
Spatial: A Language and Compiler for
Application Accelerators

David Koeplinger† Matthew Feldman† Raghu Prabhakar† Yaqi Zhang†

Stefan Hadjis† Ruben Fiszel‡ Tian Zhao† Luigi Nardi† Ardavan Pedram†

Christos Kozyrakis† Kunle Olukotun†

† Stanford University, USA
‡ École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

{dkoeplin,mattfel,raghup17,yaqiz,shadjis,rfiszel,tianzhao,lnardi,perdavan,kozyraki,kunle}@stanford.edu

Abstract
Industry is increasingly turning to reconfigurable archi-
tectures like FPGAs and CGRAs for improved perfor-
mance and energy efficiency. Unfortunately, adoption of
these architectures has been limited by their program-
ming models. HDLs lack abstractions for productivity
and are difficult to target from higher level languages.
HLS tools are more productive, but offer an ad-hoc
mix of software and hardware abstractions which make
performance optimizations difficult.

In this work, we describe a new domain-specific lan-
guage and compiler called Spatial for higher level de-
scriptions of application accelerators. We describe Spa-
tial’s hardware-centric abstractions for both programmer
productivity and design performance, and summarize
the compiler passes required to support these abstrac-
tions, including pipeline scheduling, automatic memory
banking, and automated design tuning driven by active
machine learning. We demonstrate the language’s ability
to target FPGAs and CGRAs from common source code.
We show that applications written in Spatial are, on av-
erage, 42% shorter and achieve a mean speedup of 2.9×
over SDAccel HLS when targeting a Xilinx UltraScale+
VU9P FPGA on an Amazon EC2 F1 instance.

CCS Concepts • Hardware → Hardware accel-
erators; Reconfigurable logic applications; • Software
and its engineering → Data flow languages; Source
code generation;
Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Copyright held by the owner/author(s). Publication rights
licensed to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00
https://doi.org/10.1145/3192366.3192379

Keywords domain-specific languages, compilers, hard-
ware accelerators, high-level synthesis, reconfigurable
architectures, FPGAs, CGRAs
ACM Reference Format:
David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi
Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi,
Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun.
2018. Spatial: A Language and Compiler for Application Ac-
celerators. In PLDI ’18: PLDI ’18: ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
June 18–22, 2018, Philadelphia, PA, USA. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3192366.3192379

1 Introduction
Recent trends in technology scaling, the availability of
large amounts of data, and novel algorithmic break-
throughs have spurred accelerator architecture research.
Reconfigurable architectures like field-programmable gate
arrays (FPGAs) and coarse-grain reconfigurable archi-
tectures (CGRAs) have received renewed interest from
academic researchers and industry practitioners alike,
primarily due to their potential performance and energy
efficiency benefits over conventional CPUs. FPGAs are
now being used to accelerate web search in datacenters at
Microsoft and Baidu [29, 34], Amazon now offers FPGA
instances as part of AWS [4], and Intel has announced
products like in-package Xeon-FPGA systems [18] and
FPGA-accelerated storage systems [21]. Similarly, sev-
eral recent research prototypes [17, 30–32, 40] and star-
tups [6, 7] have explored various kinds of CGRAs at
different granularities. Growing use of such reconfig-
urable architectures has made them more available to
programmers now than ever before.

Reconfigurable devices are able to accelerate appli-
cations, in part, by exploiting multiple levels of nested
parallelism and data locality with custom data pipelines
and memory hierarchies. Unfortunately, the same fea-
tures that make reconfigurable architectures efficient
also make them much more complex to program. An
accelerator design must account for the timing between
pipelined signals and the physically limited compute

https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1145/3192366.3192379

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA D. Koeplinger et al.

and memory resources available on the target device.
It must also manage partitioning of data between local
scratchpads and off-chip memory to achieve good data
locality. The combination of these complexities leads to
intractable accelerator design spaces [13].

These challenges have caused programmability to be
a key limiting factor to widespread adoption of CGRAs
and FPGAs [10, 15]. The space of CGRA programmabil-
ity is fragmented with incompatible, architecture-specific
programming models. The current state of the art in
programming FPGAs involves using a combination of
vendor-supplied IP blocks, hand-tuned hardware mod-
ules written using either low-level RTL or high-level
synthesis tools, and architecture-specific glue logic to
communicate with off-chip components such as DRAM.
Hardware description languages (HDLs) like Verilog and
VHDL are designed for explicit specification of hardware,
placing the burden on the user to solve the complexities
of implementing their algorithm in hardware.

High-level synthesis (HLS) tools like SDAccel [42], Vi-
vado HLS [3], and Intel’s OpenCL SDK [5] raise the level
of abstraction compared to HDLs significantly. For exam-
ple, HLS tools allow programmers to write accelerator
designs in terms of untimed, nested loops and offer li-
brary functions for common operations like data transfer
between a CPU host and the FPGA. However, exist-
ing commercial HLS tools have all been built on top of
software languages like C, OpenCL, and Matlab. These
software languages have been built to target instruction-
based processors like CPUs and GPUs. Consequently,
although existing HLS tools raise the level of abstrac-
tion for targeting reconfigurable architectures, they do
so with an ad-hoc, often underspecified mix of software
and hardware abstractions. For instance, while SDAccel
can convert nested loops into hardware state machines,
the language has no notion of the architecture’s memory
hierarchy and cannot pipeline loops at arbitrary nesting
levels [2]. Programmers must keep in mind that, despite
the software programming abstractions, they must em-
ploy hardware, not software, optimization techniques.
This makes it challenging to write HLS code which pro-
duces fully optimized designs [26].

In this work, we first summarize high-level language
abstractions required to create a new high-level synthesis
language from the ground up, including syntax for man-
aging memory, control, and accelerator-host interfaces
on a reconfigurable architecture. We suggest that this
“clean slate” approach to high-level synthesis language
design leads to a language which is semantically cleaner
when targeting reconfigurable architectures, particularly
when optimizing for data locality and parallelism. These
abstractions help programmer productivity and allow
both the user and compiler to more easily optimize de-
signs for improved performance.

1 // Custom floating point format
2 // 11 mantissa, 5 exponent bits
3 type Half = FltPt[11,5]
4
5 def main(args: Array[String]) {
6
7 // Load data from files
8 val a: Matrix[Half] = loadMatrix[Half](args(0))
9 val b: Matrix[Half] = loadMatrix[Half](args(1))

10
11 // Allocate space on accelerator DRAM
12 val A = DRAM[Half](a.rows,a.cols)
13 val B = DRAM[Half](b.rows,b.cols)
14 val C = DRAM[Half](a.rows,b.cols)
15
16 // Create explicit design parameters
17 val M = 128 (64, 1024) // Tile size for output rows
18 val N = 128 (64, 1024) // Tile size for output cols
19 val P = 128 (64, 1024) // Tile size for common
20 val PAR_K = 2 (1, 8) // Unroll factor of k
21 val PAR_J = 2 (1, 16) // Unroll factor of j
22
23 // Transfer data to accelerator DRAM
24 sendMatrix(A, a)
25 sendMatrix(B, b)
26
27 // Specify the accelerator design
28 Accel {
29 // Produce C in M x N tiles
30 Foreach(A.rows by M, B.cols by N){ (ii,jj) =>
31 val tileC = SRAM[Half](M, N)
32
33 // Combine intermediates across common dimension
34 MemReduce(tileC)(A.cols by P){ kk =>
35 // Allocate on-chip scratchpads
36 val tileA = SRAM[Half](M, P)
37 val tileB = SRAM[Half](P, N)
38 val accum = SRAM[Half](M, N)
39
40 // Load tiles of A and B from DRAM
41 tileA load A(ii::ii+M, kk::kk+P) // M x P
42 tileB load B(kk::kk+P, jj::jj+N) // P x N
43
44 // Combine intermediates across a chunk of P
45 MemReduce(accum)(P by 1 par PAR_K){ k =>
46 val partC = SRAM[Half](M, N)
47 Foreach(M by 1, N by 1 par PAR_J){ (i,j) =>
48 partC(i,j) = tileA(i,k) * tileB(k,j)
49 }
50 partC
51 // Combine intermediates with element-wise add
52 }{(a,b) => a + b }
53 }{(a,b) => a + b }
54
55 // Store the tile of C to DRAM
56 C(ii::ii+M, jj::jj+N) store tileC
57 }
58 }
59
60 // Save the result to another file
61 saveMatrix(args(2), getMatrix(C))
62 }

Figure 1. Basic matrix multiplication (𝐶 = 𝐴 · 𝐵)
implemented in Spatial.

We then describe a new domain specific language
(DSL) and compiler framework called Spatial which
implements these abstractions to support higher level,
performance-oriented hardware accelerator design. Fig-
ure 1 shows an example of a basic implementation of
matrix multiplication in Spatial. As this figure shows,
Spatial code is like existing HLS languages in that pro-
grams are untimed and the language encourages accel-
erator designs to be expressed in terms of nested loops.
However, unlike existing HLS tools, Spatial gives users
more explicit control over the memory hierarchy through
a library of on-chip and off-chip memory templates (e.g.
the DRAM and SRAM in Figure 1). Spatial automatically

Spatial: A Language and Compiler for Application Accelerators PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

pipelines arbitrarily nested loops, and banks, buffers,
and duplicates memories for the user based on parallel
access patterns by default. This is in contrast to modern
HLS tools, which largely rely on the user to add explicit
pragmas to their code in order make these optimizations.
Spatial also supports tuning of parameterized designs
via automated design space exploration (DSE). Unlike
prior approaches [22] which use variance-prone heuris-
tic random search, Spatial employs an active machine
learning framework called HyperMapper [11] to drive
exploration. This tuning allows a single accelerator de-
sign to be quickly ported across target architectures and
vendors with ease.

When targeting FPGAs, Spatial generates optimized,
synthesizable Chisel code along with C++ code which
can be used on a host CPU to administrate initialization
and execution of the accelerator on the target FPGA.
Spatial currently supports Xilinx Ultrascale+ VU9P FP-
GAs on Amazon’s EC2 F1 Instances, Xilinx Zynq-7000
and Ultrascale+ ZCU102 SoCs, and Altera DE1 and
Arria 10 SoCs. The constructs in Spatial are general
across reconfigurable architectures, meaning Spatial pro-
grams can also be used to target CGRAs. In this paper,
we demonstrate this by targeting our recently proposed
Plasticine CGRA [32].

