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Abstract

Speed improvements in today’s processors have largely been de-
livered in the form of multiple cores, increasing the importance of
abstractions that ease parallel programming. Software transactional
memory (STM) addresses many of the complications of concur-
rency by providing a simple and composable model for safe access
to shared data structures. Software transactions extend a language
with an atomic primitive that declares that the effects of a block of
code should not be interleaved with actions executing concurrently
on other threads. Adding barriers to shared memory accesses pro-
vides atomicity, consistency and isolation.

Strongly isolated STMs preserve the safety properties of trans-
actions for all memory operations in a program, not just those
inside an atomic block. Isolation barriers are added to non-
transactional loads and stores in such a system to prevent those
accesses from observing or corrupting a partially completed trans-
action. Strong isolation is especially important when integrating
transactions into an existing language and memory model. Isola-
tion barriers have a prohibitive performance overhead, however, so
most STM proposals have chosen not to provide strong isolation.

In this paper we reduce the costs of strong isolation by cus-
tomizing isolation barriers for their observed usage. The cus-
tomized barriers provide accelerated execution by blocking threads
whose accesses do not follow the expected pattern. We use hot
swap to tighten or loosen the hypothesized pattern, while pre-
serving strong isolation. We introduce a family of optimization
hypotheses that balance verification cost against generality.

We demonstrate the feasibility of dynamic barrier optimization
by implementing it in a bytecode-rewriting Java STM. Feedback-
directed customization reduces the overhead of strong isolation
from 505% to 38% across 11 non-transactional benchmarks; persis-
tent feedback data further reduces the overhead to 16%. Dynamic
optimization accelerates a multi-threaded transactional benchmark
by 31% for weakly-isolated execution and 34% for strongly-
isolated execution.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors — Code generation, Compilers, Optimization,
Run-time environments; D.1.3 [Programming Techniques]: Con-
current Programming — Parallel programming; D.3.3 [Program-
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public class BigDecimal {
private volatile transient String stringCache;
public String toString() {
if (stringCache == null)
stringCache = layoutChars(true);
return stringCache;
}
}

Figure 1. A fragment of java.math.BigDecimal. The interface
has immutable semantics, so it is difficult for a programmer to
detect accesses that are incorrect in a weakly isolated STM.

ming Languages]: Language Constructs and Features — Concurrent
programming structures

General Terms  Algorithms, Design, Experimentation, Languages,
Measurement, Performance

Keywords Transactional Memory, Strong Isolation, Weak Isola-
tion, Hot Swap, Bytecode Rewriting, Deoptimization

1. Introduction

Speed improvements in today’s processors have largely been de-
livered in the form of multiple cores, increasing the importance of
abstractions that ease parallel programming. Software transactional
memory (STM) addresses many of the complications of concur-
rency by providing a simple and composable model for safe access
to shared data structures. Software transactions extend a language
with an atomic primitive that declares that the effects of a block
of code should not be interleaved with actions executing concur-
rently on other threads. Implementation techniques for atomic re-
gions have been studied extensively [1,2, 6,9, 10, 18, 23]. Unfor-
tunately, STMs for imperative languages have struggled to provide
good performance while retaining intuitive semantics.

1.1 Strong vs. Weak Isolation

An STM proposal that integrates atomic regions into an exist-
ing imperative language must define the outcome when a non-
transactional access is made to a memory location that is also read
or written by a transaction. A system in which non-transactional
code cannot observe or corrupt a partially completed transaction
is said to provide strong isolation. The alternative is weak isola-
tion, in which consistency is guaranteed only when heterogeneous
accesses do not occur.

Strong isolation is easy for the programmer to reason about
and straightforward to integrate into a language’s memory model.
Grossman et al. show how to add successful transactions to the set
of actions included in Java’s happens-before ordering [8]. Strong
isolation allows the programmer to ignore the effect of partially



completed or failed transactions when reasoning about the correct-
ness of their program,' and it allows the programmer to reason
about whether or not a memory location is currently shared.

The weakest form of isolation provides correct execution for a
program only if each memory location is either never accessed in
an atomic region or always accessed in an atomic region. Programs
that violate this convention can observe arbitrarily bad behavior,
including producing values from thin air. Libraries often hide stores
to shared data inside operations that are semantically read-only,
making it difficult or impossible to reason about the correctness
of the whole program under weak isolation.

As a specific example, consider the snippet of Java code in Fig-
ure 1. BigDecimal presents an immutable interface, so it is not un-
reasonable for a user to expect to be able to call toString() for a
shared instance both inside and outside an atomic region. However,
because weak isolation breaks the carefully defined semantics of
volatile, the result might be a string full of >\0’. In an STM that
performs updates in-place, the non-transactional invocation might
race with rollback of a transaction that populated the cache and sub-
sequently rolled back. A write-buffering STM can cause a problem
during a normal commit because the buffered writes may be issued
in an order that violates the Java memory model.

Transaction isolation is broken when non-transactional code on
a concurrent thread observes or affects the loads and stores used
internally by the STM implementation. Those loads and stores are
not actually performed atomically, so a direct access to memory
is not a party to the STM’s illusion of serializability and consis-
tency. Concurrent execution with strong isolation requires that non-
transactional threads be prevented from observing the internal state
of a partially completed transaction by adding isolation barriers to
non-transactional loads and stores [11].

Despite its subtle semantics, weak isolation is attractive because
it does not involve modifications to non-transactional code. This lo-
calizes any performance impact from atomic to code that actually
uses transactions. As a result there is now active research in mod-
els that constrain the STM’s execution schedule to enable some of
the useful programming idioms precluded by weak isolation while
avoiding the use of isolation barriers [14,20,23]. These models still
require whole-program reasoning by the programmer to establish
the correctness of individual critical regions.

Static whole-program analysis has been used to identify isola-
tion barriers that may be safely removed [21]. This approach seems
promising for environments that can include such an analysis in
their development workflow, but is difficult to reconcile with the
dynamic features of managed languages such as Java and C#.

1.2 Our Contributions

Research into weakly isolated software transactions is predicated
on the assumption that strong isolation adds a prohibitive perfor-
mance overhead. In this paper we tackle those overheads by dy-
namiczzllly optimizing isolation barriers while preserving strong iso-
lation:

e We construct a family of customized memory barriers that dy-
namically check that accesses to a class’s field or array ele-
ments follow an optimization hypothesis. Conforming accesses
are accelerated (often optimally), while threads that attempt a
nonconforming access are blocked. We include stateless access
patterns and patterns that are sensitive to the object instance’s
history (Section 3).

! We assume that the STM guarantees forward progress.

2We compare our work to the concurrent research of Schneider et al. [19]
in Section 9, Dynamic NAIT.
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Figure 2. An intermediate dirty read in a weakly isolated STM. Thread 2
observes an inconsistent value for « because it ignores Thread 1°s lock. The
middle column represents the current value of « in memory, and the dotted
line represents the dirty read.

e We describe how to hot swap barrier implementations in a
running system, with minimal impact on unaffected threads.
We use this hot swap mechanism reactively to rescue threads
blocked due to an incorrect optimization hypothesis (Section 5).

We use runtime profiling to identify fields whose access pattern
is compatible with a more aggressive optimization hypothesis,
and proactively hot swap the barriers for those fields. Because
incorrect optimizations will be corrected by a reactive relax-
ation, this dynamic analysis does not need to be conservative or
sound (Section 6).

We demonstrate the practicality of dynamic barrier customiza-
tion by implementing it in an STM for Java. Our evaluation
shows that the dynamically optimizing system converges on the
performance achieved by an oracle static analysis, the cost of
hot swap is quickly recovered, and barrier optimization reduces
the overheads of both isolation and transaction barriers (Sec-
tion 8).

2. Barriers for Strong Isolation

Strong isolation can be provided by adding barriers to non-transac-
tional code. Direct memory loads and stores from another thread
can break a transaction’s isolation because the STM implemen-
tation cannot actually perform all of its loads and stores atomi-
cally. Isolation barriers must be used to protect an atomic region
from concurrent non-transactional accesses [11]. The details of
how those barriers interact with the transactional metadata are spe-
cific to the STM implementation, but in all systems they must guar-
antee that reads do not observe uncommitted data and that writes
are either communicated to active transactions or blocked until af-
ter all conflicting transactions commit.

