parallelism in programs for hierarchical memoryctriaes;

Section 4 presents a more formal treatment. We illustratédaas
using a simple work-list algorithm, shown in Figure 4. We tpos
pone an explanation of what this example actually does afigr
we have presented the programming constructs.

Unlike the original Sequoia design, we allow general object
oriented (C++) code in any task at any level of the memorydnier
chy. Thus, tasks may create and use objects and build paiater
structures. These are confined to within the task howeveu-ar
ments to subtasks, with one exception, cannot be pointaefar
ences, or structures (e.g., arrays) that contain pointeeferences.

The one exception is that a task may takpasent objectin-
dicated using thearent type qualifier, as an argument. In Fig-
ure 4, thedoWork method (bothinner andleaf variants) takes
a pointer to a worklist objeat1 passed from the calling task (not
shown). Parent objects may have no public fields. The onlyaspe
tion permitted on a parent object is to invoke its public noeth A
parent object method invocation iscall-up: the method executes

void task<inner> Worklist::doWork(parent Worklist* wl) {
spawn (doWork (wl), wl->isDone());

void task<leaf> Worklist::doWork(parent Worklist* wl) {
// Get work[] (an array of size 1):
int* work;
wl->getWork (work) ;
int unit = work[0];
delete [] work;

// Add work (work[0] new elements, each work[0]-1):
if (wnit > 1) {
int* newWork = new int[unit];
for (unsigned int i = 0; i < unit; i++)
newWork[i] = unit-1;
wl->addWork (newWork) ;
delete [] newWork;
}
}

in the parents address space, not the address space of the task in-void task<leaf> Worklist::getWork(out int work[]) {

voking the parent object method. In Figure 4, in the leaf asatri
of doWork the method invocatioml->addWork (newWork) adds
newWork to the worklistwl maintained in the parent task’s mem-
ory level. Similarly, earlier in the same task the parenthodtcall
wl->getWork(work) pulls work to do off of the work list stored
in the parent. A call-up is synchronous: like a regular fiorctcall

in a standard language, the child task is suspended untikthep
returns its result from the parent.

Call-up introduces concurrency into the Sequoia programymi
model, because multiple children may attempt to executella ca
up in the parent’s address space simultaneously. We entbece
following simple semantics. During subtask execution theept
blocks, meaning it does not perform any other computatiail un
the subtask returns (or, in the case oha#ppar, until all of the
parallel subtasks return). Thus, while call-ups can modi&ta
structures in the parent’s heap, there are no races withatentis
execution. We also require that all call-ups execute ataltyién
some unspecified order in the parent. That is, concurrert cal
ups from multiple children are always serializable in theepdis
address space. Call-ups may actually be executed in faf thkere
are sufficient resources and it is safe to do so, althoughwuet
implementation does not include any such optimization.

Consider the methodgtWork andaddWork in Figure 4. These
methods are invoked only in a call-up and so always exectiteein
address space of the parent. (Note that thesaere tasks, which
with call-ups no longer means that they execute at the leafes
the machine hierarchy; it only means that these tasks hagelno
tasks.) Thus, whilgetWork andaddWork modify the worklist data
structure, there is no correctness issue because callrepsanic.

The parallel control construtpawntakes two arguments: a
task call and a termination test. #pawn may launch any number
of instances of the task call, and it may continue to launclu ne
ones at any time during execution of tepawn. Note that every
spawned subtask is identical, spawn assumes the use of a call-
up to retrieve different data for each subtaskspawn terminates
when (1) its termination test (evaluated in the addressesphthe
parent) is true, and (2) all subtasks have terminated. @GondR) is
necessary. Consider the methoxWork in Figure 4, which spawns
worker tasks that add and remove jobs from a worklist, anctivhi
terminates when the worklist is empty and there are no wddsks
still executing. The worklist may be empty but if there is &ssk
running it may insert one or more new tasks into the workthats,
we need to know that subtasks cannot invalidate the teriomat
test, which is done by requiring that all subtasks have cetegl

We now briefly explain the worklist example. InitiallgpWork
spawns some number of worker tasks which all receive a pointe
to the worklist in the parent's memory through a parent dabjec

work = new int[1];

if (list_.empty()) // If the worklist is empty
work[0] = 0; // send no work.

else
work[0] = list_.pop();

void task<leaf> Worklist::addWork(in int work[]) {
for (unsigned int i = 0; i <= work[0]; i++)
list_.push(work[i]);
}
bool task<leaf> Worklist::isDone() {
return list_.isEmpty();

Figure4. A paradigmatic worklist implementation.

Each taskdoWork first gets some work using a call-up of the
worklist’'s getWork method, and then adds some number of jobs
to the worklist using the worklist'sddWork method. This example
illustrates all of the irregular features discussed in Bect: the
parent acts as a cache for the children, holding the currerilist;

the children produce varying amounts of output in the form of
new jobs to be placed on the worklist; tepawn construct allows
new work added to the worklist to be allocated to some chigl ta
without the need to first synchronize with all of the children

There is considerable flexibility in the implementation of
spawn. First, the runtime system is free to launch as many sub-
tasks as necessary to keep the machine busy. Second, theeunt
system can evaluate the termination predicate at any timakiding
while there are still child tasks running, to gain inforneattiabout
whether it is worthwhile to respawn terminated subtasksob(tie
number of times the termination test is evaluated is unfipeci
and so the test should be side-effect free). Our currentmenim-
plementation okpawn prematurely tests the termination condition
as part of a heuristic for determining when to respawn chitdisee
Section 5). In addition, this runtime heuristic could betousized
easily by the programmer to match specific applications.