The contributions of this paper are as follows:
∙ We discuss the abstractions required to describe

target-agnostic accelerator designs for reconfig-
urable architectures (Section 2). We then describe
Spatial’s implementation of these constructs (Sec-
tion 3) and the optimizations that these abstraction
enables in the Spatial compiler (Section 4).

∙ We describe an improved method of fast, auto-
mated design parameter space exploration using
HyperMapper (Section 4). This approach is evalu-
ated in Section 5.

∙ We evaluate Spatial’s ability to efficiently express
a wide variety of applications and target multi-
ple architectures from the same source code. We
demonstrate Spatial targeting two FPGAs and the
Plasticine CGRA. We quantitatively compare Spa-
tial to SDAccel on the VU9P FPGA on a diverse
set of benchmarks (Section 5), showing a geometric
mean speedup of 2.9× with 42% less code. We pro-
vide a qualitative comparison of Spatial to other
related work in Section 6.

2 Language Criteria
It is critical for a language with the purpose of abstract-
ing hardware design to strike the right balance between
high-level constructs for improving programmer produc-
tivity and low-level syntax for tuning performance. Here,

we motivate our discussion of Spatial by outlining require-
ments for achieving a good balance between productivity
and achievable performance.

Control For most applications, control flow can be
expressed in abstract terms. Data-dependent branching
(e.g. if-statements) and nested loops are found in almost
all applications, and in the common case these loops
have a statically calculable initiation interval. These
loops correspond to hierarchical pipelines which can be
automatically optimized by the compiler in the majority
of cases. The burden for specifying these control struc-
tures should therefore fall on the compiler, with the user
intervening only when the compiler lacks information to
automatically optimize the loop schedule.

Memory Hierarchy On most reconfigurable architec-
tures, there are at least three levels of memory hierar-
chy: off-chip (DRAM), on-chip scratchpad (e.g. “block
RAM” on FPGAs), and registers. Unlike CPUs, which
present their memory as a uniformly accessible address
space, reconfigurable architectures require programmers
to explicitly manage the memory hierarchy. Previous lan-
guages like Sequoia [16] have demonstrated the benefits
of explicit notions of memory hierarchy to programming
language design. Moreover, loop unrolling and pipelining
are essential for performance and area utilization, but
these optimizations require on-chip memories to be par-
titioned, banked, and buffered to supply the bandwidth
necessary for concurrent accesses. These decisions are
made by statically analyzing memory access patterns
with respect to loop iterators. The accelerator design
language should therefore give the user a view of the
target memory hierarchy and should include notions of
loop iterators to enable automatic memory partitioning,
banking, and buffering decisions.

In addition to on-chip memory management, accel-
erator designs must also explicitly administer transfers
between off-chip and on-chip memories. This entails
creating a soft memory controller which manages the
off-chip memory. These memory controller implementa-
tions vary widely across different target architectures and
vendors. However, common across these architectures is
the need to optimize the memory controller based on
access pattern. Unpredictable, data-dependent requests
require more specialized memory controller logic than
predictable, linear accesses. Instead of focusing on target-
specific details, the language should allow users to focus
on optimizing each transfer based on its access pattern.
The accelerator language should therefore abstract these
transfers as much as possible, while also giving constructs
which specialize based on access patterns.

Host Interfaces Spatial architectures are commonly
used as offload application accelerators. In this execution

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA D. Koeplinger et al.

model, the host generally allocates memory, prepares
data structures, and interfaces with larger heterogeneous
networks to receive and send data. Once data is prepared,
the host invokes the accelerator and either waits for
completion (“blocking” execution) or interacts with the
perpetually running accelerator in a polling or interrupt
manner (“non-blocking” execution). While management
of communication and accelerator execution are com-
monly supported, the associated libraries and function
calls vary widely across platforms and vendors, making
code difficult to port or compare. For communication
with the CPU host, a higher level language for accel-
erator design should provide constructs which abstract
away the target architecture as much as possible.

Design Space Exploration As with any hardware
design, accelerator design spaces can be extremely large
and cumbersome to explore. While making optimizations
like loop pipelining and memory banking automatic help
to improve productivity, these transformations leave the
compiler with numerous choices about how to allocate
resources. These decisions can accumulate large perfor-
mance/area tradeoff spaces which combine exponentially
with application complexity. In a fixed implementation
of general matrix multiplication, there is a large design
space that includes the dimensions of on-chip tiles that
hold portions of the full matrices and decisions about
the parallelizations of loops that iterate over tiles as well
as loops that iterate within these tiles. The parameters
shown in lines 17 – 21 of Figure 1 expose just a few of
these many design space parameters. Previous work [22]
has shown how making the compiler aware of design
parameters like pipelining, unrolling factors, and tile
sizes can be used to speed up and automate parameter
space exploration. Abstract hardware languages should
therefore include both language and compiler support
for design space parameters.

3 The Spatial Language
Spatial is a domain specific language for the design
of accelerators implemented on reconfigurable spatial
architectures, including FPGAs and CGRAs. The aim
of the language is to simplify the accelerator design
process, allowing domain experts to quickly develop,
test, optimize, and deploy hardware accelerators, either
by directly implementing high-level hardware designs or
by targeting Spatial from another, higher level language.

In this section, we describe the abstractions Spatial
includes to achieve a balance between productivity and
performance-oriented detail. While space does not permit
a full specification of the language, Table 1 provides an
overview of the core subset of Spatial’s syntax.

3.1 Control Structures
Spatial provides a mix of control structures which help
users to more succinctly express their programs while
also allowing the compiler to identify parallelization op-
portunities. These structures can be arbitrarily nested
without restriction, allowing users to easily define hierar-
chical pipelines and nested parallelism. Table 1a provides
a list of some of the control structures in the language. In
addition to Foreach loops and state machines, Spatial
also borrows ideas from parallel patterns [35, 39] to pro-
vide succinct functional syntax for reductions. While it is
possible to express reductions in a purely imperative way,
Reduce informs the compiler that the reduction function
can be considered associative. Similarly, reduction across
a series of memories using MemReduce exposes more lev-
els of parallelism than an imperative implementation.
For example, in Figure 1, the MemReduce on line 45 al-
lows the compiler to parallelize over parameter PAR_K.
This will result in multiple tileC tiles being populated
in parallel, followed by a reduction tree to combine them
into the accumulator accum.
Foreach, Reduce, and MemReduce can be parallelized

by setting parallelization factors on their respective coun-
ters. When loop parallelization is requested, the compiler
analyzes whether loop parallelization guarantees equiva-
lent behavior to sequential execution. If this check fails,
the compiler will issue an error. Spatial guarantees that
a parallelized body will complete in its entirety before
the next parallelized iteration is started, but makes no
guarantees about the relative timing of operations across
a single batch of unrolled iterations.

The bodies of Spatial control structures are untimed.
The compiler automatically schedules operations, with
the guarantee that functional behavior will not be changed.
The schedule selected by the compiler can be pipelined,
sequential, or streaming execution. In pipelined execu-
tion, the execution of loop iterations are overlapped. In
innermost loops, the degree of overlap is based on the
controller’s average initiation interval. In outer loops,
the amount of overlap is determined by the controller’s
“depth”. Depth is defined as the maximum number of
outer loop iterations a stage is allowed to execute before
its consumer stages begin execution.

In sequential execution, a single iteration of a loop
body is executed in its entirety before the next iteration
begins. Sequential scheduling is equivalent to pipelining
with the initiation interval equal to the loop body’s la-
tency, or, for outer controllers, a depth of 1. Streaming
execution overlaps stages further by allowing each inner
controllers to run asynchronously when inputs are avail-
able. Streaming is only a well-defined control scheme
when communication between controllers is done through
either streaming interfaces or queues.

Spatial: A Language and Compiler for Application Accelerators PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Table 1. A subset of Spatial’s syntax. Square brackets (e.g. [T]) represent a template’s type parameter. Parameters
followed by a ‘+’ denote arguments which can be given one or more times, while a ‘*’ denotes that an argument is
optional. DRAMs, Foreach, Reduce, and MemReduce can all have arbitrary dimensions.

(a) Control Structures

min* until max by stride* par factor*
A counter over [min,max) ([0,max) if min is unspecified).

stride: optional counter stride, default is 1
factor: optional counter parallelization, default is 1

FSM(init){continue}{action}{next}
An arbitrary finite state machine, similar to a while loop.

init: the FSM’s initial state
continue: the “while” condition for the FSM
action: arbitrary expression, executed each iteration
next: function calculating the next state

Foreach(counter+){body}
A parallelizable for loop.

counter: counter(s) defining the loop’s iteration domain
body: arbitrary expression, executed each loop iteration

Reduce(accum)(counter+){func}{reduce}
A scalar reduction loop, parallelized as a tree.

accum: the reduction’s accumulator register
counter: counter(s) defining the loop’s iteration domain
func: arbitrary expression which produces a scalar value
reduce: associative reduction between two scalar values

MemReduce(accum)(counter+){func}{reduce}
Reduction over addressable memories.

accum: an addressable, on-chip memory for accumulation
counter: counter(s) defining the loop’s iteration domain
func: arbitrary expression returning an on-chip memory
reduce: associative reduction between two scalar values

Stream(*){body}
A streaming loop which never terminates.

body: arbitrary expression, executed each loop iteration
Parallel{body}
Overrides normal compiler scheduling. All statements
in the body are instead scheduled in a fork-join fashion.

body: arbitrary sequence of controllers
DummyPipe{body}
A “loop” with exactly one iteration.
Inserted by the compiler, generally not written explicitly.

body: arbitrary expression

(b) Optional Scheduling Directives

Sequential.(Foreach|Reduce|MemReduce)
Sets loop to run sequentially.
Pipe(ii*).(Foreach|Reduce|MemReduce)
Sets loop to be pipelined.

ii: optional overriding initiation interval
Stream.(Foreach|Reduce|MemReduce)
Sets loop to be streaming.

(c) Shared Host/Accelerator Memories

ArgIn[T]
Accelerator register initialized by the host
ArgOut[T]
Accelerator register visible to host after accelerator execution
HostIO[T]
Accelerator register the host may read and write at any time.
DRAM[T](dims+)
Burst-addressable, host-allocated off-chip memory.

(d) External Interfaces

StreamIn[T](bus)
Streaming input from a bus of external pins.
StreamOut[T](bus)
Streaming output to a bus of external pins.