To simplify our discussion we will assume, unless otherwise
noted, an update-in-place STM implementation similar to that of
MCcRT-STM [18]. Our work is also applicable to write-buffering
STMs that use strict two-phase locking to protect updates, includ-
ing TL2 [6]. In our assumed STM:

e Updates are performed in-place and protected by strict two-
phase locking;

e An undo log is used to restore values on rollback;

e Reads are lazily validated using version numbers;

e Versions and locks are maintained at an object granularity; and
e Each object contains its own metadata.
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Figure 3. A non-repeatable read in a weakly isolated STM. Thread 2 does
not increment the version metadata, so Thread 1’s read set (RS) validation
incorrectly allows commit. The center columns give the current value of x
and x’s metadata, and the dotted line represents the non-repeatable read.

2.1 Isolation Requirements

Consider the code and execution described in Figure 2, which il-
lustrates the intermediate dirty read problem (examples are adapted
from [21]). Thread 1 is using an atomic region to enforce the invari-
ant that « is even, but Thread 2 can observe an inconsistent interme-
diate state because it has no read isolation barrier. Weak isolation
can also cause atomic regions to behave incorrectly. Figure 3 shows
a non-repeatable read. Thread 1 might commit despite perceiving a
spontaneous change in x, because Thread 2 does not increment the
version metadata. Many more weak isolation anomalies have been
described, but all share a cause with one of the problems we have
just described: non-transactional reads bypass the STM’s locks and
non-transactional writes bypass the STM’s transaction validation.

2.2 Ordering Requirements

One of the lock-based idioms that must be supported by atomic
regions is privatization, in which a critical section is used to obtain
exclusive access to an object that was previously shared. After pri-
vatization the object can be modified with no danger of concurrent
access. Weakly isolated transactions can confound the program-
mer’s reasoning in this case, however, because after the privatiz-
ing transaction’s commit there might still be ‘zombie’ transactions
accessing the data. Although these zombie transactions will even-
tually roll back (after discovering that their read set is inconsistent)
they may perform spurious writes to the privatized object.

The privatization problem was first recognized for the special
case of memory reclamation, in which a zombie transaction might
access memory that has been reused or returned to the operating
system [6]. More recently researchers have studied it in a more
general form, and restrictions on transaction commit order have
been proposed that provide correctness without isolation barriers
for this particular idiom [1,20, 23].

The complementary publication problem has also been studied.
Publication without non-transactional barriers can be made safe by
additional restrictions on commit order if an atomic region is used
to read the reference to the published object [14]. Many existing
usages of the publication idiom, however, use volatile fields.

Java’s memory model guarantees release semantics for a volatile
store [12]. This can be used to implement a lockless cache, as in
Figure 1. It can also be used to (correctly) implement the double-
checked locking idiom. When an object’s construction and publi-
cation are wrapped in a weakly isolated transaction, however, the
memory model’s guarantees are no longer provided. In a write-
buffering STM the actual stores might be issued out of order dur-
ing commit. In an update-in-place STM the stores are issued in the
original order, but if the transaction rolls back then additional stores
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Algorithm 1 Generic read and write isolation barriers.

procedure OPTIMISTICREAD(ref)
repeat
vg — version|ref]
if vg < O then > Negative means locked
vg «— WAITUNTILUNLOCKED(ref)
end if
x — field[ref]
until vy = version[ref]
return x
end procedure

procedure LOCKEDWRITE(ref, x)
repeat
vg — version|ref]
if vg < O then > Negative means locked
vy < WAITUNTILUNLOCKED(ref)
end if
until COMPAREANDSWAP(version[ref], vg, —vg — 1)
field[ref] «— z
version|[ref] «— vy + 1
end procedure

will be made to undo the previous writes. If a non-transactional
volatile load has observed the uncommitted publication then it
might access an object whose updates have been undone. 53 of
the 66 volatile references found in classes that are in java.*,
but not java.util.concurrent.*, are vulnerable to this prob-
lem. A weak model that correctly executes this idiom could be
constructed, but it would still require the programmer to reason
globally about the correctness of code.

Weak isolation sacrifices one of the most important character-
istics of memory transactions: the ability to reason locally about
correctness [13]. An analogy has been made with memory man-
agement, in which the system primitive of garbage collection re-
places local reasoning about the whole-program property of reach-
ability [7]. Without strong isolation both transactional and non-
transactional accesses can produce surprising results because of an
interaction in some other part of the code.

2.3 Isolation Barrier Implementation

Algorithm 1 shows implementations of read and write isolation
barriers for our representative STM. OPTIMISTICREAD checks the
version metadata before and after loading the field’s value, retrying
if a lock or race is detected. This mimics the optimistic conflict de-
tection used by transactions, which maximizes scalability by using
invisible reads [18]. LOCKEDWRITE acquires exclusive access to
the field before storing, and then updates the version when the lock
is released. This guarantees that any transaction that has read the
old value will eventually detect that its read set is inconsistent.
The code for the read and write isolation barriers reveals why
almost all STM implementations to date have adopted weak iso-
lation: extra loads, extra stores, conditional branches, and atomic
compare-and-swaps. In addition to the direct costs of the instruc-
tions, barriers complicate compiler optimizations and decrease the
effectiveness of both software and hardware code caches.

2.4 Static Optimizations

Several static optimizations have been proposed that can reduce the
overhead of isolation barriers, either by eliminating barriers that
can be proved unnecessary or by aggregating operations to reduce
the amortized synchronization cost. The analyses required to justify
these optimizations vary from local to whole-program.



Escape Analysis

Concurrent access to a field can only occur after it has become
reachable from another thread, so accesses to an unescaped object
do not require a barrier. Shpeisman et al. use static escape analysis
to eliminate isolation barriers. They also implement a dynamic
escape analysis that allows faster execution of isolation barriers for
object instances that are not dynamically reachable from a shared
root object but for which the static analysis fails [21].

Barrier Aggregation

If a sequence of barriers is observed that protect the same memory
location, they can be replaced with a single barrier that protects all
of the accesses. This may merge multiple reads, multiple writes, or
reads and writes (if the STM’s write barriers also serve as read bar-
riers). When conflict detection is performed at object granularity,
barrier aggregation can often be used to merge consecutive accesses
to different fields of the same object.
For example, the non-transactional code

field[ref] «— field[ref] + 1
might be initially expanded into

x < OPTIMISTICREAD(ref)

ACQUIRELOCK (ref)

field[ref] — z + 1

RELEASELOCK(ref)
After barrier aggregation the sequence would be

ACQUIRELOCK((ref)

field[ref] < field[ref] + 1

RELEASELOCK (7ef)
This optimization has been shown to be effective for transactional
code [2]. Barrier aggregation has also been evaluated for reducing
the overhead of isolation barriers in non-transactional code [21].

Static Not-Accessed-In-Transaction Analysis

If a field is never accessed inside an atomic region then no isolation
barriers are required by non-transactional reads and writes. A static
analysis that proves this not-accessed-in-transaction (NAIT) prop-
erty can thus be used to remove isolation barriers>. Shpeisman et al.
implement NAIT in a transactional compiler that provides strong
isolation for Java [21]. Isolation barrier removal requires a whole-
program analysis, which restricts the use of dynamic class loading
and reflection. It also requires a conservative analysis, which may
restrict its use for utility classes that are used both inside and out-
side transactions, e.g. java.util.HashMap.

3. Acceleration Using Optimization Hypotheses

We propose optimizing by forming a hypothesis about the dynamic
interleaving of a field’s accesses, and then choosing a set of barrier
implementations customized for that pattern. Isolation and transac-
tion barriers must cooperate to safely access a field. However only
barriers that return to the caller must synchronize with each other.
By allowing customized implementations to indefinitely block non-
conforming accesses, we can make the remaining barriers smaller
and faster. We provide a mechanism to rescue blocked threads, so
an incorrect hypothesis only affects performance. All of our bar-
rier implementations provide strong isolation whether or not the
program conforms to the hypothesis, allowing us to use runtime
profiling to safely guide our optimization.