We also enforce two restrictions on call-ups to avoid situest
that are undefined or very difficult to compile well. First, arent
object only makes sense so long as the parent task instaate th
created it is executing; thus, a parent object may be usedyn a
child (and more generally, any descendant) of the creatargm
task, but may not escape (i.e., outlive) that parent tas&.sEtond
restriction is that no call-down may occur within a call-Ughat
is, a method that is used as a call-up (i.e., invoked by a paren
object) may have call-ups in its body but not ordinary tasksca
(call-downs). Allowing call-downs within call-ups woul@sult in
a difficult scheduling problem, as it would no longer be easy t

statically determine which tasks might run in parallel.thermore,
despite considerable experience witpawn, we have yet to find
an example where allowing a call-down within a call-up wobil
useful. Both restrictions are easily enforced staticaifyte type
system.

4, Semantics

This section gives a formal treatment of call-up apdwn. There is
a previously published Sequoia semantics [7] which, unfately,
is not expressive enough to describe our extensions; tharsers
presented here is very different. Like [7], however, ourgseon
executions work ortrees of memoriesAlso following [7], we
model a memon\/ as a function from names to values, so rather
than manipulating addresses we use mnemonic variable remdes
M (z) looks up the value of variable in memory M. We use the
standard notatiod/ [z < a] to denote the memory that is identical
to M except that the value is stored at name.

A given level of the memory hierarchy has a memady, zero
or more sub-machindg, ..., T,], and two program$’; and P:

T = <M707P17P2>

c = [T,....,Tn] n>0

P = Opy(A=f(B) | Ifp(pred, Pi,)
| PP | Copyas,,m, (A; B)
| Mappar,,(k = start: end,P) | Spawn,, (P, pred)
| Upp(P) | wait
| resume [

The program constructs are purposely limited to a core ealcu
lus to keep the semantics small and tractable: standardsggl
constructs (primitive operations, if statements, stat@msequenc-
ing), the Sequoia constructs (copying data between menaory |
els, Mappar, Spawn, and a call-up construdtp), and three oper-
ations needed by the semantics that do not appear in sousee pr
grams frait, resume, and-). Note that every operation that uses
memory is subscripted with the memory level it accesses;pg co
operation is subscripted with two levels, the source antirtson
memories, which are always adjacent levels in the hierafchy,
parent and child memories). This semantics is at the levaliofm-
plementation’s intermediate language, after source pragrhave

been desugared and the number of memory levels (depth of the

memory tree) and the number of child memories at each leva ha
been made explicit in the program.

For a givenconfigurationat a memory levekM, C, P1, P»)
there may be two programs executing: anain taskand one call-
up from the child memory level. This closely reflects our il
mentation, which on most platforms implements a memorylleve
using one thread for the main task and another thread tocgervi
call-ups. The program-" represents no program—i.e., an idle re-
source. Two special cases are the configuratidasC, P, —) (or
equivalently(M, C, —, P)) and (M, C, —, —). The former repre-
sents a memory level with a main task but no active call-ups, t
latter represents a memory with no scheduled computatiati;at
the memory isidle. No configuration has a call-up without also
having a non-idle main thread.

Notably missing from the core calculus are task calls, which
can be emulated by the other constructs. Given a task definiti
task f(in a, out b) { P }, a task call off can be imple-
mented by using copy operations to copy theparameter to the
corresponding formad in the child memory, executing the boay
of £, and then copying theut parameter back toé in the parent
memory. For example,

Mappar, (k=1 :n, £(x[k],yk])) =
Mappar, (k =1 :n,copyy, ,u (2, x[k]); P; copyw, n, , (y[k], b)

assuming operations in are suitably annotated to read and write
data in memory leval; ;. Call-ups invoked on parent objects can

similarly be expanded into a sequence of primitive operatithat
copy arguments from the child to the parent memory, exete t
body of the call-up, and copy the result back to the child.

Table 1 gives a small step operational semantics for thegadre
culus. Each rule describes one step of execuipf.C, Py, P>) —
(M',C’, P|, P;). The first three rules are for familiar statements:
primitive operationsA = f(B), if statements (only the rule for
a predicate that evaluatesttoe is shown; the symmetric rule for
falseis also standard), and statement sequencing. The integesti
thing to note about these representative sequential statsnis
that they take place in one memory level, having no effectheirt
child memories. Notice that most of the rules work by exewti
the first statemenP; in a sequence’;; P> and transitioning to a
configuration where, remains to be executed. Thus, the rule for
statement sequences simply rearranges statement sesjusing
the associativity of {" to ensure the first statement is primitive and
not itself a statement sequence. To guarantee statementd-ar
ways part of a sequence (so that some rule will match) we assum
programs are initially of the forn®; —.

The copy operation comes in two flavors: copying data from
parent to child and from child to parent. Note that copiesiines
direction are initiated by the children; on most architeetLthis is
the more efficient arrangement.

A Mappar has two cases. I§tart < endand there is an idle
child, a fresh version of th#appar computation can be launched
in that child’'s memory. I6tart > end then the parent implements a
barrier: the parent’s main task blocks until all childrer atle and
the parent has no call-up to service, at which point the mesk t
continues to the next statement.Spawn is similar: aSpawn can
launch a fresh copy of the parallel computation on an idlédchi
and if all children are idle, the parent has no call-up to e
and the termination predicate is true, $gawn can terminate and
the parent’'s main task moves on to the next statement. Tharsem
tics allows a choice when the termination condition evasab
true: the Spawn may terminate (assuming the other conditions for
termination are also met) or some children may be respawmed i
stead. This semantics allows implementations maximumtiléyi
though we expect that implementations will generally nepsavn
child tasks when the termination conditiortige.

In summary, the main differences betweétagpar andSpawn
are that thelappar has a fixed number of instances to execute
and each child is given a distinct portion of the work at iraten
(represented by the value bfin the child memory in theMappar]
rule), whereas th&pawn launches instances until the termination
predicate is true. Thulappar is like afor loop andSpawn is akin
to awhile loop.