(e) Host Interfaces

Accel{body}
A blocking accelerator design.
Accel(*){body}
A non-blocking accelerator design.

(f) Design Space Parameters

default (min,max)
default (min,stride,max)
A compiler-aware design parameter with given default value.
DSE explores the range [min, max] with optional stride.

3.2 Memories
Spatial offers a variety of memory templates that enable
the user to abstractly but explicitly control allocation of
data across an accelerator’s heterogeneous memory. The
Spatial compiler is aware of all of these memory types
and is able to automatically optimize each of them.

Spatial’s “on-chip” memories represent the creation
of statically sized, logical memory spaces. Supported
memory types include read-only lookup-tables (LUTs),
scratchpads (SRAM), line buffers (LineBuffer), fixed size
queues and stacks (FIFO and LIFO), registers (Reg), and
register files (RegFile). These memories are always allo-
cated using resources on the accelerator, and by default
are not accessible by the host. While each memory is
guaranteed to appear coherent to the programmer, the
number and type of resources used to implement each

memory is not restricted. With the exception of LUTs

and Regs with explicit initial values, the contents of a
memory is undefined upon allocation. These rules give
the Spatial compiler maximum freedom to optimize mem-
ory access latency and resource utilization in the context
of the entire application. Depending upon access pat-
terns, the compiler may automatically duplicate, bank,
or buffer the memory, provided the behavior of the final
memory is unchanged.

“Shared” memories are allocated by the host CPU
and accessible by both the host and the accelerator.
These memories are typically used in the offload model
to transfer data between the host and the accelerator.
DRAM templates represent the slowest, largest level of the
hierarchy. To help users optimize memory controllers,
DRAM is read and written using explicit transfers to and

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA D. Koeplinger et al.

from on-chip memories. These transfers are specialized
for predictable (load and store) and data-dependent
(scatter and gather) access patterns.

3.3 Interfaces
Spatial offers several specialized interfaces for communi-
cation with the host and other external devices connected
to the accelerator. Like memory templates, Spatial is
capable of optimizing operations on these interfaces.
ArgIn, ArgOut, and HostIO are specialized registers

with memory mappings on the CPU host. ArgIns may
only be written by the host during device initialization,
while ArgOuts can only be read, not written, by the
host. HostIO can be read or written by the host at any
time during accelerator execution. Additionally, scalars,
including DRAM sizes, implicitly create ArgIn instances
when used within an Accel scope. For instance, in Fig-
ure 1, the dimensions of matrices A, B, and C are passed
to the accelerator via implicit ArgIns since they are used
to generate loop bounds (e.g. A.rows, B.cols).
StreamIn and StreamOut in Spatial are used to create

connections to external interfaces. Streams are created
by specifying a bus of input/output pins on the target
device. Connection to external peripherals is done in an
object-oriented manner. Every available Spatial target
defines a set of commonly used external buses which can
be used to allocate a StreamIn or StreamOut.

Spatial allows users to write host and accelerator code
in the same program to facilitate communication between
the two devices. The language’s data structures and op-
erations are classified as either “acceleratable” or “host”;
only acceleratable operations have a defined mapping
onto spatial architectures. Spatial makes this distinction
in order to give users structure their algorithm in a way
that is best for a reconfigurable architecture. Programs
which heavily rely on dynamic memory allocation, for
example, generally do not perform well on reconfigurable
architectures, but can often be transformed at the algo-
rithm level to achieve better performance.

Spatial programs explicitly partition work between
the host and the accelerator using the Accel scope. As
shown in Table 1e, these calls are specified as either
blocking or non-blocking. Figure 1 shows an example of
a blocking call, in which the product of two matrices is
computed in the accelerator and then passed to the host
only after it is completed. All operations called within
this scope will be allocated to the targeted hardware
accelerator, while all outside will be allocated to the
host. Because of this, all operations within the Accel

scope must be acceleratable.
Operations on the host include allocation of memory

shared between the host and accelerator, transferring
data to and from the accelerator, and accessing the host’s
file system. Arrays are copied to and from shared memory

1 def FIR_Filter(args: Array[String]) {
2 val input = StreamIn[Int](target.In)
3 val output = StreamOut[Int](target.Out)
4 val weights = DRAM[Int](32)
5 val width = ArgIn[Int]
6 val P = 16 (1,1,32)
7 // Initialize width with the first console argument
8 setArg(width, min(32, args(0).to[Int]))
9 // Transfer weights from the host to accelerator

10 sendArray(weights, loadData[Int]("weights.csv"))
11
12 Accel {
13 val wts = RegFile[Int](32)
14 val ins = RegFile[Int](32)
15 val sum = Reg[Int]
16 // Load weights from DRAM into local registers
17 wts load weights(0::width)
18
19 Stream(*) { // Stream continuously
20 // Shift in the most recent input
21 ins <<= input
22
23 // Create a reduce-accumulate tree with P inputs
24 Reduce(sum)(0 until width par P){i =>
25 wts(i) * ins(i)
26 }{(a,b) => a + b }
27
28 // Stream out the computed average
29 output := sum / width
30 }
31 }
32 }

Figure 2. A finite impulse response (FIR) filter.

through DRAM using operations like sendMatrix and
getMatrix shown in Figure 1. Scalars are transferred
via ArgIn and ArgOut using setArg and getArg.

After Spatial compilation, host operations are code
generated to C++. From the host’s perspective, the
Accel scope doubles as a black box for generating target-
specific library calls to run the accelerator. This syntax
serves to completely abstract the tedious, target-specific
details of initializing and running the accelerator.

Spatial currently assumes that the system has one
target reconfigurable architecture. If the program defines
multiple Accel scopes, these are loaded and run sequen-
tially in declaration order. However, this constraint can
easily be relaxed in future work.

3.4 Parameters
Parameters in Spatial are created using the syntax shown
in Table 1f. Since each parameter must have a fixed value
by the time the compiler generates code, the supplied
range must be statically computable. Parameters can be
used to specify the dimensions of addressable on-chip
memories and DRAMs. They can also be used when
creating counters to specify a parameterized step size or
parallelization factor, or when specifying the pipelining
depth of outer controllers. An application’s implicit and
explicit application parameters together define a design
space which the compiler can later automatically explore.

3.5 Examples
We conclude discussion of the Spatial language with two
examples. Figure 2 shows a streaming implementation
of a finite impulse response (FIR) filter. This example

Spatial: A Language and Compiler for Application Accelerators PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

1 def Merge_Sort(offchip: DRAM[Int], offset: Int) {
2 val N = 1024 // Static size of chunk to sort
3 Accel {
4 val data = SRAM[Int](N)
5 data load offchip(offset::N+offset)
6
7 FSM(1){m => m < N}{ m =>
8 Foreach(0 until N by 2*m){ i =>
9 val lower = FIFO[Int](N/2).reset()

10 val upper = FIFO[Int](N/2).reset()
11 val from = i
12 val end = min(i + 2*m - 1, N) + 1
13
14 // Split data into lower and upper FIFOs
15 Foreach(from until i + m){ x =>
16 lower.enq(data(x))
17 }
18 Foreach(i + m until end){ y =>
19 upper.enq(data(y))
20 }
21
22 // Merge of the two FIFOs back into data
23 Foreach(from until end){ k =>
24 val low = lower.peek() // Garbage if empty
25 val high = upper.peek() // Garbage if empty
26 data(k) = {
27 if (lower.empty) { upper.deq() }
28 else if (upper.empty) { lower.deq() }
29 else if (low < high) { lower.deq() }
30 else { upper.deq() }
31 }
32 }
33 }
34 }{ m => 2*m /* Next state logic */ }
35
36 offchip(offset::offset+N) store data
37 }
38 }

Figure 3. Part of a design for in-place merge sort.

demonstrates how, when using Stream(*), Spatial’s se-
mantics are similar to other dataflow-oriented streaming
languages. The body of the loop on line 24 is run each
time a valid element appears at the StreamIn input.
Spatial pipelines this body to maximize its throughput.

While basic FIR filters are simple to write and tune
even in HDLs, Spatial makes expanding upon simple
designs easier. The number of weights and taps in this
example can be set at device initialization, without hav-
ing to resynthesize the design. Additionally, the number
of elements combined in parallel in the filter is defined as
a parameter. Design space exploration can automatically
tune the design for the smallest area or lowest latency.

Figure 3 shows a simple implementation of a fixed
size merge sort in Spatial. Here, data is loaded into on-
chip scratchpad, sorted, and then stored back into main
memory. The language’s distinction between on-chip
and off-chip memory types makes writing and reasoning
about tiled designs like this one much more natural.
This implementation uses a statically sized SRAM and
two FIFOs to split and order progressively larger size
chunks of the local data. The chunk size is determined by
the outermost loop on line 8, and increments in powers
of two, which is best expressed in Spatial as an FSM.

4 The Spatial Compiler
The Spatial compiler provides source-to-source transla-
tions from applications in the Spatial language to syn-
thesizable hardware descriptions in Chisel RTL [9]. In

this section, we describe the compiler’s intermediate
representation and its key passes, as summarized in Fig-
ure 4. Apart from chisel generation, these passes are
common to targeting both FPGAs and the Plasticine
CGRA. Details of targeting Plasticine are discussed in
prior work [32].

Intermediate Representation Spatial programs are
internally represented in the compiler as a hierarchical
dataflow graph (DFG). Nodes in this graph represent
control structures, data operations, and memory alloca-
tions, while edges represent data and effect dependencies.
Nesting of controllers directly translates to the hierarchy
in the intermediate representation. Design parameters
are kept as graph metadata, such that they can be inde-
pendently updated without changing the graph itself.

When discussing DFG transformations and optimiza-
tions, it is often useful to think about the graph as a
controller/access tree. Figure 5 shows an example of one
such controller tree for the memory tileB in the Spatial
code example in Figure 1. Note that transfers between
on-chip and off-chip memory expand to a control node
which linearly accesses the on-chip memory, in this case
by iterators e and f. This tree abstracts away most
primitive operations, leaving only relevant controller hi-
erarchy and the memory accesses for a specific memory.

Within the acceleratable subset of Spatial, nodes are
formally separated into three categories: control nodes,
memory allocation nodes, and primitive nodes. Control
nodes represent state machine structures like Foreach

and Reduce described in Section 3.1. Primitive nodes
are operations which may consume, but never produce,
control signals, including on-chip memory accesses. Prim-
itive nodes are further broken down into “physical” op-
erations requiring resources and “ephemeral” operations
which are only used for bookkeeping purposes in the
compiler. For example, bit selects and grouping of words
into structs require no hardware resources but are used
to track necessary wires in the generated code.