As a motivating example consider a field protected by the
barriers shown in Algorithm 2. These barriers allow direct non-
transactional access to the field, but prevent access from inside an

3 As originally described NAIT also refers to a not-written-in-transaction
analysis that can only be used to remove read isolation barriers; we use
NAIT to refer to the stronger property.
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Algorithm 2 Barriers customized for the optimization hypothesis NAIT.

procedure NONTXNREAD(ref)

return field|ref] > Access OK
end procedure
procedure NONTXNWRITE(ref, x)

field[ref] — = > Access OK

end procedure

procedure TXNOPENFORREAD(ref)
ROLLBACKANDBLOCK
end procedure

> Nonconforming access

procedure TXNOPENFORWRITE(7ef)
ROLLBACKANDBLOCK
end procedure

> Nonconforming access

atomic region. No matter how they are invoked, the underlying ac-
cess to the field will follow the NAIT access pattern and hence be
strongly isolated. If the barrier invocations do not follow the NAIT
pattern then the rescue mechanism must be invoked to resume for-
ward progress.

An optimization hypothesis (OH) is an access pattern enforced
by a customized barrier implementation. If and only if the invoca-
tions of the barrier conform to that access pattern the accesses will
be passed through to the protected field or array element. We say
that the OH or the barrier admits those accesses. If the barriers are
invoked in a disallowed pattern then they block the calling thread,
after first rolling back any enclosing transaction. An OH is both a
hypothesis about the customized barrier’s invocation pattern and a
guarantee about the actual memory accesses that will be performed
by the corresponding specialized barrier.

To rescue threads that have violated the optimization hypothesis
of a field we use the hot swap feature of a managed runtime
to replace all of the barriers for that field. Continuing the NAIT
example, if an invocation of TXNOPENFORWRITE is detected for
the field then all barriers for the field will be replaced with the
unoptimized versions before the blocked thread is resumed. In
Section 5 we discuss the details of safely hot swapping barriers
without quiescing unaffected threads.

3.1 Will an OH Actually Allow Optimization?

Dynamic verification of an OH incurs extra costs compared to
optimization based on a static proof: the cost of verifying that an
access pattern is followed, and the cost of retaining the ability to
revert to full isolation barriers. For NAIT (and for several other
hypotheses introduced in Section 3.3) all of the verification code is
outside the isolation barriers, so there is no checking cost when the
OH is correct. Preserving the ability to revert to the full isolations
barriers requires the system to add transactional metadata to objects
even if their fields are currently hypothesized to be NAIT. If the
field is never accessed in a transaction then this field is unused.

The complexity of a profitable OH is limited by the complexity
of the original isolation barriers OPTIMISTICREAD and LOCKED-
WRITE. If the specialized barriers are more expensive than the orig-
inal (when weighted by their relative usage) then no acceleration
will be achieved. This is especially limiting for stateful optimiza-
tion hypotheses that require their customized read isolation barriers
to modify metadata.

The cost to rescue a blocked thread from an incorrect OH is
much higher than the savings from an individual barrier, so the sys-
tem will not experience an overall speedup if rescues are common.
If two optimization hypotheses admit barriers with similar perfor-
mance characteristics, it is better to choose the OH that admits more
executions.



Figure 4. A finite state machine that enforces UAHA. The abbreviations
are nt for non-transactional, zx for transactional, RO for read-only, and
RW for read+write. The ‘fix OH’ state corresponds to a violation of the
optimization hypothesis; the invoking thread will be blocked pending hot
swap.

3.2 UAHA - Unmodified-after-heterogeneous-access

By moving the burden of proof from a static analysis to the barriers
we gain the ability to check access patterns that are sensitive to
an object instance’s history. We introduce here unmodified-after-
heterogeneous-access (UAHA), an access pattern that is expensive
to check but general. In Section 3.3 we will describe a family
of patterns (including NAIT) that allow a subset of the behaviors
allowed by UAHA but that are practical to check.

Intuitively UAHA corresponds to a three-stage lifecycle for
a field of an individual object. During the first stage no write
barriers have been observed, so it is not known which type of reads
should be considered heterogeneous. After a write barrier has been
observed then the field is biased toward either transactional or non-
transactional access. During this second stage both reads and writes
are allowed, but they must be exclusively from inside an atomic
region or exclusively from outside. The final stage is read-only,
during which all reads are allowed. If both modes of reads are
encountered then the read-only state must be entered.

We observe that a customized implementation of NONTXN-
READ can skip checking an object’s version and lock metadata if
every actual field store performed by a transaction happens-before
the read isolation barrier’s actual field load. Similarly, a customized
implementation of NONTXNWRITE does not need to lock the ob-
ject and increment the version number if every field store by the
write isolation barrier happens-before every actual load or store to
that field from a transaction. An instance is UAHA if:

1. No object instance is passed to both NONTXNWRITE and
TXNOPENFORWRITE;

2. Every TXNOPENFORREAD happens-after every call to NON-
TXNWRITE; and

3. Every NONTXNREAD happens-after the completion of every
transaction that called TXNOPENFORWRITE on the instance.

UAHA covers uses of the publication pattern that are not proved
safe by a static escape analysis. It is even more general than dy-
namic escape analysis, because it detects actual shared accesses in-
stead of reachability. Metadata is stored per object but optimization
hypotheses concern individual fields, so maximum sensitivity is ob-
tained by tracking heterogeneous access separately for each field.

Verifying that barrier invocations for a field follow the UAHA
pattern requires that heterogeneous accesses (HA) be recorded. Un-
til a write barrier is invoked we don’t know whether HA corre-
sponds to a read isolation barrier or transactional read barrier, so
the checker must include states that record both types of reads. The
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resulting FSM has 6 states that return control to the caller (the 7™
state is L), so it would require three bits of metadata per field (Fig-
ure 4). Synchronization is required for each state transition.

In contrast, consider the checking FSM for NAIT:

ntR, ntW

ntNew
xR, txW

We can reproduce the customized barriers in Algorithm 2 by ob-
serving that zero bits are required to encode the single non-blocked
state. NAIT implies UAHA, so clearly if the less general optimiza-
tion hypothesis is sufficient we should use it instead.

There are several ways in which we can construct optimization
hypotheses that imply UAHA, while having a lower checking over-
head than the full FSM. We can reduce the number of states, reduce
the number of state transitions, share some of the bits of the state
representation between all fields of an object, and/or separate the
starting states for transactional and non-transactional construction.

3.3 Our Family of Optimization Hypotheses

We augment each mutable object with a single transactional-
creation (TC) bit and a fixed number of heterogeneous-access (HA)
bits. TC is initialized to 1 if and only if the object is created inside
an atomic block. Each field is mapped at compile time to one of
the HA bits. If there are few mutable fields each one will be able to
track heterogeneous accesses exactly; if an object has many fields
then multiple fields will use the same HA bit, so false negatives
are possible (this does not affect correctness). HA is used to record
invocations of NONTXNREAD for transactionally created objects
(TC = 1) and invocations of TXNOPENFORREAD for objects
constructed outside an atomic region.

A field’s full optimization hypothesis is composed of a simple
OH p for object instances with TC = 0 and a simple OH ¢
for objects where TC = 1, written (p|g). Thus an optimization
hypothesis p that is not dependent on the construction context
can be written (p|p), e.g. NAIT = (NAIT|NAIT). The simple
optimization hypotheses are:

e ANY - any access. No limitations are made on the access
pattern, and no acceleration is possible.

e NONE - no access. No barriers for the field may be executed.

e RO - read-only. No calls to NONTXNWRITE or TXNOPEN-
FORWRITE are allowed. All write barriers for the field must
have been eliminated by a static escape analysis.

e NAIT - not-accessed-in-transaction. No calls to TXNOPEN-
FORREAD or TXNOPENFORWRITE are allowed for the field.

e UATX - unmodified-after-transactional-access. No calls to
TXNOPENFORWRITE are allowed. TXNOPENFORREAD sets
the field’s HA bit, and NONTXNWRITE is allowed only if the
HA bit has not yet been set.

e NAOT - not-accessed-outside-transaction. No calls to NON-
TXNREAD or NONTXNWRITE are allowed.

e UATC - unmodified-after-transaction-commit. NONTXNWRITE
is not allowed. TXNOPENFORWRITE is not allowed unless the
object is already locked by the current transaction and its ver-
sion number is zero, indicating that it must have been locked
during creation and never been committed®*.

e UANT - unmodified-after-non-transactional access. NONTXN-
WRITE is not allowed. NONTXNREAD sets the field’s HA bit,
and TXNOPENFORWRITE is allowed only if the HA bit has not
yet been set.