A call-up Up(...) launches a computation on the parent if the
parent is not currently executing another call-up (i.eg, parent’s
configuration is of the form{ M, C, P, —)). The program invoking
the call-up (which may be the child’s main task or anothel-gpl
that the child is handling) must block until the call-up cdatps,
which is the purpose of inserting @wait in the child program
and aresume at the end of the call-up program in the parent.
The [Resume] rule restarts the child computation by removing the
wait when the parent reaches tlhesume. Since only one child
can execute at a time, there is always only @att that aresume
can match.

The [Swap] rule switches the order of the two programs in a
configuration. All of the rules execute using only the thihe
ponent of a configuration, so this rule has the effect of gviniig
the active program between the main task and any call-uptiagyai
service. It is easy to prove (by induction on the length of xece-
tion) that if a memory level has two programs neither of whigh
—, then the main task is always either &awn or aMappar; i.e.,
call-ups can only happen insideSgawn or Mappar. The [Spawn]

M;(pred) = true

<M1[A - f(B)LC7P7U>

[Primitive Op]

If
(M;, C, If py, (pred, P, P2); P,U) — (M;, C, P1; P,U) (]
(M3, C, (Pr; P2); P3,U) — (M;, C, Py; (P2; Ps), U) [Sequence]
(Miv['-w(]\/j@j,lvcjvcoPYAI]\/Iw 1(A B)P] U'7>7]7P7U> - [Copy Up]
(M[A — M]_ (B)],[...,(M]_},C7, P3,UY),..], P,U)
(Mis Lo (M4, €%, 0B g,y 2, (A, B); P2, UP), L PU) (Copy Down]
M;,[..., (M} |[A— My(B)],C9,PI,UY),..],P,U
i—1
start < end [Mappar]
(Mg, [..., (M 1,09 —,—),...],Mappar(k = start : end, Py); P1,U) —
M;, ..., Mji k «— start],C7, Py; —, —),...],Mappar(k = start + 1 : end, Py); P1,U
1
start> end .
= (ML, 0% = =), (M4, 07, =,) [Barxier]
(M;, C, Mappar(k = start : end, Po); Py, —) — (M;,C, P1,—)
(M, [..., (M Z 1,03 —,=),...],Spawn(Po, pred); P1,U) — [Spawn]
<M27[< i— 170J POx_v_> ...],Spawn(PO,pred);Pl,U>
M;(pred _true
(p[(M)1 1 -, =) (Mp,Cm, =, =)] [Spawn End]
i 7 7) R} i—10 s T
(M;, C, spawn(Py, pred); P, —) — (M;,C, P1,—)
(My, [(MJ_ |, C9Up(PI); PI,U7Y, ..), P,=) — (M;,[...,(M]_|,C7 wait; P}, U%),..], P, P};resune) [CallUp]
(My, ..., (M] |, 07 wait; PP, U7), ..], resume, U) — (M;,[...,(M]_|,C7, PIU%), ..],—,U) [Resume]
(Mivcv P7 U> - <Mivcv U7 P> [Swap]
<Mz] 1vcj Pijj> — (M,]1vc/ij/ij/j> [Parallel]
(Mi [(MP_y, €9, PI UY),), PUY = (M, [(M7, €9, P9, UY),), PU)

Table 1. Operational semantics.

and [Mappar] rules do not modify the parent memory; thus, there

can never be races between a call-up and the parent taskveigwe
it is possible for a copy operation in a child task and a cplfrom

a different child task to race on an access to the parent'scadd
space. A form of this problem already exists in Sequoia, & par-
allel subtasks are forbidden from aliasiogt parameters; i.e., two
parallel child task calls may not write the same output limeaf5].
We extend this restriction to cover call-ups as well: no ¢h#sk
may overwrite a parallel child task’s input or output arguntse ei-
ther throughout or inout parameters or call-ups. While a suitable
static analysis could conservatively check this restittiour cur-
rent implementation assumes, but does not enforce, thés rul

Finally, the [Parallel] rule expresses that computation steps
can take place in child memories, not just at the parent;ishiise
rule that models parallel execution at each level of the nrgmo
hierarchy.

5. Implementation

A Sequoia runtime sits between two adjacent levels of the omgm
hierarchy and provides a separate interface for both thenpand
the children [8]. We have added two new calfgiawnChild to
the parent interface antkllParent to the child interface. The
declarations of these new calls are shown below.

SpawnChild(TaskID taskid, ChildID start, ChildID end,
TerminationID_t termid);

CallParent (ChildID myid, void *parent_ptr,
CallupID callid);

SpawnChild enables a parent task to spawn tasks onto child
nodes;CallParent enables a child node to invoke a call-up on
a parent object. We briefly discuss the implementation ohbot
methods.

SpawnChild takes a task to spawn, a range of child nodes

therefore modify the respawn heuristic described aboveiftwal
levels. The runtime operating at each child node keeps ththe
last respawn decision made by the parent. When a child fisishe
it locally decides whether to respawn or not using the previo
instruction it received. It then communicates to the pa(eatie 0)
that it has finished its task and asks whether to respawn. \fgen
decision from the parent comes back it is cached for deténgpin
whether to respawn the next time. This simple form of sofewar
pipelining hides the latency of respawn in a distributed@mment

on which to spawn tasks, and a termination test. The goals of a Where the common case is that a task is respawned many times.

good implementation are in tension: to both keep the chiltingsy

The other exception to having node 0 perform all the parent’s

but also to terminate as soon as possible. We employ a simpleWork is for some call-ups. In the case where a call-up touches

heuristic to determine whether a task should be respawnea on
given child following the completion of the child’s task. \Bay a
child hasfinishedwhen its currently assigned task is finished but
it has not been evaluated for respawn. A child baspletedvhen
the runtime system has evaluated the child for respawn aridett
not to respawn the child. When a child has finished it is engdeu
for possible respawn. The runtime continually dequeuesHad
children and evaluates whether to respawn them or not. Ifemor
than half the of the children have completed, then the runtioes
not respawn the child and adds it to the list of completeddcéi.