Control Insertion To simplify reasoning about con-
trol signals, Spatial requires that control nodes do not
contain both physical primitive nodes and other con-
trol nodes. The exception to this rule is conditional if
statements, which can be used in the same scope as
primitives as long as they contain no control nodes but
conditionals themselves. This requirement is satisfied by
a DFG transformation which inserts DummyPipe control
nodes around primitive logic in control bodies which
also contain control nodes. The DummyPipe node is a
bookkeeping control structure which is logically equiv-
alent to a loop with exactly one iteration. Thereafter,
control nodes with primitive nodes are called “inner” con-
trol nodes, while controllers which contain other nested
controllers are called “outer” nodes.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA D. Koeplinger et al.

Parameters
Chisel

Spatial IR Control

Insertion

IR Transformation IR Analysis Pass

Control

Scheduling

Memory

Banking,

Buffering

Area and

Runtime

Estimation

Design

Tuning

Pipeline

Unrolling

Pipeline

Retiming

Host

Resource

Allocation

Control

Signal

Inference

Chisel

Code

Generation

Figure 4. A summary of the passes in the Spatial compiler for targeting FPGAs.

(28) Accel
Outer, Sequential

(30) Foreach
Outer, Pipe

(37) Alloc
tileB

(42) Write
tileB(e,f)

Outer, Pipe
(56) Store
Inner, Pipe

(41) Load
Inner, Pipe

(42) Load
Inner, Pipe Outer, Pipe

(47) Foreach
Inner, Pipe

(48) Read
tileB(k,j)

* PAR_k
* PAR_j

* PAR_e
* PAR_f

e, f

ii, jj

kk

(45) MemReduce

k

i, j

(34) MemReduce

Figure 5. The control/access tree for the SRAM tileB

in the matrix multiply example in Figure 1.

Controller Scheduling After controller insertion, the
compiler will then schedule the operations within each
controller. By default, the compiler will always attempt
to pipeline loops regardless of nesting level. The behavior
of the compiler’s scheduler can be overridden by the user
using the directives listed in Table 1b.

Inner pipeline schedules are based on their initiation
interval. The compiler first collects resource initiation
intervals for each primitive node in the given controller
based on an internal, target-dependent lookup table.
Most primitive operations are pipelined for a resource
initiation interval of 1. The compiler then calculates
all loop carried dependencies within the pipeline based
on the dataflow graph. For non-addressable memories,
the total initiation interval is the maximum of path
lengths between all dependent reads and the writes. For
addressable memories, the path length of loop carried
dependencies is also multiplied by the difference in write
and read addresses. If the addresses are loop-independent,
the initiation interval is the path length if they may be
equal, and 1 if they are provably not equal. If the distance
between the addresses cannot be determined statically,
the initiation interval is infinite, meaning the loop must
be run sequentially. The final initiation interval of the
controller is defined as the maximum of the initiation
intervals of all loop carried dependencies and all resource
initiation intervals.

The compiler also attempts to pipeline the bodies of
outer control nodes in a similar manner, but computes

dataflow scheduling in terms of inner control nodes and
number of stages rather than primitive nodes and cycles.
For example, the outer MemReduce in line 34 of Figure 1
contains 4 sub-controllers: the load into tileA (line 41),
the load into tileB (42), the inner MemReduce (45), and
an reduction stage combining intermediate tiles (53).
Based on data dependencies, the compiler infers that the
two loads can be run in parallel, followed by the inner
MemReduce and the tile reduction. It will also determine
that multiple iterations of this outer loop can also be
pipelined through these stages.

Memory Analysis Loop parallelization only serves
to improve performance if there is sufficient on-chip
bandwidth to feed the duplicated computation. Spatial’s
memory analysis banks and buffers on-chip memories
to maximize this available on-chip read and write band-
width. Memory banking, also called data partitioning, is
the process of dividing a memory’s address space across
multiple physical instances in order to create additional
ports for concurrent accesses within the same controller.
Partitioning is possible when the access patterns are
statically predictable and guaranteed to never conflict
access the same port/bank. While a single port can be
time multiplexed, this entirely negates the benefits of
parallelization by increasing the whole pipeline’s required
initiation interval. Note that while banking can trivially
be achieved by memory duplication, Spatial aims to also
minimize the total amount of memory resources.

Spatial leverages the memory partitioning strategy
based on conflict polytope emptiness testing described
by Wang et. al. [41]. We extend this strategy by account-
ing for random access patterns and memory accesses
across nested loops. Random accesses are modeled as
additional dimensions in the conflict polytope as if they
were additional loop iterators. Spatial minimizes the
number of random access symbols used in this way by
identifying affine combinations of random values. For
example, an access to a memory at address 𝑥 and 𝑥 + 1
only requires one random variable, 𝑥, as the second is
a predictable, affine function of the first. Spatial also
supports banking per dimension to account for cases
where only some dimensions are accessed predictably.

Non-addressed memories like FIFOs and FILOs are
modeled as addressed memories. Each access to these

Spatial: A Language and Compiler for Application Accelerators PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

memory types is represented as a linear access of all loop
iterators around the memory access relative to the mem-
ory’s definition. Spatial forbids parallelization of outer
loops around non-addressed accesses, as this violates the
guarantee of equivalent behavior to sequential execution.

To handle multiple pipelined accesses across stages
within an outer loop, Spatial also automatically buffers
on-chip memories. Buffering creates multiple copies of
the same memory for maintaining versions of the data
across overlapped loop iterations. Without this opti-
mization, pipeline parallel accesses to the same memory
across different stages of a coarse-grain pipeline would
not be able to run concurrently. See Appendix A.1 for
details on how both banking and buffering are computed.

For example, as shown in Figure 5, tileB has two
parallelized accesses, the load on line 42 and the read on
line 48. If all (implicit and explicit) parallelization factors
are set to 2, this corresponds to 4 accesses per loop.
Spatial then builds the access polytope corresponding
to all accesses in each loop, and determines the banking
strategy that works for both loops. In this example, this
means the SRAM will be banked such that each element
within a 2x2 square will reside in a different physical
bank to allow fully parallel access. If the MemReduce on
line 34 is pipelined, tileB will be double buffered to
protect the reads (line 48) in one iteration of the outer
loop from the writes (line 42) in the next iteration.

Area and Runtime Estimation Spatial evaluates
a given set of parameters by running a pair of estima-
tion passes to approximate the area and runtime of the
application. These passes are driven by analytical re-
source and runtime models similar to those used in our
prior work on the Delite Hardware Definition Language
(DHDL) [22], but Spatial expands this approach to ac-
count for streaming throughput, arbitrary control flow,
and finite state machines. Both runtime and area utiliza-
tion models are built from a set of about 2000 one-time
characterization runs on each target platform.

Design Space Exploration The scheduling and mem-
ory banking options identified by the compiler, together
with loop parallelization and tile size parameters, forms
a design space for the application. The design tuning
pass is an optional compiler pass which allows for fast ex-
ploration of this design space in order to make area/run-
time design tradeoffs. When design tuning is enabled,
it repeatedly picks design points and evaluates them by
rerunning the control scheduling, memory analysis, and
estimation analysis passes. The output from this search
is a single set of parameters from the Pareto frontier.

Unfortunately, application design spaces tend to be
extremely large, and exhaustive search on an entire space
is often infeasible. Of the benchmarks discussed in Sec-
tion 5, only BlackScholes has a relatively small space of

about 80, 000 points. While this space can be explored
exhaustively by Spatial in a few minutes, other spaces
are much larger, spanning 106 to 1010 points and taking
hours or days to exhaustively search. For example, even
with the few explicit design parameters exposed in the
code in Figure 1, when combined with implicit pipelin-
ing and parallelization parameters, this code already has
about 2.6 × 108 potential designs. DHDL [22] employed
random search after heuristic pruning, reducing the total
space by two to three orders of magnitude. However, this
approach has high variance on larger design spaces and
may inadvertently prune desirable points.

To reduce the variance on larger design spaces, Spa-
tial’s design space exploration flow integrates an active
learning-based autotuner called HyperMapper [11, 27,
36]. HyperMapper is a multi-objective derivative-free
optimizer (DFO), and has already been demonstrated
on the SLAMBench benchmarking framework [28]. Hy-
perMapper creates a surrogate model using a Random
Forest regressor, and predicts the performance over the
parameter space. This regressor is initially built using
only few hundred random design point samples and is
iteratively refined in subsequent active learning steps.

Unrolling Following selection of values for design pa-
rameters, Spatial finalizes these parameters in a single
graph transformation which unrolls loops and dupli-
cates memories as determined by prior analysis passes.
Reduce and MemReduce patterns are also lowered into
their imperative implementations, with hardware reduc-
tion trees instantiated from the given reduction function.
The two MemReduce loops in Figure 1, for example,
will each be lowered into unrolled Foreach loops with
explicitly banked memory accesses and explicitly dupli-
cated multiply operations. The corresponding reduction
across tiles (lines 52 – 53) are lowered into a second stage
of the Foreach with explicit reduction trees matching
the loop parallelization.

Retiming After unrolling, the compiler retimes each
inner pipeline to make sure data and control signals
properly line up and that the target clock frequency can
be met. To do this, the compiler orders primitive opera-
tions within each pipeline based on effect and dataflow
order. Based on this ordering, the compiler then inserts
pipeline and delay line registers based on lookup tables
which map each primitive node to an associated latency.
Dependent nodes which have less than a full cycle of de-
lay are kept as combinational operations, with a register
only being inserted after the last operation. This maxi-
mizes the achievable clock frequency for this controller
while also minimizing the required initiation interval.

Code Generation Prior to code generation, the com-
piler first allocates register names for every ArgIn, ArgOut,

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA D. Koeplinger et al.

and HostIO. In the final pass over the IR, the code gener-
ator then instantiates hardware modules from a library of
custom, parameterized RTL templates written in Chisel
and infers and generates the logic required to stitch
them together. These templates include state machines
that manage communication between the various control
structures and primitives in the application, as well as
the banked and buffered memory structures and efficient
arithmetic operations. Finally, all generated hardware is
wrapped in a target-specific, parameterized Chisel mod-
ule that arbitrates off-chip accesses from the accelerator
with the peripheral devices on the target FPGA.

