
DYNAMIC FINE-GRAIN SCHEDULING

OF PIPELINE PARALLELISM

Daniel Sanchez, David Lo, Richard M. Yoo,

Jeremy Sugerman, Christos Kozyrakis

Stanford University

PACT-20, October 11th 2011

Executive Summary
2

 Pipeline-parallel applications are hard to schedule

 Existing techniques either ignore pipeline parallelism, cannot

handle its dependences, or suffer from load imbalance

 Contributions:

 Design a runtime that dynamically schedules pipeline-

parallel applications efficiently

 Show it outperforms typical scheduling techniques from

multicore, GPGPU and Streaming programming models

Outline
3

 Introduction

 GRAMPS Programming Model

 GRAMPS Runtime

 Evaluation

High-Level Programming Models
4

 High-level parallel programming models provide:

 Simple, safe constructs to express parallelism

 Automatic resource management and scheduling

 Many aspects; we focus on scheduling

Model, scheduler and architecture often intimately related

 In terms of scheduling, three main types of models:

 Task-parallel models, typical in multicore (Cilk, X10)

 Data-parallel models, typical in GPU (CUDA, OpenCL)

 Streaming models, typical in streaming architectures

(StreamIt, StreamC)

Pipeline-Parallel Applications
5

 Some models (e.g. streaming) define applications as a graph of
stages that communicate explicitly through queues

 Each stage can be sequential or data-parallel

 Arbitrary graphs allowed (multiple inputs/outputs, loops)

 Well suited to many algorithms

 Producer-consumer communication is explicit  Easier to exploit
to improve locality

 Traditional scheduling techniques have issues dynamically
scheduling pipeline-parallel applications

Camera Camera Camera Tiler Sampler Camera Camera Intersect
Camera Camera Shade

Camera Camera
Shadow

Intersect
Frame

Buffer

Ray tracing pipeline

Task-Parallel – Task-Stealing
6

 Model: Task-parallel with fork-join dependences or

independent tasks (Cilk, X10, TBB, OpenMP, …)

 Task-Stealing Scheduler:

Worker threads enqueue/dequeue tasks from local queue

 Steal from another queue if out of tasks

 Efficient load-balancing

 Unable to handle dependences

of pipeline-parallel programs

Dequeue

T0 T1 Tn

Enqueue

Steal

Data-Parallel – Breadth-First
7

 Model: Sequence of data-parallel kernels (CUDA,
OpenCL)

 Breadth-First Scheduler: Execute one stage at a time in
breadth-first order (source to sink)

 Very simple model

 Ignores pipeline parallelism  works poorly with sequential
stages, worst-case memory footprint

Stage 3 Stage 1 Camera Camera Stage 2

T0 T1 T2 T3
1 3 2 2 2 2

Streaming – Static Scheduling
8

 Model: Graph of stages communicating through streams

 Static Scheduler:

 Assume app and architecture are regular, known in advance

 Use sophisticated compile-time analysis and scheduling to

minimize inter-core communication and memory footprint

 Very efficient if application and architecture are regular

 Load imbalance with irregular applications or non-

predictable architectures (DVFS, multi-threading …)

Summary of Scheduling Techniques
9

Task-Stealing

Breadth-First

Static

 

 

 

Supports pipeline-

parallel apps

Supports irregular

apps/archs

  GRAMPS

Outline
10

 Introduction

 GRAMPS Programming Model

 GRAMPS Runtime

 Evaluation

GRAMPS Programming Model
11

 Programming model for dynamic scheduling of irregular

pipeline-parallel workloads

 Brief overview here, details in [Sugerman 2010]

 Shader (data-parallel) and Thread (sequential) stages

 Stages send packets through fixed-size data queues

 Queues can be ordered or unordered

 Can enqueue full packets or push elements (coalesced by runtime)

Camera Camera Camera Tiler Sampler Camera Camera Intersect
Camera Camera Shade

Camera Camera
Shadow

Intersect
Frame

Buffer

Thread Stage Shader Stage Queue Push Queue

GRAMPS: Threads vs Shaders
12

 Threads are stateful, instanced by the programmer

 Arbitrary number of input and output queues

 Blocks on empty input/full output queue

 Can be preempted by the scheduler

 Shaders are stateless, automatically instanced

 Single input queue, one or more outputs

 Each instance processes an input packet

 Does not block

Thread

Stage

Camera Camera
Shader

Stage

GRAMPS Scheduling
13

 Similar model to Streaming, but features ease dynamic

scheduling of irregular applications:

 Packet granularity  reduce scheduling overheads

 Stages can produce variable output (e.g., push queues)

 Data parallel stages, queue ordering are explicit

 Static requires applications to have a steady state;

GRAMPS can schedule apps with no steady state

 GRAMPS was evaluated with an idealized scheduler

when proposed; we implement a real multicore runtime

Outline
14

 Introduction

 GRAMPS Programming Model

 GRAMPS Runtime

 Evaluation

GRAMPS Runtime Overview
15

 Runtime = Scheduler + Buffer Manager

 Scheduler: Decide what to run where

 Dynamic, low-overhead, keeps bounded footprint

 Based on task-stealing with multiple task queues/thread

 Buffer Manager: Provide dynamic allocation of packets

Generic memory allocators are too slow for communication-

intensive applications

 Low-overhead solution, based on packet-stealing

Scheduler organization
16

 As many worker pthreads as hardware threads

 Work is represented with tasks

 Shader stages are function calls (stateless, non-

preemptive)