If fewer than half the children have completed, the runtireaks
the termination test. If the test falsethe child and all completed
children are respawned (to maintain high utilization); hettest

is true the child is added to the list of completed children. When
all children have completed, the termination test is cheagain;

if true the SpawnChild call terminates; iffalse all children are
respawned. We note that other reasonable respawn hesigsiit,
and nothing prevents a user from modifying a runtime to idelu
an application-specific heuristic.

When a child invoke€allParent, a task is enqueued at the
parent’s level. A dedicated thread in the parent pulls thleugaoff
the queue, executes it, and then sends the results back dabva t
child. Since call-ups are handled sequentially by a sirtylead of
control at the parent this trivially maintains the atomjigiroperty
of call-ups. We see two potential future optimizations feeeuting
call-ups. The first is to leverage the isolation propertyasfkis to
allow the compiler to prove statically when it is safe forlagbs to
execute in parallel. The second possibility is to use tretisaal
memory to optimistically execute call-ups in parallel aretedt
conflicts dynamically.

If a call toCallParent discovers that the parent pointer passed
is not local to the current runtime’s address space, themeantvill
recursively callCallParent on its parent runtime. This will con-
tinue passing the call-up up the memory hierarchy until dcrees
the runtime containing the object pointed to by the pareimtpa
Children can thereby perform call-ups to any of their anmelstv-
els in the memory hierarchy. By using call-ups to parent fogat
different levels, the programmer has the capability to terdéerar-
chical data caching schemes for deep memory hierarchies.

5.1 Supporting Virtual Levels

Virtual parent levels must implement a distributed sharesory

on top of the physically disjoint child memories, usuallyings
MPI. Generally these are the most involved Sequoia runtimes
and present additional challenges for implementpgwnChild
andCallParent. By default, MPI process zero is designated to
execute the parent’s program and to hold the parent’s dath {fve
exception of distributed arrays). We make two exceptionthi®
rule to achieve better performance in virtual levels.

The first exception is respawning tasks in a virtual levela If

only part of a of distributed array that resides on a singléendhe
runtime passes the call-up to that node for execution. Tavsér-
computes” optimization is safe because any other call-ayshing

the same data will also be sent to the same node and serialized
locally. The performance gain that we see from this appraach
Section 6.3 is motivation for enhancing our ability to detére
when it is safe for call-ups to be performed in parallel. Ather
call-ups are still handled exclusively by node 0; our rurtiassigns

a different and lighter load of tasks fronsgawn statement to node

0 to allow it devote more resources to servicing call-ups.

6. Applicationsand Evaluation

We have implemented call-up and spawn in Sequoia++, an-exten
sion of Sequoia. In this section, we evaluate the performaric
three representative irregular applications written ig88a++: a
boolean satisfiability solver (SAT), a sparse matrix-veataltiply
(SMVM), and a parallel sample sort. We benchmark these appli
cations on a multi-core SMP, a cluster of Opterons, and aetus
of SMPs. The SMP is an 8-node machine, with 128 GB of main
memory. Each node in the SMP is a 4-core AMD Opteron, clocked
at 2.3 GHz, with a shared 512 Kb L2 cache. The Cerillos cluster
Los Alamos National Labs consists of 360 nodes, connectéd-by
finiBand. Each node in the cluster consists of two dual-cdwDA
Opterons, clocked at 1.8 Ghz, with a shared 1024 Kb L2 cactie an
8 GB of main memory. For the cluster experiments we use only 1
core of the dual-core chips and a Sequoia cluster runtintepdo
cluster of SMP experiments we treat each dual-core chip as a 2
core SMP (running a Sequoia SMP runtime) and the rest of the ma
chine as a cluster of these small SMPs (running a Sequoiteclus
runtime).

In our experiments we use the same number of cores (4, 8,
16, or 32) across all three platforms. Figure 5 plots pertomoe
of the three applications across the three architecturesFegure
6 details profiling information displaying the percentadetime
spent in each phase of the computation on different memuegjde

6.1 SAT

The satisfiability problem (SAT) is to determine if there is a
assignment of true/false to the boolean variables of a itipoal
formula that makes the formula true. Most parallel SAT sddve
decompose the search space by generating partial assignameh
delegating the resulting sub-problems to a sequentiaksgid].
While the data sizes are small, the solution time of the saliilpms
is extremely variable, making good load balancing critical

Our SAT implementation is a worklist algorithm similar to
Figure 4. The worklist is initialized with: partial solutions, the
complete assignments of thieg, » most common variables. We
then perform apawn over the elements in the worklist. Children
remove a partial solution from the worklist, and attemptdamplete
the solution using MiniSat [12]. A child may discover its plem

task is going to be respawned, it should be done so as quickly is satisfiable (in which case it uses a call-up to notify theepg

as possible to keep processors busy, but in a distributdthget
the latency of communicating with the parent is significaffe

or unsatisfiable (in which case the child simply returns)other
possibility is that the child exceeds a preset time boundayhich

tinues to improve on the cluster and cluster of SMPs, reachin
maximum of about 14X speedup on 32 processors on the cluster.
Interestingly, the SMP does not do so well, topping out aX7.4
speedup on 16 processors. MiniSat caches a significant damabun
state and the 4:1 processor-to-L2 cache ratio on the SMMtgesu
in more L2 misses than on the cluster and cluster of SMPs where
the processor-to-L2 cache ratios are 1:1 and 2:1 respbctiviild
tasks spend almost their entire execution performing lisednk

and less than 1% of their time performing call-ups, indiogiihat
call-ups do not represent a bottleneck to performance far. 5ar
brevity, this data is omitted from Figure 6.