5 Evaluation
In this section, we evaluate Spatial by comparing pro-
grammer productivity and the performance of generated
designs to Xilinx’s commercial HLS tool, SDAccel. We
then evaluate the HyperMapper design tuning approach
and demonstrate Spatial’s advantages for portability
across FPGAs and the Plasticine CGRA.

5.1 FPGA Performance and Productivity
We first evaluate the FPGA performance and produc-
tivity benefits of Spatial against SDAccel, a commercial
C-based programming tool from Xilinx for creating high-
performance accelerator designs. We use SDAccel in our
study as it has similar performance and productivity
goals as Spatial, supports the popular OpenCL pro-
gramming model, and performs several optimizations
related to loop pipelining, unrolling, and memory par-
titioning [42]. Baseline implementations of the bench-
marks in Table 2 have been either obtained from a public
SDAccel benchmark suite from Xilinx [45], or written
by hand. Each baseline has then been manually tuned
by using appropriate HLS pragmas [43] to pick loop
pipelining, unrolling, and array banking factors, and to
enable dataflow optimizations. Design points for Spatial
are chosen using the DSE flow described in Section 4.

We measure productivity by comparing number of
lines of source code used to describe the FPGA kernel,
excluding host code. We measure performance by com-
paring runtimes and FPGA resources utilized for each
benchmark on a Xilinx Ultrascale+ VU9P board with
a fabric clock of 125 MHz, hosted on an Amazon EC2
F1 instance. We generate FPGA bitstreams targeting
the VU9P architecture for each benchmark using both
Spatial and SDAccel, and obtain resource utilization
data from the post place-and-route reports. We then run
and verify both designs on the FPGA and measure the
execution times on the board. CPU setup code and data
transfer time between CPU and FPGA is excluded from
runtime measurements for both tools.

Table 2 shows the input dataset sizes and the full
comparison between lines of source code, resource uti-
lization, and runtime of the benchmarks implemented in
SDAccel and Spatial. In terms of productivity, language
constructs in Spatial like load and store for transfer-
ring dense sparse data from DRAM reduces code bloat
and increases readability. Furthermore, by implicitly in-
ferring parameters such as parallelization factors, Spatial
code is largely free of annotations and pragmas.

Spatial achieves moderate speedups over SDAccel
of 1.63× and 1.33× respectively on BlackScholes and
TPC-H Q6. Both benchmarks stream data from DRAM
through a deeply pipelined datapath which is amenable
to FPGA acceleration. Dataflow support in SDAccel
using the DATAFLOW pragma [44] and streaming sup-
port in Spatial allows both tools to efficiently accelerate
such workloads. In K-Means, coarse-grained pipelining
support allows Spatial to achieve roughly the same perfor-
mance as SDAccel using 1.5× fewer BRAMs. Specialized
DRAM scatter/gather support enables Spatial to achieve
a 3.48× speedup on PageRank.

We see speedups of 8.48×, 1.37×, and 14.15× for
compute-heavy workloads GDA, GEMM, and SW, re-
spectively. The baseline for SW is implemented by Xilinx
as a systolic array, while the Spatial implementation uses
nested controllers. GEMM and GDA contain opportu-
nities for coarse-grained pipelining that are exploited
within Spatial. GDA, for example, contains an outer
product operation, during which the data in the same
buffer is repeatedly accessed and reused. While this oper-
ation can be pipelined with a preceding loop producing
the array, SDAccel’s DATAFLOW pragma does not sup-
port such access patterns that involve reuse. As a result,
SDAccel requires larger array partitioning and loop un-
rolling factors to offset the performance impact, at the
expense of consuming more FPGA BRAM. In addition,
nested controllers in GEMM can be parallelized and
pipelined independently in Spatial, while SDAccel auto-
matically unrolls all inner loops if an outer loop is paral-
lelized. Spatial can therefore explore design points that
cannot be easily expressed in SDAccel. Finally, as the
Spatial compiler performs analyses on a parameterized
IR, the compiler can reason about larger parallelization
factors without expanding the IR graph. SDAccel unrolls
the graph as a preprocessing step, hence creating larger
graphs when unrolling and array partitioning factors are
large. This has a significant impact on the compiler’s
memory footprint and compilation times, making better
designs difficult or impossible to find.

Spatial provides a productive platform to program
FPGAs, with a 42% reduction in lines of code compared
to SDAccel averaged across all benchmarks. On the
studied benchmarks, Spatial achieves a geometric mean
speedup of 2.9× compared to an industrial HLS tool.

Spatial: A Language and Compiler for Application Accelerators PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Table 2. Number of lines of code (LOC), area utilization, and runtime comparisons between SDAccel and Spatial on a
single VU9P FPGA. For reference, the first row lists the total number of FPGA resources available. LOC improvements
are percent improvements from SDAccel. The remaining improvement factors are calculated as (𝑆𝐷𝐴𝑐𝑐𝑒𝑙/𝑆𝑝𝑎𝑡𝑖𝑎𝑙).

LOC LUTs BRAM DSPs Time (ms)

Benchmark Data Sizes DSE size Capacity — 914400 1680 5640 —

BS
Black-Scholes
Option pricing

960,000 options 7.7 × 104
SDAccel 175 363368 550 290 6.18
Spatial 93 698885 493 945 3.79
Improvement 46.8% 0.52× 1.12× 0.31× 1.63×

GDA
Gaussian discriminant
analysis

1024 rows
96 dimensions 3.0 × 1010

SDAccel 73 356857 594 108 10.75
Spatial 64 378130 858 216 1.27
Improvement 12.3% 0.94× 0.69× 0.50× 8.48×

GEMM
Matrix multiply

A: 1024×1024
B: 1024×1024 2.6 × 108

SDAccel 110 341894 674 206 1207.26
Spatial 44 426295 500 798 878.45
Improvement 60.0% 0.80× 1.35× 0.26× 1.37×

KMeans
K-Means clustering

200 iterations
320×32-element points 2.1 × 106

SDAccel 146 356382 657 539 73.04
Spatial 81 369348 453 105 53.25
Improvement 44.5% 0.96× 1.45× 5.13× 1.37×

PageRank
Node ranking algorithm

DIMACS10 Chesapeake
10000 iterations 4.1 × 103

SDAccel 112 337102 549 17 2041.62
Spatial 77 418128 862 81 587.35
Improvement 31.2% 0.81× 0.64× 0.21× 3.48×

SW
Smith-Waterman
DNA alignment

256 base pairs 2.1 × 106
SDAccel 240 541617 547 12 8.67
Spatial 82 330063 470 9 0.61
Improvement 65.8% 1.64× 1.16× 1.33× 14.15×

TQ6
TPC-H Q6
Filter reduction

6,400,000 records 3.5 × 109
SDAccel 74 356978 548 15 18.61
Spatial 48 472868 574 393 13.97
Improvement 35.1% 0.75× 0.95× 0.04× 1.33×

Average Improvement 42.3% 0.87× 1.01× 0.42× 2.90×

5.2 Design Space Exploration
We next perform a preliminary evaluation of HyperMap-
per for quickly approximating Pareto frontier over two
design objectives: design runtime and FPGA logic utiliza-
tion (LUTs). For this evaluation, we run HyperMapper
with several seeds of initial random sample, with the
number of samples 𝑅 ranging from 1 to 6000 designs, and
run 5 active learning iterations of at most 100 samples
each. Heuristic search prunes using the heuristics defined
in the DHDL work [22] and then randomly samples up to
100,000 points. For both approaches, design tuning takes
up to 1 – 2 minutes, varying by benchmark complexity.

Figure 6a shows the hypervolume indicator (HVI)
function for the BlackScholes benchmark as a function
of the initial number of random samples. The HVI gives
the area between the estimated Pareto frontier and the
space’s true Pareto curve, found from exhaustive search.
By increasing the number of random samples to boot-
strap the active learning phase, we see two orders of
magnitude improvement in HVI. Furthermore, the over-
all variance goes down very quickly as the number of
random samples increases. As a result, the autotuner is
robust to randomness and only a handful of random sam-
ples are needed to bootstrap the active learning phase.
As shown in Figure 6b, HyperMapper is able to reach a
close approximation of the true Pareto frontier with less
than 1500 design points.

(a) HyperMapper HVI versus
initial random samples (𝑅)
five number summary.

(b) Exhaustive and Hyper-
Mapper (𝑅=1000) generated
Pareto curves.

Figure 6. Design space tuning on BlackScholes

On benchmarks like GDA with sparser design spaces,
HyperMapper spends much of its time evaluating areas
of the space with invalid designs which cannot fit on the
FPGA. HyperMapper’s accuracy for these benchmarks
is consequently lower than the heuristic approach. Conse-
quently, in future work, we plan to extend HyperMapper
with a valid design prediction mechanism and evaluate
this tuning approach on a wider class of benchmarks.

5.3 Spatial Portability
We next demonstrate the portability of Spatial code
by targeting two different FPGA architectures; (1) the
Zynq ZC706 SoC board, and (2) The Virtex Ultrascale+
VU9P on the Amazon EC2 F1. Designs on the VU9P
use a single DRAM channel with a peak bandwidth of

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA D. Koeplinger et al.

Table 3. Runtimes (ms) of tuned designs on ZC706,
followed by runtimes and speedup (×) of directly porting
these designs to the VU9P, then runtimes and successive
speedup over ported designs when tuned for the VU9P.
The Total column shows the cumulative speedup.

FPGA ZC706 VU9P Total
Design Tuned Ported Tuned

Time Time × Time × ×

BS 89.0 35.6 2.5 3.8 9.4 23.4

GDA 8.4 3.4 2.5 1.3 2.6 6.5

GEMM 2226.5 1832.6 1.2 878.5 2.1 2.5

KMeans 358.4 143.4 2.5 53.3 2.7 6.7

PageRank 1299.5 1003.3 1.3 587.4 1.7 2.2

SW† 1.3 0.5 2.5 0.5 1.0 2.5

TQ6 69.4 15.0 4.6 14.0 1.1 5.0
†SW with 160 base pairs, the largest to fit on the ZC706.

19.2 GB/s. The ZC706 is much smaller than the VU9P
in terms of FPGA resource and has a smaller DRAM
bandwidth of 4.26 GB/s. We target both the ZC706 and
VU9P from the same Spatial code for all benchmarks
listed in Table 2. Benchmarks are tuned for each target
using target-specific models with automated DSE. Clock
frequency is fixed at 125 MHz for both FPGAs.