4 Alternately a bit could be added to the metadata to record the first commit.
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Figure 5. Enforcing the (UATX|UANT) optimization hypothesis. Edges
with (¥) are heterogeneous accesses.

Note that (ANY|NONE) is not the same as (NAIT|NAIT). The for-
mer specifies that any access is allowed to objects created outside a
transaction, while the latter specifies that non-transactional access
is allowed to all objects.

The UATX and UANT checkers use the HA bit to implement
a two-stage lifecycle, so all actions that require HA = 0 must
happen-before actions that set the HA bit. This means that the write
barriers must lock fields that are changing, the heterogeneous read
barriers may only set the HA bit on an unlocked object, and an
atomic compare-and-swap must be used to set the HA bit. The first
non-transactional read of an instance using a barrier customized for
(*|UANT) will be more expensive than the full (*|ANY) barrier;
subsequent non-transactional reads will be faster.

Because the definition of the HA bit is conditional on TC, the
optimization hypotheses (UANT|*) and (*|UATX) are not sup-
ported. While we could successfully implement these possibilities
with only a single bit by relaxing the definition of TC (perhaps
calling it merely a ‘mark bit’), we would require additional stor-
age when performing our dynamic analysis (Section 6). Also, we
exclude (UATC|*) because those hypotheses allow the same set
of behaviors as (RO|*) (objects created outside a transaction can
never meet UATC’s criteria for TXNOPENFORWRITE).

3.4 Approximating UAHA with (UATX|UANT)

The most general OH supported by our definitions of TC and HA is
(UATX|UANT), whose checker is illustrated in Figure 5. This FSM
can be derived from UAHA'’s checker (Figure 4) by immediately
biasing transactionally created objects to the ‘tx RW’ state and non-
transactionally created objects to the ‘nt RW’ state. This change is
based on the intuition that the constructor and the first write to a
field (not eliminated by escape analysis) are likely to be executed in
the same context. The simplification reduces the storage cost from
three bits per field to one bit per field plus one bit per object, and
reduces the maximum number of state transitions for a field from
three to one when the hypothesis is followed.

3.5 Synergy with Static Escape Analysis

The applicability of an optimization hypothesis can be substantially
widened if a static escape analysis is first used to remove barriers
that occur before an object might be concurrently accessed. For
many fields this eliminates all write barriers [22]. Although this
stationary field analysis most effective as a whole-program analy-
sis, our implementation maintains compatibility with dynamic lan-
guage features by limiting itself to an intraclass analysis performed
during class loading.

To prevent confusion between optimizations performed stati-
cally at compile time and those performed optimistically at run
time, we use the terms ‘removed’ or ‘eliminated’ only to refer to
barriers statically proven to be unnecessary. Barriers that are unnec-
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essary due to a currently valid optimization hypothesis are referred
to as ‘optimally accelerated.” Eliminated barriers will never be re-
placed, while optimally accelerated barriers may be hot swapped if
the OH ceases to be correct.

3.6 Inheritance

Statically typed object-oriented languages such as C++ or Java
associate every field access with a single declaration, even when
inheritance is present. This means that no dynamic dispatch is re-
quired for field barriers even if the object’s exact type is unknown.
Optimization hypotheses are therefore associated with fields in-
stead of classes.

Each instance contains only one set of associated STM metadata
bits, so fields from subclasses must share access to the fixed number
of HA bits. The mapping with the least bit aliasing can be computed
when generating the barriers by counting the number of mutable
instance fields declared by all superclasses. In the evaluated system
16 HA bits are provided for object instances.

3.7 Arrays

Arrays of references are covariant in Java, so an array isolation
barrier typed to receive an Object [] may actually be accessing
a String[]. This means that we must either use dynamic dispatch
when calling array barriers or lose the benefits of optimization
hypotheses that only hold for some array types. We choose the
latter, since when successful it will yield better performance. For
Java we track optimization hypotheses for 9 array types: the 8
primitive array types and Object [1. Multidimensional arrays are
considered to be reference arrays.

An STM must choose the granularity at which data and meta-
data are associated. Object granularity is a widely accepted choice
for instances, but the situation is less clear for arrays. Like adjacent
fields of an object, consecutive array elements are likely to be ac-
cessed at the same time. We can optimize for this by using a single
lock to protect all elements of an array. On the other hand, arrays
form the basis of important shared data structures like HashMap. If
the STM uses a single lock to cover such an array then concurrency
will be lost. Our compromise is to use a single lock and HA bit to
protect access to primitive arrays, and four locks and four HA bits
to protect access to reference arrays. Reference array elements are
mapped to the locks based on their index modulo four, so adjacent
elements are protected by distinct locks.

4. Customized Barriers

Customized barriers provide strong isolation for all access patterns,
but block threads that attempt accesses that do not conform to the
optimization hypothesis for which they were specialized. The read
and write isolation barriers and read and write transaction barriers
for a field are all customized together.

4.1 Generating Barrier Specializations

Figure 6 gives an overview of the implementation required by iso-
lation and transaction memory barriers. A barrier for a compound
(TC-sensitive) OH is constructed by referring to the corresponding
table entries for TC = 0 and TC = 1. If the entries specify the
same operation, then no dynamic check of tc[ref] is required. If
they do not specify the same operation then an additional condition
branch is required in the barrier.

Even after removing combinations that are not useful there are
44 barrier implementations. Rather than hand-code each of these
possibilities we generate the specializations using traditional com-
pilation techniques. We start with ‘customizable’ code that uses
conditional tests of the optimization hypothesis to select between
possible mechanisms for field access, then specialize for a single



OH \ non-txn read  non-txn write txn read txn write
NONE | not allowed not allowed  notallowed not allowed
ANY full full full full
RO direct not allowed no-op not allowed
NAIT direct direct not allowed  not allowed
UATX' direct full4+check HA set HA not allowed
NAOT | not allowed not allowed full full
UATCY direct not allowed no-op check version
UANT? | set HA+direct  not allowed full full+check HA

Figure 6. Implementations for simple optimization hypotheses, or
for half of a compound OH after branching on the transactional
creation (TC) bit. TOnly if TC =0 *Onlyif TC =1

Algorithm 3 Customizable read isolation barrier, before specialization.

1: procedure NONTXNREAD(7ef)

IMPL = { NONE = FAILURE, ANY = SLOW,
RO = FAST, NAIT = FAST,
UATX = FAST, NAOT = FAILURE,
UATC = FAST, UANT = HA_FAST }

(plg) — OH > OH is constant during specialization
if IMPL(p) = IMPL(q) V tc[ref] = O then
op « IMPL(p)

3
4
S:
6: else
7: op < IMPL(q)
8

: end if
9: if op = FAILURE then
10: BLOCKUNTILOHCHANGE
11: return NONTXNREAD(7ef) 1> Call new self after hot swap
12: else if op = SLOW then
13: return OPTIMISTICREAD(7ef) > Original slow barrier
14: else
15: if op = HA_FAST A hal[ref] = 0 then
16: SETHA(ref) > Uses COMPAREANDSWAP
17: end if
18: return field[ref] > Direct load
19: end if

20: end procedure

OH by performing constant folding, constant propagation, dead
code elimination, and common subexpression elimination®.