4 6 & 1 1 1 1 18 20 2 2 2 28 3 =
% Linear == SMP ¥ Cluster == Cluster+SMP 6.2 %ar% M atI’IX-VECtOI’ M ultlply
(a) Speedup for SAT. Sparse Matrix-Vector Multiplication (SMVM) is a standardrkel

used in many scientific applications. Sparse matrices argramnly
used to represent large data sets where many of the entaes ar
6 zero. The distribution of non-zeroes is usually non-umifpresult-
ing in some parts of the matrix having higher densities ofzava
elements than others. Irregularity in the data represiemtagnd

g a generally low compute-to-communication ratio, makes 3MV
5 —— challenging to parallelize. There has been extensive woidpti-
o mizing SMVM computations for both sequential [13] and pladal
g machines with shared [14] and distributed address spa&gs [1
. “ In our implementation of SMVM, sparse matrices are repre-
sented in the standard compressed-sparse-row formate\bfer
T T o & xS A & T . implementations of SMVM attempt to modify the data repréaen
- Lincar == SMP ¥ Cluster & ClustersSMP tion depending on the matrix [15] we do not customize our code
for the input matrix. We achieve parallelism in SMVM by diirid
(b) Speedup for SMVM. the set of dot products that must be computed into chunkseSin
i each dot product has a variable number of nonzero elemeiis to
L multiplied, load balancing is performed in a manner simitaour
301 SAT implementation. We use spawn Statement to launch tasks
25] onto the child processors. Children then call-up and netrie set
of rows on which to operate. Children that complete theirsaan-
201 tinue to call-up to get additional dot products to perfornot@<hat
154 ; unlike amappar, where iterations are assigned to processors stati-
cally by the compiler, the use ebawn decides dynamically which
101 L dot products will be evaluated on which processors basedannh |
o " As our benchmarks we chose five matrices from the University
; of Florida Sparse Matrix Library [16]atmosmodd, nlpkkt80,
T T o o & o & & A A o Freescalel, 1door, andnlpkkt120. These matrices come from
s D e S Y E e e real-world applications and range in size from 8.8 to 50 iwonill
nonzero elements with varying sparsity patterns.
(c) Speedup for sample sort. Our reference implementation makes use of the OSKI library

. — — for sparse matrix-vector multiplication [13]. OSKIl is a ply se-
Figure5. Speedup for each application over an optimized, purely quential sparse matrix library capable of dynamically hgnit-

sequential algorithm on three different platforms. Fig(ce also self for a given matrix at runtime. We set the OSKI library to
contains a line illustrating the speedup achieved by a bféstt ALWAYS_TUNE_AGGRESSIVELY but we do not include OSKI's tun-
sorting implementation using only the regular languagéuies of ing time in the reference execution time. This can only make o
Sequoia. implementation appear worse, and thus our speedups wipeces
to OSKI are likely a lower bound on what a user would expergenc
in practice.
case the child splits the problem in two, continuing to work o In Figure 6, the tightly coupled SMP is able to overcome the
one of the subproblems and pushing the other one to the fsrent parallel overhead at low numbers of processors, but ther divee
worklist using a call-up. platforms catch up at large machine sizes as memory barldwidt

Recently the annual SAT competitions have introduced &trac becomes a factor. At 32 processors, all three platforms lagve
for parallel solvers; the SAT speedups in Figure 6 are awsag proximately the same speedup (a mean of 3.4X-3.8X), which is
over runs on all the 2007 contest problems. To date the parall comparable to the performance of other recent efforts [A}4,Hor
SAT contest has been held on 4-way SMPs, and our implementa-example, in [15], speedups (including the time for tuninange

tion is competitive, achieving a 3.5X average speedup orcard- from 2X to 11X with a mean of 4X on 32 nodes. We achieve our
SMP. (Our leaf sequential solver, MiniSat, is regarded &sajrthe best raw performance on the Cluster of SMPs configuration run
best open source solver, though there are faster closedesand ning theldoor matrix multiplication at a sustained rate of 1.57
proprietary solvers.) Performance tails off at larger éegrof par- GFLOPS with 32 child tasks.

allelism (because more of the subproblems represent speeul The cluster and cluster of SMPs perform better at 32 nodes tha

work that would not be done by the sequential solver), but con the SMP due to additional threads on the SMP being scheduled o

100%

90%

80%

70% 4

60%

50%

40%

30%

20% 4
10% <
0% T T

T
SMP4-LO SMP8-LO SMP16-L0 SMP32-L0
SMP4-L1 SMP8-L1 SMP16-L1 SMP32-L1

T T T T T
Cluster4-L0 Cluster8-L0 Cluster16-L0 Cluster32-LO 2x2-L1
Cluster4-L1 Cluster8-L1 Clusterl6-L1 Cluster32-L1

T T
16x2-L.2 16x2-L0
8x2-L0 16x2-L1

T T
4x2-L0 8x2-L1
8x2-L.2

T T
4x2-L.2

2x2-L.2 2x2-L.0 4x2-L1

(a) Profile for SMVM.