Table 3 shows the speedups achieved on the VU9P
over the ZC706. The results show that not only can the
same Spatial source code be ported to architectures with
different capabilities, the application can also be auto-
matically tuned to better take advantage of resources in
each target. Compute-bound benchmarks BlackScholes,
GDA, GEMM, K-Means achieve speedups of up to 23×
on the VU9P over the ZC706. Porting these designs to
the VU9P alone has a 1.2× to 2.5× due to increased
main memory bandwidth, but a majority of the benefit
of the larger FPGA comes from tuning the paralleliza-
tion factors to use more resources. While SW is also
compute bound, the size of the dataset was limited by
the smaller FPGA. In this case, the larger capacity of
the VU9P does not improve runtime, but instead allows
handling of larger datasets.

Memory-bound benchmark TPC-H Q6 benefits from
the higher DRAM bandwidth available on the VU9P.
Porting this benchmark immediately gives a 4.6× run-
time improvement from the larger main memory band-
width, while further parallelizing controllers to create
more parallel address streams to DRAM helps the appli-
cation make better use of this bandwidth. PageRank is
also bandwidth-bound, but the primary benefit on the
VU9P comes from specializing the memory controller to
maximize utilized bandwidth for sparse accesses.

Finally, we demonstrate the portability of Spatial be-
yond FPGA architectures by extending the compiler to
map the Spatial IR to target our proposed Plasticine

Table 4. Plasticine DRAM bandwidth, resource uti-
lization, runtime, and speedup (×) over VU9P FPGA.

Avg DRAM Resource
BW (%) Utilization (%) Time ×

App Load Store PCU PMU AG (ms)
BS 77.4 12.9 73.4 10.9 20.6 2.33 1.6
GDA 24.0 0.2 95.3 73.4 38.2 0.13 9.8
GEMM 20.5 2.1 96.8 64.1 11.7 15.98 55.0
KMeans 8.0 0.4 89.1 57.8 17.6 8.39 6.3
TQ6 97.2 0.0 29.7 37.5 70.6 8.60 1.6

CGRA [32]. Plasticine is a two-dimensional array of
compute (PCUs) and memory (PMUs) tiles with a stat-
ically configurable interconnect and address generators
(AG) at the periphery to perform DRAM accesses. The
Plasticine architecture is a significant departure from an
FPGA, with more constraints on memory banking and
computation, including fixed size, pipelined SIMD lanes.

We simulate Plasticine with a 16 × 8 array of 64 com-
pute and 64 memory tiles, with a 1 GHz clock and a main
memory with a DDR3-1600 channel with 12.8 GB/s peak
bandwidth. Table 4 shows the DRAM bandwidth, re-
source utilization, runtime, and speedup of the Plasticine
CGRA over the VU9P for a subset of benchmarks.

Streaming, bandwidth-bound applications like TPC-H
Q6 efficiently exploit about 97% of the available DRAM
bandwidth. Compute-bound applications GDA, GEMM,
and K-Means use around 90% of Plasticine’s compute
tiles. Plasticine’s higher on-chip bandwidth also allows
these applications to better utilize the compute resources,
giving these applications speedups of 9.9×, 55.0×, and
6.3×. Similarly, the deep compute pipeline in BlackSc-
holes occupies 73.4% of compute resources after being
split across multiple tiles, giving a speedup of 1.6×.

6 Related Work
We conclude with a qualitative comparison of Spatial to
related work, drawing from the criteria in Section 2.

HDLs Hardware description languages like Verilog and
VHDL are designed for arbitrary circuit description. To
achieve maximum generality, they require users to ex-
plicitly manage timing, control signals, and local memo-
ries. Loops are expressed by state machines in flattened
RTL. One exception to this is Bluespec SystemVerilog
[8], which supports state machine inference from nested
while loops. Recent advancements in HDLs have largely
been aimed at meta-programming improvements and
increasing the size of hardware module libraries. Lan-
guages like Chisel [9], MyHDL [1] and VeriScala [23]
make procedural generation of circuits simpler by em-
bedding their HDL in a software language (e.g. Scala
or Python). Similarly, Genesis2 [37] adds Perl scripting
support to SystemVerilog to help drive procedural gener-
ation. While these improvements allow for more powerful
meta-programming compared to Verilog generate state-
ments, users still write programs at a timed circuit level.

Spatial: A Language and Compiler for Application Accelerators PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Lime Lime is a Java-based programming model and
runtime from IBM which aims to provide a single unified
language to program heterogeneous architectures. Lime
natively supports custom bit precisions and includes col-
lection operations, with parallelism in such operations
inferred by the compiler. Coarse-grained pipeline and
data parallelism are expressed through “tasks”. Coarse-
grained streaming computation graphs can be constructed
using built-in constructs like connect, split, and join.
The Lime runtime system handles buffering, partition-
ing, and scheduling of stream graphs. However, coarse-
grained pipelines which deviate from the streaming model
are not supported, and the programmer has to use a
low-level messaging API to handle coarse-grained graphs
with feedback loops. Additionally, the compiler does not
perform automatic design tuning. Finally, the compiler’s
ability to instantiate banked and buffered memories is
unclear as details on banking multi-dimensional data
structures for arbitrary access patterns are not specified.

HLS High-level synthesis tools such as LegUp [12],
Vivado HLS [3], Intel’s FPGA SDK for OpenCL [5],
and SDAccel [42] allow users to write FPGA designs in
C/C++ and OpenCL. Using these tools, applications
can be expressed at a high level, in terms of arrays and
untimed, nested loops. However, while inner loop pipelin-
ing, unrolling, and memory banking and buffering are
done by the compiler, they generally require explicit user
pragmas. While previous work has used polyhedral tools
to automate banking decisions for affine accesses within
a single loop nest [41], it does not address non-affine
cases or cases where accesses to the same memory oc-
cur in multiple loop nests. While pragmas like Vivado
HLS’s DATAFLOW enable limited support for pipelin-
ing nested loops, pipelining at arbitrary loop nest levels
is not yet supported [2]. Tools like Aladdin [38] have
also been created to help automate the process of tuning
the pragmas in HLS programs, but designs in HLS still
require manual hardware optimization [26].

MaxJ MaxJ is a proprietary language created by Max-
eler which allows users to express dataflow algorithms in
Java libraries, emphasizing timing at the level of “ticks“
of valid streaming elements rather than cycles. [24].
Users must fall back to flattened, HDL-like syntax for
state machines when writing nested loops. Memories are
inferred based on relative stream offsets, which, while
convenient for stream processing, hides hardware imple-
mentation details from the user which could otherwise
help drive optimization. Additionally, MaxJ currently
can only be used to target supported Maxeler platforms.

DHDL The Delite Hardware Description Language
(DHDL) [22] is a precursor to Spatial, in that it allows
programmers to describe untimed, nested, parallelizable

hardware pipelines and compile these to hardware. While
DHDL supports compiler-aware design parameters and
automatic design tuning, it has no support for data-
dependent control flow, streaming, or memory controller
specialization. DHDL also has no support for generalized
memory banking or buffering and relies on its backend,
MaxJ, for retiming and initiation interval calculation.

Image Processing DSLs Recently proposed image
processing DSLs provide high-level specifications for tar-
geting various accelerator platforms, including GPUs
and FPGAs.The narrow domain allows these DSLs to
offer more concise abstractions for specifying stencil oper-
ations. When targeting accelerators, these languages usu-
ally rely on source-to-source translation. 𝐻𝐼𝑃𝐴𝐶𝐶 [25],
for example, uses a source-to-source compiler from a C-
like front-end to generate CUDA, OpenCL, and Render-
script for targeting GPUs. Recent work on Halide [35] has
demonstrated targeting heterogeneous systems, including
the Xilinx Zynq’s FPGA and ARM cores, by generating
intermediate C++ and Vivado HLS [33]. Rigel [20] and
Darkroom [19] generate Verilog, and PolyMage [14] gen-
erates OpenMP and C++ for high-level synthesis. Rigel
and Darkroom support generation of specialized memory
structures on FPGAs, such as line buffers, in order to
capture reuse. 𝐻𝐼𝑃𝐴𝐶𝐶 can infer memory hierarchy on
GPUs from a fix set of access patterns. These DSLs cap-
ture parallelism within a given stencil, typically across
image channels and across the image processing pipeline.

Compared to image processing DSLs, Spatial is more
general and provides a lower level of abstraction. Spatial
can express pipelining and unrolling for arbitrary loop
hierarchies and explicitly exposes the memory hierarchy
while automatically banking, buffering, and duplicating
structures for arbitrary access patterns. These features,
along with Spatial’s design tuning capabilities, make
Spatial a natural fit as an optimizing backend target for
image processing DSLs.

7 Conclusion
In this work, we presented Spatial, a new domain-specific
DSL for the design of application accelerators on reconfig-
urable architectures. Spatial includes hardware-specific
abstractions for control, memory, and design tuning
which help to provide a balance between productive and
performance-driven accelerator design. We have demon-
strated that Spatial can target a range of architectures
from a single source, and can achieve average speedups
of 2.9× over SDAccel with 42% less code.

The Spatial language and compiler is an ongoing, open
source project at Stanford. Related documentation and
releases can be found at https://spatial.stanford.edu.

https://spatial.stanford.edu

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA D. Koeplinger et al.