To reproduce Algorithm 2’s (NAIT|NAIT) read isolation bar-
rier, for example, we perform the following transformations on the
customizable barrier of Algorithm 3:

e Substitute the OH, after which p = NAIT and ¢ = NAIT;

e Propagation and folding show that the conditional on line 4
evaluates to true;

e Additional propagation and folding shows that the conditionals
on lines 9, 12, and 15 are all false; and

e Dead code elimination removes every line from NONTXN-
READ except line 18.

4.2 Useful Optimization Hypotheses

Not all optimization hypotheses are useful. Consider the OH
(ANY|NONE). When accessing a non-transactionally created ob-
ject (TC = 0) no acceleration is possible, since ANY requires full
barriers. For objects created inside an atomic region (TC = 1) no
access is allowed, despite all of the required code being present
in the barrier. In addition, the conditional check required to detect
nonconformance for the TC = 1 case makes the barriers larger and
slower than those for the baseline (ANY|ANY).

5 These transformations can also be performed in an integrated development
environment with support for refactoring.
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Figure 7. Optimization hypotheses that allow isolation barriers to
be accelerated: * = base case, v/ = faster for some invocations,
v4+ = faster and smaller, and v4+ = optimal. Blank entries are
subsumed.

Coditying this reasoning leads us to compare paid costs. The
size or execution speed of a barrier are only important for conform-
ing accesses, because the cost of the hot swap triggered by an op-
timization failure dominates that case. Conversely, if oh; and ohs
have the same costs for conforming accesses and ok, admits a strict
superset of the behaviors admitted by ohs then there is no utility to
ever choosing the second hypothesis. We say ohy subsumes ohs if:

1. oh, admits every execution allowed by ohs;

2. For every execution admitted by ohsz, the barriers for oh; are
no slower than the barriers for oho; and

3. Every barrier in ohs that does not always fail is at least as large
as the corresponding barrier in oh; .

Although the relative size and performance of different barri-
ers is platform-specific, we can reasonably assume that adding a
conditional branch to the underlying implementation results in a
larger and slower barrier, and that a ‘direct’ barrier is no larger
than a ‘not allowed’ barrier. We can then conclude that (p|RO)
and (p|NAIT) subsume (p|NONE), that (RO|p) and (NAIT|p)
subsume (NONE|p), that (NONE|NONE) is subsumed by any
other OH, and that (g|RO) is subsumed by (q|UATC) for g €
{RO, NAIT, UATX}. In Section 6.3 we will address the more dif-
ficult task of choosing the best OH when there is not a consensus
among (1), (2), and (3).

Figure 7 shows which optimization hypotheses are useful for
reducing the overhead of strong isolation. Of special note are the
hypotheses (NAIT|NAIT) and (RO|UATC), for which all checking
code is either outside the isolation barriers or in barriers that are not
invoked unless the OH is incorrect.

5. Hot Swapping Barriers

Customized barrier implementations are faster when accesses con-
form to a field’s optimization hypothesis, but they block threads that
attempt a nonconforming access. Isolation barriers block internally,
while transactional barriers roll back their transaction before block-
ing. To rescue a blocked thread we must relax the offending field’s
optimization hypothesis, hot swap its barrier implementations, and
restart the offending access.

The HotSpot JVM has a robust on-stack deoptimization sys-
tem to support speculative optimizations such as devirtualization.
Deoptimization allows executing compiled code to be reverted to
bytecode interpretation, reconstructing any eliminated local vari-
ables and stack frames. This system is required for aggressive op-
timization in an environment supporting dynamic class loading. It
also underlies the JVM’s hot swap feature, allowing hot swap to
coexist with compiler transformations such as inlining and dead
code elimination [15]. Java’s hot swap mechanism is sufficient to
replace all of the code for a field’s isolation and transaction barri-
ers. However we must ensure that the old and new barriers do not
run simultaneously.



5.1 Ordering Requirements During an OH Change

Strong isolation cannot be guaranteed if barriers specialized for two
optimization hypotheses run at the same time. The semantics of
Java’s hot swap, though, are to continue executing the old byte-
codes for swapped methods that already have an activation record.
This means that we can’t merely invoke the JVM’s hot swap and
then proceed, because an old barrier implementation may still be
active. To change an optimization hypothesis we must establish a
happens-before relationship between all invocations of the old spe-
cialized barriers and all invocations of the replacements.

The simplest way to guarantee safety during the swap would
be to quiesce all threads, blocking them outside isolation barriers
and outside transactions (after waiting for commit or rollback).
All old specializations happen before the quiesce is completed, the
quiesce completion happens before the swap, and any subsequent
barrier invocations will happen after the swap and hence use the
new specialization. This stop-the-world approach is correct, but
it blocks threads regardless of whether they require access to a
changing barrier.

5.2 Swapping Without Stopping the World

Ideally we would like to quiesce only threads that might actually
invoke a new specialization while a stale implementation is still
active. In fact we can identify exactly these threads, by using hot
swap to replace the stale barriers with a stub that quiesces the caller.
Once this preliminary swap has been completed and all stale barrier
implementations have finished we can install the new barriers.

After installing the required QUIESCE barriers the swapping
thread increments a shared counter, the swap clock. When a thread
is at a safepoint (somewhere outside a barrier) it copies the swap
clock to a thread-local field. The swapping thread then polls the
copies until it has observed that every thread has either become
quiesced or passed a safepoint, at which time it can conclude that
no copies of the old specialization are still active.

Safepoints inside an atomic region verify that the transaction
has neither read nor written any of the fields affected by a hypoth-
esis change before witnessing the updated swap clock. Some hy-
pothesis changes could be safely tolerated but our current imple-
mentation simply rolls back any transaction that might be affected.

The situation is complicated by system calls, monitors, and
by stale barriers blocked while acquiring an STM lock. Threads
blocked on system calls or on monitor entry can be detected by
checking the thread status; no swap clock witness is required for
them because they cannot be executing a stale barrier. Blocking
performed from inside a stale barrier specialization is handled by
explicitly checking that the OH hasn’t changed after the blocking
call returns. This check is performed by comparing the return value
of a trivial static method with a constant. The JIT will inline the
static method call and perform dead code elimination on the branch.
During an OH change the static method is replaced, resulting in de-
optimization of the checking code and reappearance of the branch.
If a barrier detects that it has been replaced, it forwards to the new
implementation by making what appears to be a recursive call to
itself.

Once it is certain that no stale implementations are still active
(or rather that any remaining stale barriers are blocked and hence
will behave properly once awoken) a second hot swap is used to
install barriers customized for the new optimization hypothesis.
The QUIESCE barriers are then instructed to unblock and forward
to the new specializations, and execution continues.

6. Feedback-Directed Customization

To reap rewards from specialized barriers we must select optimiza-
tion hypotheses that are specific enough to allow faster execution
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FTC=0

NCNR set by NONTXNREAD
NC_NW_BHA | set by NONTXNWRITE if HA = 0
NCNW_AHA | set by NONTXNWRITEif HA =1
NC_TR set by TXNOPENFORREAD
NC_TW set by TXNOPENFORWRITE

IfTC =1
TCNR set by NONTXNREAD
TC.NW set by NONTXNWRITE
TC_TR set by TXNOPENFORREAD
TC.TWBC set by TXNOPENFORWRITE if never committed
TC_.TWBHA | set by TXNOPENFORWRITE if HA = 0
TC_.-TW_AHA | set by TXNOPENFORWRITE if HA =1

Figure 8. Observation bits. NC and TC abbreviate non-
transactionally-created and transactionally-created, respectively.
BC is before-commit, BHA is before-heterogeneous-access, and
AHA is after-heterogeneous-access.

but general enough to admit all accesses actually performed by
the program. Two basic strategies are possible: optimistic and pes-
simistic. The optimistic strategy starts with an OH that allows op-
timization (perhaps (NAIT|NAIT)), and then reactively relaxes the
OH as needed. The pessimistic strategy starts with a general OH
and then proactively tightens it for fields identified as profitable op-
portunities. Side information may be used to choose an optimistic
strategy for some fields and a pessimistic strategy for others.

The optimal strategy for a field depends on the expected cost of
hot swaps relative to the expected savings from accelerated barri-
ers. Frequently accessed fields will be successfully accelerated by
either the optimistic or pessimistic strategy. Infrequently accessed
fields, however, do not provide the opportunity to recover the cost
of an incorrect speculation, because each hot swap is much more
expensive than an unaccelerated isolation barrier.