100% = =

90%

80%

70% 4

60%

50%

40% 4

30%

20% 4

10% 4

0% T T L S —1

T T
SMP32-L0
SMP32-L1

T T T T T T
SMP4-L0 SMP8-LO SMP16-LO
SMP4-L1 SMP8-L1 SMP16-L1

@ L2 Call-up Execute [L2 Transfer OL2ide

O L1 System

Cluster4-LO Cluster8-LO Clusterl6-LO Cluster32-LO
Cluster4d-L1 Cluster8-L1 Clusterl6-L1 Cluster32-L1

T T
16x2-L2 16x2-L0
8x2-L0 16x2-L1

T T
x2-L1 4x2-1.2
2x2-0 4x2-L1

4x2-L0
8x2-L2

2 8x2-L1
2x2-12

OL2 System @ L1 Call-up Execute @ L1 Transfer O L1 Idle
B L0 Call-up Wait @ LO Call-up Execute B L0 Transfer [LO Child Execute [LO System

(b) Profile for sample sort.

Figure 6. Percentage of time spent in different phases of each cotmutd&ach group of columns corresponds to a different ptatf
and each column to a different memory level within that matf. TheCall-up Execute component indicates the amount of time spent
in useful work performing call-ups while theall-up Wait component indicates the amount of time call-ups from a Ispeint waiting

in a queue before being executed. TiA e field indicates time that a parent level spent waiting to heuedll-ups while child tasks were

executing. The remaining fields are identical to [5].

the same socket and causing higher contention for memong-ban
width. Knowing that memory bandwidth is often the bottlenéar
SMVM, we can clearly see in Figure 6 that call-ups are not #re p
formance bottleneck for the SMP configuration as the chittkga
spend significant portions of their time performing useforkwand
no more than 30% of their execution performing call-ups. Same
cannot be said for the two cluster configurations as we cathsee
percentage of time children spend waiting for call-ups teoexe
increases progressively with the number of leaf-leveldaékn the
Cluster of SMPs with 32 leaves, children spend in excess & 67
of their time simply waiting for their call-up to execute. &heason
for the increased waiting time is the extra latency to comicate
call-ups and their arguments over the network. This adutiida-
tency decreases the parent’s call-up bandwidth as eachalbw
requires additional time to execute. As future research \ae
investigate methods of performing call-ups in parallel.

6.3 Sample Sort

Sample sort is considered to be one of the most efficient coagra
based sorting algorithms for distributed memory architees [17].
It is a generalization of Quicksort, which recursively deqmses
its input inton > 2 partitions, and sorts each independently. Be-
cause partitions are generated based on pivots randonelgtsdlat
runtime, there is no guarantee that partitions will be theesaize
or require the same time to sort. Sample sort is the most coomgl

our three applications and consists of a mix of sequentalylar,
and irregular parallel phases:

e Phase 1 Sequentially select a random subset of the input array
as splitters.

¢ Phase2 A mappar over the the input array gives subtasks equal-
size subsets of input elements; subtasks compute thei@artit
for each element based on the splitters selected in phase 1.

e Phase 3 In a spawn over the input array, subtasks compute the
size of the output partitions: they request a subset of the el
ments, perform a prefix sum over their offsets in the parigio
calculated in phase 2, and reduce their results using aipalh
a secondspawn children again request a subset of the elements
and write them to the appropriate partition using the prasip
calculated offsets.

e Phase 4 In a spawn over the partitions generated in phase 3,
subtasks request a partition from the parent, sort the elesme
using C++'s STL sort, and write the results back using a apll-

Our sample sort achieves good absolute performance onra# th
platforms; at 32 processors performance ranges from 9Xdspee
on the cluster of SMPs to 17X on the SMP over the sequential
C++ STL sorting algorithm; across all platforms leaf tagvél 0)
utilization is never less than 51% (for the 32 node ClusteSidP’s
experiment) indicating that the majority of the executitme is
spent performing useful parallel work. We achieve our maxim

sorting performance on the SMP machine at a rate of 126 millio
keys per second with 32 leaf tasks.

As an interesting experiment we also wrote a best-effort sor
using only the regular features of Sequoia. The results gurei
5 show that obtaining good sorting performance is difficutten
using only the regular features of Sequoia, indicating tbednfor
additional language features to parallelize irregularecod

7. Related Work

Sequoia is designed to give the programmer explicit cortvelr
data locality and communication for programming machinés w
multi-level memory hierarchies. The language accomptistinis
goal through isolated tasks that encapsulate data andotantr
one level of the hierarchy. Complete isolation is problemédr
problems where task working sets are most naturally coneploye
the tasks themselves, and we have proposed extensionsuoi&eq
that allow selective exceptions to pure isolated tasks.

The PGAS family of languages, such as Split-C [18], Co-Array
Fortran [19], UPC [20], and Titanium [3] present a singlegram
address space with SPMD semantics with one thread per parces
Thus, the threads are not isolated from one another; angdhrey
reference any accessible data in the global address spatthere
is no special problem in expressing irregular algorithmsrréntly
these languages provide only a two-level memory hierarchy.

More recent parallel language efforts [21-23] support libca
cognizant programming through the concept of distribugifrom
ZPL [24]). While also PGAS languages, these designs alse pro
vide more abstract and dynamic notionspddice (X10) or locale
(Chapel) than the more static SPMD languages discussed abov
and while we are unaware of any studies to confirm it, our intu-
ition is that irregular algorithms should be easier to ezpri@ these
languages. These are still two-level languages, however.

A recent effort proposes Hierarchical Place Trees (HPT) as a
unification of the Sequoia and X10 programming models [2HeL

and off-chip storage. Sequoia tasks are a generalizatictredm
programming kernels. Tasks and kernels share similastiet as
isolation, a local address space, and well-specified wgrkiets,
but differ in the ability of tasks to arbitrarily nest. Becamuthese
languages enforce strong isolation, they have difficultieslar to

Sequoia in expressing highly irregular computations.

