
Accelerating CUDA Graph

Algorithms at Maximum Warp

Pervasive Parallelism Laboratory

Stanford University

Sungpack Hong, Sang Kyun Kim,

Tayo Oguntebi and Kunle Olukotun

Graph Analysis

� Graph Analysis

� Fundamental data structure; random relationship
between entities

� Wide usage of graph analysis

� Social Networks, Computational Biology, …

Abundant data-level parallelism� Abundant data-level parallelism

� Still, is computationally challenging

� Growing data size

� Expensive algorithms

� e.g. betweenness centrality: O(NM)

� Random memory access

� Hard to partition for cluster execution

(large surface to volume ratio)

Machines for Graph Analysis

� Supercomputers (e.g. Cray XMT)
� Large, single shared address space

� Uniform memory access time (cache-less)

� Many processors, heavily multithreaded

(parallelism, latency hiding)

Graphics Memory

Memory Control Unit

SM Unit

Instr

A
L

U

SM Unit

Instr

Shared

Mem

Reg File

A
L

U

SM Unit

Instr

A
L

U

� Large memory bandwidth

� But, rare and expensive

� GPU architecture ~ supercomputers

� Difference
� GPU has limited memory capacity (a few GB; no VM)

SM Unit SM Unit SM Unit

Let’s use GPU as long as the problem
size fits.

Example Algorithm: BFS

� Breadth First Search (BFS)

� Starting from a node, visit all nodes in
breadth-first order

� Node visit at each level is parallel.

� A building block for many other � A building block for many other
algorithm

� Assigns BFS level to each node

� e.g. Kevin-Bacon Number

1
1 1

2
2 2 2

3

3
3 3 3

3

Previous Work

� GPU Implementation [Harish et al, HiPC 2007]

� Frontier-expansion method

� Good for CUDA; no atomic operation required

Foreach (v: G.Nodes) int v = THREAD_ID;

Each thread
process a
nodeForeach (v: G.Nodes)

if (v.level == curr)

Foreach (w: v.Nbrs)

if (w.level == INF)

w.level = curr + 1;

int v = THREAD_ID;

if (levels[v] == curr) {

// iterate over neighbors

int num_nbr = nodes[v+1]-nodes[v];

int* nbrs = & edges[nodes[v]];

for(int i = 0; i < num_nbr; i++) {

int w = nbrs[i];

if (levels[w] == INF) {

levels[w] = curr + 1;

} } }

[Pseudo-Code]

[CUDA Code]

Root.level = curr = 0;

Repeat

BFS_kernel(curr);

curr++

Until not changed

Previous Result

� Order of magnitude faster than CPU execution

� … depending on the shape of input graph

� 14x for Random Graph (Erdős–Renyi)

� 1.3x for RMAT Graph (Kronecker)

with same # nodes (4M) and edges (48M)� with same # nodes (4M) and edges (48M)

Random: uniform
degree distribution

RMAT: skewed degree
distribution

… it means we’re in trouble

� Real-world graphs � RMAT-like

� Nature of real-world graphs

� Degree distribution follows power-law curve
(skewed, long tail)

[Barabasi et al, Science 1999][Barabasi et al, Science 1999]

There are
nodes that
have very
high-
degree!Most nodes

have low
degrees

Remainder of This Talk

� Why GPUs don’t perform well

� Techniques for improving GPU performance

� Performance results

Overview: GPU Architecture

� Thread-Block

� Mapped to a physical computation unit, Streaming
Multiprocessor (SM)

� True Multi-Processing

� Warp (1TB = N warps)

� A SM is time-shared by N warps

� Hardware Multi-Threading

� Threads (1 Warp = 32 Threads)

� Single instruction on multiple data

� In fact, they are vector lanes

� SIMD

Graphics Memory

Memory Control Unit

SM Unit

Instr

A
L

U

SM Unit

Instr

Shared

Mem

Reg File

A
L

U

SM Unit

Instr

A
L

U

Warp1

…

…

Warp N

Overview: CUDA programming
model

� CUDA provides little notion of warp, but assumes
independent threads

� Hardware provides such illusion via

� Thread divergence

� Random (scattered) memory access� Random (scattered) memory access

GPU HW: Divergence

� Threads (=lanes) in a warp are allowed to diverge and
execute different instructions .