We therefore choose the proactive tightening (pessimistic) strat-
egy. For all fields we start with generic (ANY|ANY) barriers that
are augmented to record accesses. If many accesses are observed
for a field we consider tightening it, because the computed OH is
likely to be accurate and there are likely to be sufficient future ac-
cesses to recover the cost of the customizing swap.

6.1 Observation Bits

The RECORD barriers include the safe but slow functionality of
generic isolation and transaction barriers, and they update the het-
erogeneous access (HA) bits. For each field declaration or array
class we maintain an observation word and an invocation counter.
The observation word contains 11 bits as described in Figure 8;
each RECORD barrier invocation sets one bit and increments the
counter. Reads and writes of profiling data are performed racily; the
observation word will converge on the correct value and the invo-
cation counter need only be a proxy for the activity of a field. The
11 observation bits correspond directly to the disallowed behaviors
used to define our family of optimization hypotheses in Section 3.3.
Figure 9 shows the mapping from observation word to allowed OH.

A background thread polls observations and initiates proactive
tightening of an OH. Because hot swap occurs on a per-class ba-
sis, the incremental cost of customizing additional fields of a class
is much smaller than the initial cost. We define two thresholds for
initiating a proactive OH change, an activation threshold and an in-
clusion threshold (10,000 and 100 respectively for field barriers in
the evaluated system, 100,000 and 1,000 respectively for array bar-
riers). Only classes with a field that exceeds the activation threshold
are rewritten, but when rewriting those classes we tighten all of the
fields whose access count exceeds the inclusion threshold.
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Figure 9. Optimization hypotheses allowed by the 11 observa-
tions.

6.2 Persistence of Profiling Data

Profile data can be persisted across multiple executions of an appli-
cation to decrease the number of hot swaps required during warm
up. Because OH choices do not affect the correctness of the system
this information can be used even after dynamic class loading or
recompilation. For many applications this profile data is an oracle,
eliminating the need to perform any swaps at all.

6.3 Choosing Between Allowed Hypotheses

The best OH for a given set of observations is the one whose
barriers will produce the fastest execution of the overall program.
Isolation barriers impact performance in many direct and indirect
ways, so to actually build a system we must make simplifying
assumptions.

The direct cost of a barrier is the expected number of cycles
required to execute its instructions. Indirect costs include lost op-
timization opportunities, increased memory bandwidth and cache
line contention, reduced instruction locality, and pressure on the
virtual machine’s compilation cache. The branches and volatile
memory operations in a barrier limit the compiler’s ability to re-
order and eliminate memory references, while the overall size of a
barrier has a large effect on the compiler’s inlining choices.

We model the performance characteristics of an OH as a 23-
element vector. For each of the four kinds of barriers {non-txn, txn}
x {read, write} we include three elements: the relative execution
ranking if TC = 0, the relative execution ranking if TC = 1, and
the relative size of the barrier. The remaining 11 elements come
from the observations that are compatible with the OH, with a 1 if
the corresponding observation bit is allowed and a 2 if it is not. This
definition means that smaller is better for each of the 23 elements.
The execution orderings are as follows:

e NTread: direct < test TC+direct < set HA+direct < full
e NT write: direct < test TC+direct < full < full4+-check HA
e TX read: no-op < test TC < set HA < full

e TX write: check version < full < full+check version

The execution cost of branching on TC for a compound OH comes

mostly from fetching an object’s metadata, so we separate it out

only for barriers that would not otherwise perform that load. Barrier

size is the number of words of bytecode in the evaluated system.
As an example, consider cost((UATX|UANT)) =

(2,3,52, 5,0,136, 3,5,47, 0,4,73, 1,1,2,1,2,1,2,1,1,1,2)
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The first three elements of the vector indicate that the non-
transactional read barriers for this OH are second fastest (test
TC+direct) if TC = 0 and third fastest (set HA+direct) if TC = 1,
and that they consist of 52 words of bytecode. The second three
elements correspond to non-transactional write barriers. Because
non-transactional writes are not allowed for this OH when TC = 1
the execution score for that case is given as 0.

Starting with the cost vector we then use the observation word
to construct a paid cost vector by zeroing the execution cost el-
ements where the execution is not compatible with the observa-
tion, and zeroing the size cost elements where neither TC = 0 nor
TC = 1 executions are allowed. If obs = NC_NR + NC_TR then
paid((UATX|UANT), obs) =

(2,0,52, 0,0,0, 3,0,47, 0,0,0, 1,1,2,1,2,1,2,1,1,1,2)

The corresponding paid cost vector for (RO|UATC) is
(1,0,5, 0,0,0, 1,0,2, 0,0,0, 1,2,2,1,2,1,2,1,1,2,2)

Element-wise comparison of these two vectors shows that
(ROJUATC) is faster and smaller for every executed barrier (each
of the first 12 elements is <), but that (UATX|UANT) admits more
executions (each of the last 11 elements is >). We choose to com-
pare paid cost vectors by reordering the elements and then compar-
ing lexicographically, effectively giving absolute preference to the
costs earlier in the order. This avoids the need to compute weights
that allow comparison between metrics of different types.

When choosing the element preference order we give highest
priority to execution time and second priority to barrier size. Be-
cause our focus is on reducing the overhead of strong isolation we
prefer faster isolation barriers to faster transactional barriers, and
we prefer acceleration for non-transactionally created instances to
acceleration for transactionally created ones. Reads are typically
more common than writes so we prioritize read performance [5].
The resulting order is:

(1,4,2,5,10,7,11,8,3,6,9,12,13,14, 15,18, 19, 20, 21, 22, 23,16, 17)

This means that the first element of the paid cost vector is
given priority, followed by the fourth element, and so on. This
priority scheme reproduces the subsumption results from Sec-
tion 4.2 automatically, and correctly prefers the ‘perfect’ hypothe-
ses (ROJUATC) or (NAIT|NAIT) whenever they are compatible
with the observation word. We precompute the mapping from obs
to optimal OH and store it in a lookup table with 2048 entries.

7. AlJ: a Bytecode-Rewriting Java STM in Java

To evaluate the feasibility of dynamic barrier customization we
implemented it in AJ, a strongly isolated STM for Java. AJ is
written in Java and uses the ASM toolkit [4] to rewrite bytecodes
during class loading. Transactional metadata is added to classes
containing mutable fields, methods are split into non-transactional
and transactional version, and barriers are inserted. Reflection and
dynamic class loading are allowed. Conditional retry, watch sets,
and task composition are provided. AJ does not extend the Java
language; rather it provides a static method TM. atomic (Runnable
task) that causes task.run() to be executed atomically.

AJ is implemented almost entirely in Java by making use of
Sun’s sun.misc.Unsafe extension. The exception is a small JNI
stub that allows the hot swap system to call [VMTI’s GetCurrent-
ContendedMonitor function, required to detect threads blocked
on the hidden monitor that guards a class’ static initializer. AJ has
been tested on Sun’s J2SE™1.6.0_06 on the 1686, x86_64, and
sun4v architectures, and on J2SE™1.7.0-ea-b29 on the x86_64
architecture. It has been tested under Linux and Solaris.

Barriers are inserted into both application and library code.
To reduce the number of circularity issues the JRE’s classes are
instrumented ahead of time. All other code is instrumented during
class loading. 16 HA bits are provided for object instances. We map



array instances to version and lock metadata by hashing. On 32-bit
platforms we must assume TC = 1 and HA = 1. However, on
64-bit platforms current versions of HotSpot have 25 unused bits
in each object’s header, allowing us to store the TC and HA bits
exactly for arrays.

Class initialization cannot be rolled back because the JVM
maintains C++ shadows of the fields in java.lang.Class, out-
side AJ’s reach. We therefore suspend transactions during execu-
tion of static initializers. Barriers are implemented as static method
calls to synthetically generated helper classes. Barrier customiza-
tion is accomplished by using the Instrumentation API to swap
these helper classes.