Sequoia’s control flow, when encountering a parallel magpin
of subtasks, resembles the thread-less abstraction oficency in
Cilk [30], X10 [21], Chapel [22], and Fortress [23]. Sequsieon-
trol flow is constrained in comparison to most of these laggga
since, for example, the calling task cannot proceed urnslLadtasks
complete (similar to the common usage of OpenMP [31] loops).
The addition ofspawn covers many (perhaps most) of the parallel
loop patterns that could not be expressed in Sequoia. Qitftsin
provide a restricted form of call-up, allowing an atomic quuta-
tion to be performed on the final result of a task (e.g., togrenfa
reduction across task results).

Previous efforts to model memory hierarchies include thé Un
form Memory Hierarchy Model (UMH) [32], which abstracted
uniprocessor machines as sequences of memory modules of in-
creasing size. The Parallel Memory Hierarchy Model (PMH) [9
extended this abstraction to parallel architectures byetiog ma-
chines as trees of memories. Historically, interest in naiferm
memory access models has been motivated by the analysigoof al
rithm performance [33, 34]. In Sequoia, hierarchical megyisra
fundamental aspect of the programming model, requiredhcese
both performance and portability across a wide range ofitach
tures. Sequoia has also been influenced by the idea of sipaited
procedures [35], a methodology for programming machined-mo
eled using the PMH model.

8. Discussion and Future Work

Sequoia is an attempt to strike a practical balance betwedorp
mance and portability. In future machines locality is likéb be-

Sequoia, HPT models machines as a tree of memories. Instead ocome ever more important, and memory hierarchies are liteely

call-up, however, HPT presents a form of global addressespac
as in X10. At any level of the memory hierarchy, data can be
referenced at any ancestor level—while not truly globaloasr
the machine, this model allows for tasks to read or write &xtr
data outside of their own locale/place if necessary. Thidehoan
be simulated using call-up by writing tasks that are renreta
andwrite methods for parent levels of the memory hierarchy. We
considered extending Sequoia with a model similar to HPT, bu
ultimately decided that call-up was both more flexible anthamy
cases more efficient: once we have paid the cost to move tbemot
memory location within the machine, it will often be cheaper
perform a computation locally on the data, rather than sympl
return the data and perform the computation somewhere (Else.
example, in the worklist algorithm adding or removing elerse
from the worklist involves more than memory references.p Th
difference in design stems in part from a difference in polohy
about the underlying architectures: if processing elemarg only
or primarily at the leaves of the memory hierarchy, then HBT i
a close match to the machine. However, if interior nodes ef th
machine tree have their own processors then call-up allev® u
take advantage of these to carry out computation at thoséslev

Hierarchically Tiled Arrays (HTA) [26] accelerate exisgrse-
quential languages with an array data type expressing pieilgv-
els of tiling for locality and parallelism, but also permibérary el-
ement access and therefore can directly express at leastizeqr
ular algorithms. The HTA approach specifies locality by aating
a data type which is less flexible and less portable than Saquo
approach of using task composition.

Stream processing languages [27, 28] also build upon a two-
tiered memory model [29], choosing to differentiate betwea

become more complex and diverse—we will have everythinmfro
relatively simple two-level multi-core machines to sumenputers
with many more levels of memory. The central tenet of Sequoia
is that the programmer should have control over and be able to
reason about locality and communication. By encapsulatiif
within a task, and by carefully avoiding any explicit machide-
pendencies in source programs, Sequoia allows programtoers
express locality- and communication-aware algorithms tlexer-
theless map well to a wide variety of machines.

For regular problems this design works extremely well, lout i
some sense it cannot work for irregular problems. The faat th
the working sets of tasks must be known before task execution
is exactly the property that many irregular applicationglate, at
least if we do not want to write tasks in a low-level eventdri
style. Adding parent objects and call-up allow tasks to psca
their isolated context and communicate with their paremid(a
recursively, any ancestor in the computation tree). Thagsérom
isolation is explicit and tightly constrained, and the satits are
apparently as simple as possible: the only source of coewcyr
is within the parent’'s address space, and even then caliruyss
execute atomically. Furthermore, the parts of programs tlwa
not use call-up behave exactly as in the original Sequoiggdes
Thus, call-up ancspawn can be seen as providing the missing
duals of call-down anehappar, increasing the expressiveness of
the language without changing its character or imposingsaeken
the features are not used.

One alternative to call-ups is to allow tasks access to deitzel
address space of any ancestor task. As discussed in Sedtits 7
is the approach adopted by HPT. Call-ups can also only aezess
cestor memories, but there are some differences betwerg dsi

rect memory references and call-up. First, call-ups prexdd-on-
currency semantics, guaranteeing atomicity of the invaiessis,
while direct memory references have the usual memory madel i
sues around concurrent reads/writes in parallel machBesond,
call-ups can do more than read or write a single piece of detze
we have shifted to another location in the memory hieraratey,
can also perform an arbitrary computation on that data ortineo
communication overhead by performing a bulk-transfer aadA
disadvantage of call-up is that access to the memory of ekt
cestors must go through multiple recursive call-ups, whildPT-
based system can presumably more directly avoid any oveihea
bypassing intermediate levels to go directly to some dateertan
one level removed in the memory hierarchy.

9. Conclusion

We have introducedpawnand call-up as new features for ex-
pressing irregular parallelism within the Sequoia prograng lan-
guage. We have described the operational semantics fospatkin
and call-up within the Sequoia programming model. Our imple
mentations of a series of irregular applications using spawd
call-up have illustrated competitive performance withestparal-

lel codes. We also have demonstrated that spawn and calleup a
the dual to the regular constructs already present in Saggiving
programmers the tools necessary to parallelize all phasten
code when programming deep memory hierarchies.

Acknowledgments

The authors would like to thank Evan Cox for his work on the
implementation of Sequoia++, and the Department of Eneogy f
access to the Cerillos supercomputer at Los Alamos Natiomias.

References

[1] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Coray
MPI-The Complete ReferenceMIT Press, 1998.