� However, divergent threads are serialized.

Synchronized
Execution

Divergent
(seriailized)

Converged

Execution (seriailized)

……

Switch(THREAD_ID % 4) {

case 0 : … break;

case 1 : … break;

case 2 : … break;

case 3 : … break;}

……
…
… …

…
… … …

…
…

Threads in a
warp

GPU HW: Random Memory
Access

� Threads (=lanes) can do random memory access.

� Consecutive addresses� Coalesced

� Scattered (non-consecutive) addresses � Serialized

(possibly wasting memory BW)

Threads in a
warp

Memory
Address

Memory
transfer

Memory
Address

Threads in a
warp

Memory transfers

Review: previous work

� Divergence + Random memory access

� Gives an illusion of independent threads

� But with a performance penalty

� Degree skew exacerbate such penalty

Foreach (v: G.Nodes)
Thread

Each thread
process a
node

int v = THREAD_ID;

if (levels[v] == curr) {

// iterate over neighbors

int num_nbr = nodes[v+1] - nodes[v];

int* nbrs = & edges[nodes[v]];

for(int i = 0; i < num_nbr; i++) {

int w = nbrs[i];

// if not visited yet

if (levels[w] == INF) {

levels[w] = curr + 1;

} } }

Foreach (v: G.Nodes)

if (v.level == curr)

Foreach (w: v.Nbrs)

if (w.level == INF)

w.level = curr + 1;Threads further
diverges + load
imbalance (degree
is heavily skewed)

Thread
divergence
happens here

Scattered
access

Divergence + Load Imbalance = Big performance loss!

Our Techniques

1) Utilize warps (in a systematical way)

2) Virtualize warp-size

3) Other techniques – dynamic task-allocation (,
deferring outliers)

Technique #1: Utilizing Warps

� Idea

� Use warps, instead of threads (to prevent divergence)

� In a systematic way

� Our Systematic Method

� Divide kernel into two phases� Divide kernel into two phases

� SISD phase (unit: warp)

� Each warp processes one task.

� SIMD phase (unit: thread)

� Each thread processes one sub-task.

� Initiated by explicit function call

� Resembles classic SIMD programming

� But eaiser (thread divergence and

scattering during SIMD)

Applying Warp-centric Method

Foreach (v: G.Nodes)

if (v.level == curr)

Foreach (w: v.Nbrs)

Each
Warp
processes
a node

SISD

SIMD

No divergence or
scattering

Foreach (w: v.Nbrs)

if (w.level == INF)

w.level = curr + 1;
Each Thread
processes its
neighbors

Short and balanced
divergence � Okay

No big workload
imbalance (Neighbors
of the same node)

More parallelism in
neighbor iteration

Implementation Issue

� How to implement SISD Phase in CUDA?

� Without changing CUDA compiler or GPU HW

� Redundant execution

Every thread executes the same instruction on the � Every thread executes the same instruction on the
same data.

� Okay because there is no race!

� Instruction executions are synchronized.

� Memory accesses are merged.

(see the paper for special care for atomic ops)

Sketch: New Code

BFS_KERNEL (…) {

int v = WARP_ID; // THREAD_ID/WARP_SZ

…

if (levels[v] == curr) {

int num_nbr = nodes[v+1] - nodes[v];

int* nbrs = & edges[nodes[v]];

SIMD_BFS_Iter (THREAD_ID % WARP_SZ, …);

} }

Begins with SISD phase

Explicit entrance to
SIMD phase

Work based on Warp-ID

} }

SIMD_BFS_Iter (int LANE_ID, …) {

for(i=LANE_ID;i<num_nbrs;i+=WARP_SZ){

int w = nbrs[i];

// if not visited yet

if (levels[w] == INF) {

levels[w] = curr + 1;

} }

__threadfence_block();}

SIMD phase

SIMD phase; work
based-on Lane ID

Ensure visibility
across the warp
before back to
SISD

(See the paper for C-Macro based simpler description)