AJ’s implementation of dynamic optimization has reasonable
overheads, and the cost of hot swaps during warm up can be re-
duced or eliminated by persisting profile data across executions.
AlJ duplicates analyses already performed by the compiler, must
perform method splitting for all loaded classes, and cannot inform
the JVM of invariants that are preserved during swaps. While the
per-barrier and per-swap overhead of the STM would be reduced
by tighter integration with the underlying JVM, AJ’s all-Java im-
plementation allows us to leverage Sun’s mature hot swap imple-
mentation. We have implemented all of the optimization hypothe-
ses from Section 3.3, the hot swap mechanism described in Sec-
tion 5, the feedback-directed customization of Section 6, and the
profile persistence from Section 6.2. Barrier customization is sup-
ported for both application and JDK classes.

8. Evaluation

We evaluated costs of strong isolation without optimizations, ef-
fectiveness of our specialized barriers at reducing those costs, and
overheads involved in profiling and customizing barriers dynami-
cally. We used benchmarks with no transactions and benchmarks
that spend substantial time both inside and outside atomic regions.
‘We measured performance and scalability impacts by running each
of the benchmarks without isolation barriers, with unoptimized bar-
riers, with specialized barriers installed before class loading, and
with specialized barriers installed by hot swap based on runtime
feedback. Dynamic barrier customization reduced the overhead of
providing strong isolation in an STM and lowered STM overheads
during transactional execution.

We performed experiments on computers with two quad-core
2.33Ghz Intel®Xeon®CPUs and 32GB of shared memory. We
used Linux x86_64 kernel 2.6.18 and the 64-bit Server VM in Sun’s
Java™SE Runtime Environment, build 1.7.0-ea-b29, with a 1GB
heap. We ran each configuration five times and averaged the results.
Error bars illustrate the standard deviation of the samples.

8.1 Overheads of Basic Isolation Barriers

‘We measured the overhead of unoptimized isolation barriers by ex-
ecuting non-transactional benchmarks from the DaCapo suite with
and without isolation barriers [3]. Of the fixed optimizations dis-
cussed in Section 2.4 only intraclass static escape analysis was
used. To account for JVM warm up we timed the third repetition
of the DaCapo programs. Figure 10 shows the additional execution
time when unoptimized isolation barriers are used, normalized to
the execution time of a program with no barriers, STM transforma-
tions, or AJ overheads. Execution time is also shown for programs
that contain isolation barriers only for field accesses (object and
static fields) and for programs that contain isolation barriers only
for accesses to array elements. To measure the impact of isolation
barriers on scalability we also ran SpecJBB2005 in these configura-
tions with thread counts from 1 to 8. Each invocation of the bench-
mark produces scores for all thread counts, with an extra single-
threaded execution providing a warm up for the other values. Fig-
ure 11 shows the gain in the average execution time of a business
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Figure 10. Overheads from unoptimized isolation barriers during non-
transactional execution of the DaCapo benchmarks, normalized to perfor-
mance with no STM.
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Figure 11. Overheads from unoptimized isolation barriers during non-
transactional execution of SpecJBB2005, normalized to the performance
with no STM for the corresponding thread count.

operation, normalized to the average execution time with no STM
overheads for the corresponding thread count.

As expected, programs containing unoptimized isolation barri-
ers were significantly slower and less scalable. Barriers protecting
both field and array accesses were significant sources of overhead,
with the ratio of importance varying between applications. fop ex-
perienced the smallest isolation barrier overhead (59%) because it
performs a great deal of I/O. lusearch experiences the most slow-
down (~14 x slower) because its many query threads are impacted
by the sequential and scaling overheads of isolation barriers.

8.2 Overheads of Dynamic Barrier Customization

We evaluated the cost of feedback-directed optimization by exe-
cuting the DaCapo and SpecJBB2005 benchmarks with isolation
barriers chosen by an oracle and with isolation barriers customized
at runtime using the analysis of Section 6. We further examine
the source of overheads by running the benchmarks with STM’s
method splitting and metadata injection but no isolation barriers,
with and without swap safepoints. Figure 12 shows the perfor-
mance overhead of the DaCapo benchmarks relative to an execu-
tion with no barriers or STM support. The ‘weak’ system includes
method splitting and STM metadata for object instances, but has no
isolation barriers. The ‘weak+safepoints’ system adds swap safe-
points, which are required for safe hot swap of barriers. The ‘oracle
strong’ system adds isolation barriers that are customized during
class loading for the (NAIT|NAIT) optimization hypothesis. The
‘dynamic strong’ system starts with unoptimized RECORD barri-
ers and uses hot swap to customize frequently used barriers using
the scheme from Section 6. Figure 13 shows scaling of these con-
figurations for SpecJBB2005.
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Figure 12. Isolation barrier overheads with oracle and feedback-directed
barrier customization, normalized to performance with no STM.
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Figure 13. Isolation barrier overheads for non-transactional execution of
SpecJBB2005 with oracle and dynamic barrier customization, normalized
to performance with no STM for the corresponding number of threads.

The ‘oracle strong’ overheads represent an execution in which
the system uses persistent profiling data to correctly select the ini-
tial optimization hypotheses, as described in Section 6.2. For many
situations the oracle behavior is feasible even in deployed environ-
ments. The average overhead for DaCapo in this case was 16%
and for fully threaded SpecJBB2005 (8 threads for 8 processors)
it was 7%. We tested the stability of this overhead by measuring
the 15™ DaCapo iteration instead of the third; no improvement was
seen. ‘Oracle strong’ demonstrates that isolation barriers can be ef-
ficiently optimized while preserving the ability to deoptimize.

The average difference between ‘weak+safepoints’ and ‘oracle
strong’ (counting SpecJBB2005 peak scores as a single datum) is
2.2%. This indicates that HotSpot does an excellent job of inlining
barriers optimized for (NAIT|NAIT). The average overhead from
method splitting and metadata in object instances is 5.3%. Adding
swap safepoints introduces an additional 8.5% overhead. Tightly
coupling the STM and JVM would reduce all of these overheads.

The ‘dynamic strong’ values show that feedback-directed bar-
rier optimization is practical for applications with a warm up pe-
riod. The average overhead for the third DaCapo iteration was 24%
higher than oracle OH. Reasonably, hot swap’s impact is largest
for programs with the shortest execution (fop is shortest, followed
by luindex then antlr). All benchmarks except fop recovered
their swapping costs during the first iteration. fop’s first iteration
with feedback-directed optimization was 16% slower than the first
iteration using unoptimized isolation barriers. Dynamic optimiza-
tion results in a peak SpecJBB2005 score within 1% of the oracle’s
score.

Figure 14 shows average counts and elapsed times for the ‘dy-
namic strong’ executions. On average, 5.9 fields had their optimiza-
tion hypothesis changed during each hot swap. ‘Dynamic strong’
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#swaps  #fields  msec/field
antlr 72.8 426 13.9
bloat 110.0 425 36.8
chart 76.2 427 222
fop 71.4 384 16.2
hsqldb 49.0 375 18.9
jython 83.4 498 32.5
luindex 91.6 429 10.6
lusearch 30.6 300 26.2
pmd 78.8 345 22.6
xalan 97.8 892 27.6
SpecJBB2005 63.0 339 14.8

Figure 14. Hot swaps performed by feedback-directed optimization dur-
ing the executions from Figures 12 and 13 (averages).
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Figure 15. Overhead of strong isolation relative to weak isolation for
SpecJBB2005 modified to use atomic regions and lazy transaction log
construction. Increases in average business op execution time are shown,
normalized to a weakly isolated STM with the same thread count.

demonstrates that the feedback-directed optimization quickly pro-
vides most of the benefits of an oracle static analysis, and that the
extra costs incurred by hot swap can be recovered.