[2] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks,ca. Warren,
“Introduction to UPC and Language Specification,” Center fo
Computing Sciences, IDA, Technical Report CCS-TR-99-15B9.

[3] K. Yelick et al, “Titanium: A high-performance Java dialect,” in
Workshop on Java for High-Performance Network Computli®98.

[4] K. Barker et al, “Entering the PetaFLOP era: The architecture and
performance of Roadrunner,” Bupercomputing2008.

[5] K. Fatahalianet al, “Sequoia: Programming the Memory Hierarchy,”
in SupercomputingNovember 2006.

[6] A. Aho, R. Sethi, and J. D. UllmarGompilers: Principles, Techniques,
and Tools Addison-Wesley, 1986.

[7] T. Knight et al, “Compilation for explicitty managed memory
hierarchies,” inSymposium on Principles and Practice of Parallel
Programming 2007, pp. 226-236.

[8] M. Houstonet al., “A portable runtime interface for multi-level memory
hierarchies,” inSymposium on Principles and Practice of Parallel
Programming 2008, pp. 143-152.

[9] B. Alpern, L. Carter, and J. Ferrante, “Modeling paratemputers as
memory hierarchies,” ilProgramming Models for Massively Parallel
Computers1993.

[10] M. Ren, J. Y. Park, M. Houston, A. Aiken, and W. Dally, “A
tuning framework for software-managed memory hierarchiesint'l
Conference on Parallel Architectures and Compilation Teghes
2008, pp. 280-291.

[11] Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: a par&@laT solver,”
vol. 6, pp. 245-262, 2008.

[12] N. Eén and N. Sorensson, “An extensible SAT-solvier,Theory and
Applications of Satisfiability Testin@004, pp. 333-336.

[13] R. Vuduc, J. Demmel, and K. Yelick, “OSKI: A library of tamati-
cally tuned sparse matrix kernels,” linst. of Physics Publishin@005.

[14] A. Bulug et al, “Parallel sparse matrix-vector and matrix-transpose-
vector multiplication using compressed sparse blocks3ymposium
on Parallelism in Algorithms and Architecture2009, pp. 233-244.

[15] S. Lee and R. Eigenmann, “Adaptive runtime tuning ofgtiat
sparse matrix-vector multiplication on distributed megneystems,”
in Supercomputing2008, pp. 195-204.

[16] T. A. Davis, “University of florida sparse matrix colliéan,” NA
Digest vol. 92, 1994.

[17] N. Leischner, V. Osipov, and P. Sanders, “GPU samplg’sGoRR
vol. abs/0909.5649, 2009.

[18] D. Culler et al., “Parallel programming in Split-C,” irBupercomput-
ing, 1993, pp. 262-273.

[19] R. W. Numrich and J. Reid, “Co-array Fortran for parbfjeogram-
ming,” SIGPLAN Fortran Forumvol. 17, no. 2, pp. 1-31, 1998.

[20] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. &ks,
and K. Warren, “Introduction to UPC and language specificgtiUC
Berkeley Technical Report: CCS-TR-99-157, 1999.

[21] P. Charlest al, “X10: An object-oriented approach to non-uniform
cluster computing,” inConference on Object Oriented Programming
Systems Languages and Applicatio?805, pp. 519-538.

[22] D. Callahan, B. L. Chamberlain, and H. P. Zima, “The Gal
high productivity language,” imnt'l Workshop on High-Level Parallel
Programming Models and Supportive Environmeg804, pp. 52-60.

[23] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. B/5teele,
and S. Tobin-Hochstadt., “The Fortress language spedificaersion
0.707. Technical report,” Sun Microsystems, 2005.

[24] S. J. Deitz, B. L. Chamberlain, and L. Snyder, “Abstiaics for
dynamic data distribution,” innt’l Workshop on High-Level Parallel
Programming Models and Supportive Environmeg804, pp. 42-51.

[25] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical g@atrees:
A portable abstraction for task parallelism and data movethén
Workshop on Languages and Compilers for Parallel Compu@09.

[26] G. Bikshandiet al., “Programming for parallelism and locality with
hierarchically tiled arrays,” ilsymposium on Principles and Practice of
Parallel Programming2006, pp. 48-57.

[27] P. Mattson, “A programming system for the Imagine MeHiaces-
sor,” Ph.D. dissertation, Stanford University, 2002.

[28] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,H\uston,
and P. Hanrahan, “Brook for GPUs: Stream computing on gecaphi
hardware,”ACM Trans. Graph.vol. 23, no. 3, pp. 777-786, 2004.

[29] F. Labonte, P. Mattson, I. Buck, C. Kozyrakis, and M. bleitz, “The
stream virtual machine,” itnt'| Conference on Parallel Architectures
and Compilation TechniqueSeptember 2004.

[30] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Raind
and Y. Zhou, “Cilk: An efficient multithreaded runtime systg in
Symposium on Principles and Practice of Parallel ProgramgniL995.

[31] L. Dagum and R. Menon, “OpenMP: An industry-standard A
shared-memory programmingEEE Comput. Sci. Engvol. 5, no. 1,
pp. 46-55, 1998.

[32] B. Alpern, L. Carter, E. Feig, and T. Selker, “The unifomemory
hierarchy model of computationAlgorithmicg vol. 12, no. 2/3, pp.
72-109, 1994.

[33] H. Jia-Wei and H. T. Kung, “I/O complexity: The red-blpebble
game,” inSymposium on Theory of Computii®81, pp. 326-333.
[34] J. S. Vitter, “External memory algorithms,” iHandbook of Massive

Data Sets Kluwer Academic Publishers, 2002, pp. 359-416.

[35] B. Alpern, L. Carter, and J. Ferrante, “Space-limitea@bqedures:
A methodology for portable high performance,” int'l Working
Conference on Massively Parallel Programming Mod&B95.