Technique #2:
Virtualize warps

� Drawback of previous method: under-utilization
1. Amdahl’s law: SISD vs. SIMD ratio

2. Data width: sub-task data-width< warp-size

� Our solution: virtualize warps
� Logically partition a warp into K virtual warps

� Assign a task per virtual warp

� Virtual warp-size = 1/K * physical warp-size(=32)

� May introduce divergence again

K=2

Trade-off
divergence and
underutilization

1. Amdahl’s Law 2. Sub-task data width

Implementing Virtual-Warps

� Use the same code as warp-centric method.

� Simply let warp-size as a template variable.

� Execution is still correct.

� Can explore trade-offs with this single variable.

template <int WARP_SZ>

SIMD_BFS_Iter (…) {

for(i=LAIN_ID;i<num_nbrs;i+=WARP_SZ){

……}

template <int WARP_SZ>

BFS_KERNEL (…) {

int v = WARP_ID; // THREAD_ID/WARP_SZ

…}

Technique #3:
Dynamic load balance

� Inter-warp load imbalance

� GPU HW thread-block scheduler:

� SM is time-shared by multiple warps in a thread
block.

� SM is finished when all warps are finished.� SM is finished when all warps are finished.

�One long-running warp prevents SM to finish.

� Solution: Dynamic task allocation

� Each warp grabs a chunk of work from the work-
queue.

� (+) dynamic load balancing

� (-) work queue overhead (atomic instruction)

10

12

14

16
Speedup

BFS Results

� Speed-up

� 1x: Single CPU execution

� GPU: Nvidia GTX 275 (1.2 Ghz)

� CPU: Intel Xeon E5345 (2.3Ghz,
8MB LLC)

Dynamic load balance:
overhead <-> benefit

Warp:
under-

utilization
problem

0

2

4

6

8

10

RMAT Random LiveJournal Patents

[Harish 2007] Warp32 Warp32 + Dynamic

Name Node Edge Skew

RMAT 4M 48M High

Random 4M 48M Low

LiveJournal ~ 4.3M ~ 69M High

Patents ~ 1.7M ~ 10M Low

warp method
solves workload
imbalance issue

12

14

16

18

Speedup

BFS Results

� Virtual warp-size

� Trade-off: under-
utilization vs. load
imbalance

� Best warp-size
depends on the

Under-utilization
issue solved.

0

2

4

6

8

10

RMAT Random LiveJournal Patents

depends on the
graph instance.

No single best
virtual warp-size

[Harish 2007] Warp32 Warp16 Warp8 Warp4

Baseline Warp Warp+Dynamic Warp16

16
Speedup

16
Speedup

Data-Size Scalability

� Scale size of the graph (RMAT instance) Heavy imbalance
� Dynamic load

balance
Little

parallelism
Stable

speedup

0

2

4

6

8

10

12

14

0 20 40 60 80
Num Edges (million)

0

2

4

6

8

10

12

14

0 5 10 15

Speedup

Num Nodes (million)

under-utilization
� Smaller virtual

warps

Dynamic Workload
Distribution

� Parameter: Chunk-size

� Overhead vs. Degree of imbalance

140

160

Execution Time (ms)

0

20

40

60

80

100

120

140

10 100 1000 10000 100000
Chunk Size

Relatively insensitive to chunk size
(X-axis is log-scaled)

Other applications

� Selective applications from GPU Benchmarks

� Applications having work-imbalance or scattering
issues.

� Baseline(1x) is previous GPU implementation.

x Similarly benefited
two other graph
applications in
[Harish2007]

Application without heavy work imbalance issue� overheads

x

Also benefited other
four non-graph

applications

Summary

� Graph Algorithm on GPU

� Large memory bandwidth + Parallelism

� Workload imbalance issue (due to skewed degree
distribution)

� Virtual warp-centric method

� A systematic way of using warps in CUDA

� Enables trade-off:

under-utilization vs. workload imbalance

� Provides up to ~9x speedup to the previous GPU
implementation

� Works for other applications too