8.3 Optimizations in a Mostly-Transactional Program

To evaluate the cost of providing strong isolation for a program that
has both transactional and non-transactional execution, we replaced
some of SpecJBB2005’s synchronized blocks with atomic re-
gions. The benchmark simulates a multi-tier system by performing
synchronized transactional and then performing an unsynchronized
presentation phase. These phases are contained in the process
and processTransactionLog portions, respectively. The presen-
tation workload consists of creating XML and simulating a text-
based client terminal using many character arrays. We modified
the benchmark so that the setup and process portions of each
benchmark transaction executed in an STM transaction and the
processTransactionLog remained non-atomic. This split causes
the benchmark to spend between 60% and 85% of its non-startup
CPU time in atomic regions.

SpecJBB2005 constructs the character arrays that model the
client terminal (the ‘transaction log’) inside process and fills those
arrays in processTransactionLog. Our initial naive transactifi-
cation thus causes char [] to receive an optimization hypothesis of
(ANY|ANY), preventing acceleration for the most common bar-
rier type. Our goal was not to evaluate automatic parallelization or
lock elision, so we moved the offending construction code outside
of the atomic section by using the lazy initialization pattern. After
this transformation char [] allows an OH of (UATX|ANY). In this
use case lazy initialization would also be required to optimize using
NAIT or dynamic escape analysis.
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Figure 16. Relative barrier invocation counts for ‘dynamic strong’
execution of SpecJBB2005 modified to use atomic regions and
lazy transaction log creation. OH percentages are relative within
the corresponding column. Hypotheses accounting for < 5% of a
column are not shown.

Figure 15 shows the performance of SpecJBB2005 modified
to use atomic regions, normalized to single-threaded performance
with weak isolation and no barrier customization. We observe that
as in the previous experiments, the feedback-directed analysis per-
forms almost identically to the oracle analysis once the system
has warmed up. Customization of the isolation barriers improves
the peak score by 34% compared to unoptimized strong isolation.
Some of this improvement results from acceleration of the isolation
barriers and some from acceleration of the transactional barriers.
Because all barriers must work together to verity the OH, it is not
possible to apply these optimizations separately. Figure 16 shows
the barrier invocation counts from a ‘dynamic strong’ configura-
tion. The relatively large performance difference between weak and
strong isolation in this experiment comes from write isolation bar-
riers. When we examine the left half of the ‘NT Write” hypotheses
in the upper half of the table (TC = 0) and the right half of the
hypotheses for the lower half, we see that almost all write isolation
barriers must use locking.

8.4 Acceleration of Transactions

Although we are primarily motivated to produce a practical strongly
isolated STM, we can also use our feedback-directed barrier opti-
mization to accelerate a weakly isolated STM. No changes to the
feedback or OH selection algorithm are required, because if no
isolation barriers are inserted then the system observes only trans-
action barriers and confines itself to optimizing those. Dynamic
optimization improved the peak SpecJBB2005 score by 31% over
the weakly isolated transactional execution. 55% of the read bar-
rier invocations and 75% of the write barrier invocations went to
barriers customized for (RO|JUATC). This OH is almost entirely
responsible for the speedup, as the only other hypothesis with sub-
stantial use was (ANY|ANY).

9. Related Work

Dynamic NAIT - Recently published concurrent work by Schnei-
der et al. explores a nearby point in the design space of strongly
isolated STMs [19]. This work adds a dynamic not-access-in-
transaction analysis (D-NAIT) to an STM-enabled JVM. This is
the same JVM used by Shpeisman et al. to evaluate static whole-
program NAIT analysis [21].
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D-NAIT considers only the removal of barriers, rather than se-
lection among alternate non-empty implementations. This restric-
tion, along with the cooperation of the JIT (and the negligible cost
of NOP instructions on a modern architecture) allow for barrier
patching at a lower cost than in our evaluation system. The reduced
decision space and the reduced cost of rescue lead them to prefer an
initially tight hypothesis ((NAIT|NAIT)) that is reactively relaxed
as needed. The reactive strategy increased AJ’s swap time by 48%
for the transactified SpecJBB2005.

Dynamic escape analysis plays a similar role in the D-NAIT
system to the TC and HA bits in ours, allowing short-cut execu-
tion of barriers for instances that meet a dynamic safety property.
Because dynamic escape analysis marks objects as escaped before
they are shared, it does not need to synchronize access to an in-
stance’s state. This allows acceleration of both read and write iso-
lation barriers for unescaped instances, as there is no potential race
between observing that an instance has not escaped and a subse-
quent write to a field. (UATX|*) or (*|UANT) are potentially more
accurate, detecting actual sharing instead of potential sharing and
operating at field granularity. The tradeoff, however, is that homo-
geneous write barriers must perform extra work to guard against
concurrent setting of the HA bit. HA bits need only be read or
updated for optimization hypotheses involving UATX or UANT,
while dynamic escape analysis must be performed for all objects.

Schneider et al. stop the world during barrier patching, while we
propose a two-swap scheme that only blocks threads if they access a
field whose optimization hypothesis is changing. D-NAIT handles
optimization failures for all barriers of a method on entry, which
reduces the number of swaps required but slightly decreases the ef-
fectiveness of the analysis. Per-method generation of optimization
failures is not possible in our system, at least not for any optimiza-
tion hypotheses that reference the TC or HA bits. D-NAIT’s tight
integration with the JVM (in particular with the GC, which already
has code to efficiently quiesce all threads) reduces the performance
penalty of stopping the world. Our two-swap scheme would benefit
similarly from a tight coupling, and may have scaling advantages.

Static NAIT — The analysis of Shpeisman et al. can produce
smaller and faster code than dynamic barrier customization, even
when barrier customization is seeded with the oracle OH [21]. The
static analysis is conservative, so it does not need to retain the abil-
ity to revert to full isolation barriers. Shpeisman et al. also optimize
for fields that are not written in a transaction. This access pattern is
not accepted by UAHA, the most general optimizable OH we con-
sider. Shpeisman et al.’s dynamic escape analysis plays a similar
role in their system to the TC and HA bits in ours, providing for a
partial speedup based on an instance’s dynamic history.

Automatic Data Partitioning — The family of optimization hy-
potheses we present are brittle when applied to arrays. char[] is
particularly important because its use is ubiquitous via String and
StringBuilder. The coupling between type and OH in our sys-
tem is a degenerate form of pointer analysis, in which we assert
that accesses to different fields cannot alias. More sophisticated
analysis may ease the difficulties we encountered in Section 8.3.
Riegel et al.’s automatic data partitioning approaches the alias-
ing problem from the analysis end, constructing data partitions
using pointer analysis that include multiple types in each parti-
tion [16]. This results in tens of partitions per application, rather
than the thousands created our system. Their dynamic selection of
the STM used for each partition is similar to our choice of opti-
mization hypothesis, but they dynamically dispatch to the currently
chosen STM in each barrier instead of swapping in customized bar-
riers, and they only attempt to accelerate transactional barriers. In-
terestingly, they consider not only the accesses allowed by an STM
specialization but also the relative costs. To extrapolate this idea to
our system we would construct multiple barrier implementations



for (ANY|ANY), with implementations tailored for high and low
contention and for read-mostly or write-heavy access pattern.

Biased Locking — Our family of optimization hypotheses is unable
to provide acceleration for fields that are written both inside and
outside a transaction, even if those accesses don’t break strong iso-
lation. The rebiasing techniques of biased locking might be used to
switch the allowed accesses without requiring synchronization by
each barrier, because the rebias causes a happens-before relation-
ship to exist between accesses with different biases [17].

10. Conclusion

Many of the simplicity and safety advantages of memory trans-
actions are lost if strong isolation is not provided, but the advan-
tages are also lost if the performance penalty of isolation barriers
is too high. We have described how to dynamically optimize isola-
tion barriers based on feedback gathered during execution, and we
have shown that the overhead of performing these optimizations at
runtime is reasonable. Our customized barriers take responsibility
for guaranteeing strong isolation, allowing optimizations to be per-
formed in the presence of dynamic class loading. Dynamic barrier
customization is also effective at accelerating STM’s transactional
execution under weak and strong isolation.

We reduced the overhead imposed by strong isolation from
505% to 38% for 11 non-transactional benchmarks, and then used
persistent feedback data to further reduce that overhead to 16%.
We accelerated a benchmark with mixed transactional and non-
transactional execution by 31% under weak isolation and 34%
under strong isolation.
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