1 function GroupAccesses:
2 input: 𝐴 → set of reads or writes to 𝑚
3 𝐺 = ∅ set of sets of compatible accesses
4 for all accesses 𝑎 in 𝐴:
5 for all sets of accesses 𝑔 in 𝐺:
6 if IComp(𝑎, 𝑎′) for all 𝑎′ in 𝑔 then
7 add 𝑎 to 𝑔
8 break
9 else add {𝑎} to 𝐺

10 return 𝐺
11 end function
12
13 function ConfigureMemory:
14 input: 𝐴𝑟 → set of reads of 𝑚
15 input: 𝐴𝑤 → set of writes to 𝑚
16 𝐺𝑟 = GroupAccesses(𝐴𝑟)
17 𝐺𝑤 = GroupAccesses(𝐴𝑤)
18 𝐼 = ∅ set of memory instances
19 for all read sets 𝑅 in 𝐺𝑟:
20 𝐼𝑟 = {𝑅}
21 𝐼𝑤 = ReachingWrites(𝐺𝑤, 𝐼𝑟)
22 𝑖 = BankAndBuffer(𝐼𝑟, 𝐼𝑤)
23 for each 𝑖𝑛𝑠𝑡 in 𝐼:
24 𝐼′

𝑟 = ReadSets[𝑖𝑛𝑠𝑡] + 𝑅
25 𝐼′

𝑤 = ReachingWrites(𝐺𝑤, 𝐼′
𝑟)

26 if OComp(𝐴1,𝐴2) ∀𝐴1 ̸= 𝐴2 ∈ (𝐺𝑤 ∪ 𝐼′
𝑟) then:

27 𝑖′ = BankAndBuffer(𝐼′
𝑟, 𝐼′

𝑤)
28 if Cost(𝑖′) < Cost(𝑖) + Cost(𝑖𝑛𝑠𝑡) then:
29 remove 𝑖𝑛𝑠𝑡 from 𝐼
30 add 𝑖′ to 𝐼
31 break
32 if 𝑖 has not been merged then add 𝑖 to 𝐼
33 return I
34 end function

Figure 7. Banking and buffering algorithm for calcu-
lating instances of on-chip memory 𝑚.

A Appendix
A.1 Memory Banking and Buffering
Figure 7 gives pseudocode for Spatial’s algorithm to
bank and buffer accesses to a given memory m across
all loop nests. We group read and write accesses into
“compatible” which occur and parallel but which can
be banked together (lines 1 – 12). Two accesses 𝑎1 and
𝑎2 within iteration domains 𝐷1 and 𝐷2 are banking
compatible (𝐼𝐶𝑜𝑚𝑝) if

𝐼𝐶𝑜𝑚𝑝(𝑎1, 𝑎2) = ∄ 𝑖⃗ ∈ (𝐷1 ∪ 𝐷2) 𝑠.𝑡. 𝑎1(⃗𝑖) = 𝑟2(⃗𝑖)
where an iteration domain is the space of values of all
loop iterators and 𝑎(𝑖) is the multi-dimensional address
corresponding to access 𝑎 for iterator values 𝑖. This check
can be implemented using a polytope emptiness test.

After grouping, each group could be directly mapped
to a physical “instance”, or copy, of 𝑚. However, to
minimize required resources, we greedily merge groups
together (lines 19 – 32). Merging is done when the cost
of a merged instance is less than the cost of adding a
separate, coherent instance for that group. Two sets of
accesses 𝐴1 and 𝐴2 allow merging (𝑂𝐶𝑜𝑚𝑝) if

𝑂𝐶𝑜𝑚𝑝(𝐴1, 𝐴2) = ∄ (𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2) 𝑠.𝑡.

𝐿𝐶𝐴(𝑎1, 𝑎2) ∈ 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 ∪ (𝑃𝑖𝑝𝑒 ∩ 𝐼𝑛𝑛𝑒𝑟)

where Parallel, Pipe, and Inner are the set of Parallel,
pipelined, and inner controllers in the program, respec-
tively. If this condition holds, all accesses between the
two instances either occur sequentially or occur as part
of a coarse-grain pipeline. Sequential accesses can be
time multiplexed, while pipelined accesses are buffered.

ReachingWrites returns all writes in each set which
may be visible to any read in the given sets of reads.
Visibility is possible if the write may be executed before
the read and may have an overlapping address space.

The BankAndBuffer function produces a single mem-
ory instance from memory reads and writes. Here, each
set of accesses is a set of parallel reads or writes to a
single port of the memory instance. Accesses in different
sets are guaranteed not to occur to the same port at
the same time. Therefore, a common banking strategy is
found which has no bank conflicts for any set of accesses.
This strategy is found using iterative polytope emptiness
testing [41].

The required buffer depth d for a pair of accesses 𝑎1
and 𝑎2 to 𝑚 is computed as

𝑑(𝑎1, 𝑎2) =
{︂

1 𝐿𝐶𝐴(𝑎1, 𝑎2) ∈ 𝑆𝑒𝑞 ∪ 𝑆𝑡𝑟𝑒𝑎𝑚
𝑑𝑖𝑠𝑡(𝑎1, 𝑎2) 𝐿𝐶𝐴(𝑎1, 𝑎2) ∈ 𝑃𝑖𝑝𝑒

where dist is the minimum of the depth of the LCA
and the dataflow distance of the two direct children of
the LCA which contain 𝑎1 and 𝑎2. Seq, Stream, and
Pipe are the set of sequential, streaming, and pipelined
controllers, respectively. Buffering addressable memories
across streaming accesses is currently unsupported. The
depth of a set of reads 𝑅 and writes 𝑊 is then

𝐷𝑒𝑝𝑡ℎ(𝑅, 𝑊) = 𝑚𝑎𝑥{𝑑(𝑤, 𝑎) ∀ (𝑤, 𝑎) ∈ 𝑊 × (𝑊 ∪ 𝑅)}

The port of each access within a buffer is determined
from the relative distances between all buffered accesses.
Spatial requires that no more than one coarse-grained
controller or streaming controller is part of a merged
instance. The final output of the greedy search is a set
of required physical memory instances for memory m.

Acknowledgments
The authors thank the anonymous reviewers for their
feedback. This material is based on research sponsored in
part by DARPA under agreements number FA8750-17-
2-0095, FA8750-12-2-0335, and FA8750-14-2-0240, and
NSF grants SHF-1563078 and IIS-1247701. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
DARPA, NSF, or the U.S. Government.

Spatial: A Language and Compiler for Application Accelerators PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

References
[1] 2015. MyHDL. http://www.myhdl.org/.
[2] 2015. Vivado design suite 2015.1 user guide.
[3] 2016. Vivado High-Level Synthesis. http://www.xilinx.com/

products/design-tools/vivado/integration/esl-design.html.
[4] 2017. EC2 F1 Instances with FPGAs âĂŞ Now

Generally Available. aws.amazon.com/blogs/aws/
ec2-f1-instances-with-fpgas-now-generally-available/.

[5] 2017. Intel FPGA SDK for OpenCL. https://www.altera.com/
products/design-software/embedded-software-developers/
opencl/overview.html.

[6] 2017. Neon 2.0: Optimized for Intel Ar-
chitectures. https://www.intelnervana.com/
neon-2-0-optimized-for-intel-architectures/.

[7] 2017. Wave Computing Launches Machine Learn-
ing Appliance. https://www.top500.org/news/
wave-computing-launches-machine-learning-appliance/.

[8] Arvind. 2003. Bluespec: A Language for Hardware Design,
Simulation, Synthesis and Verification. Invited Talk. In Pro-
ceedings of the First ACM and IEEE International Conference
on Formal Methods and Models for Co-Design (MEMOCODE
’03). IEEE Computer Society, Washington, DC, USA, 249–.
http://dl.acm.org/citation.cfm?id=823453.823860

[9] J. Bachrach, Huy Vo, B. Richards, Yunsup Lee, A. Water-
man, R. Avizienis, J. Wawrzynek, and K. Asanovic. 2012.
Chisel: Constructing hardware in a Scala embedded lan-
guage. In Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE. 1212–1221.

[10] David Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA
Programming for the Masses. Queue 11, 2, Article 40 (Feb.
2013), 13 pages. https://doi.org/10.1145/2436696.2443836

[11] Bruno Bodin, Luigi Nardi, M. Zeeshan Zia, Harry Wagstaff,
Govind Sreekar Shenoy, Murali Emani, John Mawer, Christos
Kotselidis, Andy Nisbet, Mikel Lujan, Björn Franke, Paul H.J.
Kelly, and Michael O’Boyle. 2016. Integrating Algorithmic
Parameters into Benchmarking and Design Space Exploration
in 3D Scene Understanding. In PACT.

[12] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang,
Ahmed Kammoona, Jason H. Anderson, Stephen Brown, and
Tomasz Czajkowski. 2011. LegUp: High-level Synthesis for
FPGA-based Processor/Accelerator Systems. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA ’11). ACM, New York,
NY, USA, 33–36. https://doi.org/10.1145/1950413.1950423

[13] C. Cascaval, S. Chatterjee, H. Franke, K. J. Gildea, and P.
Pattnaik. 2010. A taxonomy of accelerator architectures and
their programming models. IBM Journal of Research and
Development 54, 5 (Sept 2010), 5:1–5:10.

[14] Nitin Chugh, Vinay Vasista, Suresh Purini, and Uday Bond-
hugula. 2016. A DSL compiler for accelerating image pro-
cessing pipelines on FPGAs. In Parallel Architecture and
Compilation Techniques (PACT), 2016 International Confer-
ence on. IEEE, 327–338.

[15] Bjorn De Sutter, Praveen Raghavan, and Andy Lambrechts.
2013. Coarse-Grained Reconfigurable Array Architectures.
Springer New York, New York, NY, 553–592. https://doi.org/
10.1007/978-1-4614-6859-2_18

[16] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight,
Larkhoon Leem, Mike Houston, Ji Young Park, Mattan Erez,
Manman Ren, Alex Aiken, William J. Dally, and Pat Hanra-
han. 2006. Sequoia: Programming the Memory Hierarchy. In
Proceedings of the 2006 ACM/IEEE Conference on Super-
computing (SC ’06). ACM, New York, NY, USA, Article 83.
https://doi.org/10.1145/1188455.1188543

[17] V. Govindaraju, C. H. Ho, T. Nowatzki, J. Chhugani, N.
Satish, K. Sankaralingam, and C. Kim. 2012. DySER: Unify-
ing Functionality and Parallelism Specialization for Energy-
Efficient Computing. IEEE Micro 32, 5 (Sept 2012), 38–51.
https://doi.org/10.1109/MM.2012.51

[18] Prabhat K. Gupta. 2015. Xeon+FPGA Platform for the Data
Center. http://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.
php?media=carl15-gupta.pdf.

[19] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan
Ragan-Kelley, Noy Cohen, Steven Bell, Artem Vasilyev, Mark
Horowitz, and Pat Hanrahan. 2014. Darkroom: compiling high-
level image processing code into hardware pipelines. ACM
Trans. Graph. 33, 4 (2014), 144–1.

[20] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-
Kelley, Mark Horowitz, and Pat Hanrahan. 2016. Rigel: Flexi-
ble multi-rate image processing hardware. ACM Transactions
on Graphics (TOG) 35, 4 (2016), 85.

[21] Intel. 2015. Advanced NAND Flash Memory Single-Chip Stor-
age Solution. www.altera.com/b/nand-flash-memory-controller.
html?_ga=2.108749825.2041564619.1502344247-21903935.
1501673108.

[22] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina
Delimitrou, Christos Kozyrakis, and Kunle Olukotun. 2016.
Automatic Generation of Efficient Accelerators for Reconfig-
urable Hardware. In International Symposium in Computer
Architecture (ISCA).

[23] Yanqiang Liu, Yao Li, Weilun Xiong, Meng Lai, Cheng Chen,
Zhengwei Qi, and Haibing Guan. 2017. Scala Based FPGA
Design Flow. In Proceedings of the 2017 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays.
ACM, 286–286.

[24] Maxeler Technologies. 2011. MaxCompiler white paper.
[25] Richard Membarth, Oliver Reiche, Frank Hannig, Jürgen

Teich, Mario Körner, and Wieland Eckert. 2016. Hipa cc: A
domain-specific language and compiler for image processing.
IEEE Transactions on Parallel and Distributed Systems 27,
1 (2016), 210–224.

[26] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok
Choi, Blair Fort, Andrew Canis, Yu Ting Chen, Hsuan Hsiao,
Stephen Brown, Fabrizio Ferrandi, et al. 2016. A survey and
evaluation of fpga high-level synthesis tools. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems 35, 10 (2016), 1591–1604.

[27] Luigi Nardi, Bruno Bodin, Sajad Saeedi, Emanuele Vespa,
Andrew J. Davison, and Paul H. J. Kelly. 2017. Algorithmic
Performance-Accuracy Trade-off in 3D Vision Applications
Using HyperMapper. In iWAPT-IPDPS. http://arxiv.org/
abs/1702.00505

[28] Luigi Nardi, Bruno Bodin, M Zeeshan Zia, John Mawer,
Andy Nisbet, Paul HJ Kelly, Andrew J Davison, Mikel Luján,
Michael FP O’Boyle, Graham Riley, et al. 2015. Introducing
SLAMBench, a Performance and Accuracy Benchmarking
Methodology for SLAM. In ICRA.

[29] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu, and
Song Jiang. 2014. SDA: Software-Defined Accelerator for
LargeScale DNN Systems (Hot Chips 26).

[30] Angshuman Parashar, Michael Pellauer, Michael Adler,
Bushra Ahsan, Neal Crago, Daniel Lustig, Vladimir Pavlov,
Antonia Zhai, Mohit Gambhir, Aamer Jaleel, Randy All-
mon, Rachid Rayess, Stephen Maresh, and Joel Emer. 2013.
Triggered Instructions: A Control Paradigm for Spatially-
programmed Architectures. In Proceedings of the 40th An-
nual International Symposium on Computer Architecture
(ISCA ’13). ACM, New York, NY, USA, 142–153. https:
//doi.org/10.1145/2485922.2485935

http://www.myhdl.org/
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
aws.amazon.com/blogs/aws/ec2-f1-instances-with-fpgas-now-generally-available/
aws.amazon.com/blogs/aws/ec2-f1-instances-with-fpgas-now-generally-available/
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.intelnervana.com/neon-2-0-optimized-for-intel-architectures/
https://www.intelnervana.com/neon-2-0-optimized-for-intel-architectures/
https://www.top500.org/news/wave-computing-launches-machine-learning-appliance/
https://www.top500.org/news/wave-computing-launches-machine-learning-appliance/
http://dl.acm.org/citation.cfm?id=823453.823860
https://doi.org/10.1145/2436696.2443836
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1007/978-1-4614-6859-2_18
https://doi.org/10.1007/978-1-4614-6859-2_18
https://doi.org/10.1145/1188455.1188543
https://doi.org/10.1109/MM.2012.51
http://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
http://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
www.altera.com/b/nand-flash-memory-controller.html?_ga=2.108749825.2041564619.1502344247-21903935.1501673108
www.altera.com/b/nand-flash-memory-controller.html?_ga=2.108749825.2041564619.1502344247-21903935.1501673108
www.altera.com/b/nand-flash-memory-controller.html?_ga=2.108749825.2041564619.1502344247-21903935.1501673108
http://arxiv.org/abs/1702.00505
http://arxiv.org/abs/1702.00505
https://doi.org/10.1145/2485922.2485935
https://doi.org/10.1145/2485922.2485935

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA D. Koeplinger et al.

[31] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Anto-
nio Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel
Emer, Stephen W Keckler, and William J Dally. 2017. SCNN:
An Accelerator for Compressed-sparse Convolutional Neural
Networks. In Proceedings of the 44th Annual International
Symposium on Computer Architecture. ACM, 27–40.

[32] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matthew
Feldman, Tian Zhao, Stefan Hadjis, Ardavan Pedram, Chris-
tos Kozyrakis, and Kunle Olukotun. 2017. Plasticine: A Re-
configurable Architecture For Parallel Paterns. In Proceedings
of the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28,
2017. 389–402. https://doi.org/10.1145/3079856.3080256

[33] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richard-
son, Jonathan Ragan-Kelley, and Mark Horowitz. 2016. Pro-
gramming Heterogeneous Systems from an Image Process-
ing DSL. CoRR abs/1610.09405 (2016). arXiv:1610.09405
http://arxiv.org/abs/1610.09405

[34] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung,
Derek Chiou, Kypros Constantinides, John Demme, Hadi
Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan
Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir
Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric
Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. 2014. A Reconfigurable Fabric for
Accelerating Large-scale Datacenter Services. In Proceeding
of the 41st Annual International Symposium on Computer
Architecuture (ISCA ’14). IEEE Press, Piscataway, NJ, USA,
13–24. http://dl.acm.org/citation.cfm?id=2665671.2665678

[35] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams,
Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013.
Halide: A Language and Compiler for Optimizing Parallelism,
Locality, and Recomputation in Image Processing Pipelines.
In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
’13). ACM, New York, NY, USA, 519–530. https://doi.org/
10.1145/2491956.2462176

[36] Sajad Saeedi, Luigi Nardi, Edward Johns, Bruno Bodin, Paul
Kelly, and Andrew Davison. 2017. Application-oriented Design
Space Exploration for SLAM Algorithms. In ICRA.

[37] Ofer Shacham. 2011. Chip multiprocessor generator: au-
tomatic generation of custom and heterogeneous compute
platforms. Stanford University.

[38] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and
David Brooks. 2014. Aladdin: A pre-RTL, power-performance
accelerator simulator enabling large design space explo-
ration of customized architectures. In Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium on.
IEEE, 97–108.

[39] Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Tiark
Rompf, Hassan Chafi, Martin Odersky, and Kunle Oluko-
tun. 2014. Delite: A Compiler Architecture for Performance-
Oriented Embedded Domain-Specific Languages. In TECS’14:
ACM Transactions on Embedded Computing Systems.

[40] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee,
Dipankar Das, Sasikanth Avancha, Ashok Jagannathan, Ajaya
Durg, Dheemanth Nagaraj, Bharat Kaul, Pradeep Dubey, and
Anand Raghunathan. 2017. ScaleDeep: A Scalable Compute
Architecture for Learning and Evaluating Deep Networks. In
Proceedings of the 44th Annual International Symposium on
Computer Architecture (ISCA ’17). ACM, New York, NY,
USA, 13–26. https://doi.org/10.1145/3079856.3080244

[41] Yuxin Wang, Peng Li, and Jason Cong. 2014. Theory and
Algorithm for Generalized Memory Partitioning in High-
level Synthesis. In Proceedings of the 2014 ACM/SIGDA
International Symposium on Field-programmable Gate Ar-
rays (FPGA ’14). ACM, New York, NY, USA, 199–208.
https://doi.org/10.1145/2554688.2554780

[42] Xilinx. 2014. The Xilinx SDAccel Development Environ-
ment. https://www.xilinx.com/publications/prod_mktg/sdx/
sdaccel-backgrounder.pdf.

[43] Xilinx. 2017. HLS Pragmas. https://www.xilinx.com/
html_docs/xilinx2017_2/sdaccel_doc/topics/pragmas/
concept-Intro_to_HLS_pragmas.html.

[44] Xilinx. 2017. SDAccel DATAFLOW pragma.
https://www.xilinx.com/html_docs/xilinx2017_2/sdaccel_
doc/topics/pragmas/ref-pragma_HLS_dataflow.html.

[45] Xilinx. 2017. SDAccel Example Repository. https://github.
com/Xilinx/SDAccel_Examples.

https://doi.org/10.1145/3079856.3080256
http://arxiv.org/abs/1610.09405
http://arxiv.org/abs/1610.09405
http://dl.acm.org/citation.cfm?id=2665671.2665678
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/3079856.3080244
https://doi.org/10.1145/2554688.2554780
https://www.xilinx.com/publications/prod_mktg/sdx/sdaccel-backgrounder.pdf
https://www.xilinx.com/publications/prod_mktg/sdx/sdaccel-backgrounder.pdf
https://www.xilinx.com/html_docs/xilinx2017_2/sdaccel_doc/topics/pragmas/concept-Intro_to_HLS_pragmas.html
https://www.xilinx.com/html_docs/xilinx2017_2/sdaccel_doc/topics/pragmas/concept-Intro_to_HLS_pragmas.html
https://www.xilinx.com/html_docs/xilinx2017_2/sdaccel_doc/topics/pragmas/concept-Intro_to_HLS_pragmas.html
https://www.xilinx.com/html_docs/xilinx2017_2/sdaccel_doc/topics/pragmas/ref-pragma_HLS_dataflow.html
https://www.xilinx.com/html_docs/xilinx2017_2/sdaccel_doc/topics/pragmas/ref-pragma_HLS_dataflow.html
https://github.com/Xilinx/SDAccel_Examples
https://github.com/Xilinx/SDAccel_Examples

	Abstract
	1 Introduction
	2 Language Criteria
	3 The Spatial Language
	3.1 Control Structures
	3.2 Memories
	3.3 Interfaces
	3.4 Parameters
	3.5 Examples

	4 The Spatial Compiler
	5 Evaluation
	5.1 FPGA Performance and Productivity
	5.2 Design Space Exploration
	5.3 Spatial Portability

	6 Related Work
	7 Conclusion
	A Appendix
	A.1 Memory Banking and Buffering

	References