 One task per runnable shader instance

 Thread stages are user-level threads (stateful, preemptive)

 User-level threads enable fast context-switching (100 cycles)

 One task per runnable thread

Scheduler: Task Queues
17

 Load-balancing with task stealing

 Each thread has one LIFO task queue per stage

 Stages sorted by breadth-first order (higher priority to consumers)

 Dequeue from high-priority first, steal low-priority first

 Higher priority tasks drain the pipeline, improve locality

 Lower priority tasks produce more work (less stealing)

Camera Camera

Camera Camera 3

2
1 4 2

2

2

2

3

3

4 1

Dequeue order

Steal order

Scheduler: Data Queues
18

 Thread input queues maintained as linked lists

 Shader input queues implicitly maintained in task queues

 Each shader task includes a pointer to its input packet

 Queue occupancy tracked for all queues

 Backpressure: When a queue fills up, disable dequeues

and steals from queue producers

 Producers remain stalled until packets are consumed, workers

shift to other stages

Queues never exceed capacity  bounded footprint

 Queues are optionally ordered (see paper for details)

Example
19

Thread

3

Thread

1 Camera Camera
Shader

2 Q2 Q1

T0 T1 T2 T3
1

0/20

1 2

2

2

2

2 2 2

3 2

2

2

2

2

2

Queue 1

occupancy

0/10

Queue 2

occupancy

3

4/20 10/20 9/20 1/10

Example (cont.)
20

Thread

3

Thread

1 Camera Camera
Shader

2 Q2 Q1

T0 T1 T2 T3
1

8/20

2

2

2

2 2 2

2 2

Queue 1

occupancy

0/10

Queue 2

occupancy

3

9/10 10/10

   

2

7/20

Queue 2 full  disable dequeues and steals from Stage 2

Packet-Stealing Buffer Manager
21

 Packets pre-allocated to a set of pools

 Each pool has packets of a specific size

 Each worker thread maintains a LIFO queue per pool

 Release used input packets to local queue

 Allocate new output packets from local queue, if empty, steal

 Due to bounded queue sizes, no need to dynamically

allocate packets

 LIFO policy results in high locality and reuse

Outline
22

 Introduction

 GRAMPS Programming Model

 GRAMPS Runtime

 Evaluation

Methodology
23

 Test system: 2-socket, 12-core, 24-thread Westmere

 32KB L1I+D, 256KB private L2, 12MB per-socket L3

 48GB 1333MHz DDR3 memory, 21GB/s peak BW

 Benchmarks from different programming models:

GRAMPS: raytracer

MapReduce: histogram, lr, pca

 Cilk: mergesort

 StreamIt: fm, tde, fft2, serpent

 CUDA: srad, recursiveGaussian

Split Camer

a

Camer

a
Map

Camera Camera
Combine

(opt) Reduce

Part Camer

a

Camer

a

Serial

Sort Camera Camera Combine
Camera Camera Merge

Alternative Schedulers
24

 GRAMPS scheduler can be substituted with other

implementations to compare scheduling approaches

 Task-Stealing: Single LIFO task queue per thread, no

backpressure

 Breadth-First: One stage at a time, may do multiple

passes due to loops, no backpressure

 Static: Application is profiled first, then partitioned using

METIS, and scheduled using a min-latency schedule,

using per-thread data queues

GRAMPS Scheduler Scalability
25

 All applications scale well

 Knee at 12 threads due to HW multithreading

 Sublinear scaling due to memory bandwidth (hist, CUDA)

Numbers…fucking PowerPoint import…

Performance Comparison
26

GRAMPS MapReduce Cilk StreamIt CUDA

Performance Comparison
27

 Dynamic runtime overheads are small in GRAMPS

 Task-Stealing performs worse on complex graphs (fm, tde, fft2)

 Breadth-First does poorly when parallelism comes from pipelining

 Static has no overheads and better locality, but higher stalled
time due to load imbalance

Footprint Comparison
28

 Task-Stealing fails to keep footprint bounded (tde)

 Breadth-First has worst-case footprints  much higher

footprint, memory bandwidth requirements

Buffer Manager Performance
29

 Dynamic: Allocate packets using malloc/free (tcmalloc)

 Per-Queue: Use per-queue, shared packet buffers

Buffer Manager Performance
30

 Generic dynamic memory allocator causes up to 6x
slowdown on buffer-intensive applications

 Per-queue allocator degrades locality, performance with lots
of stages (tde)

 Packet-stealing has low overheads, maintains locality

Conclusions
31

 Traditional scheduling techniques have problems with

pipeline-parallel applications

 Task-Stealing: fails on complex graphs , ordered queues

 Breadth-First: no pipeline overlap, terrible footprints

 Static: load imbalance with any irregularity

 GRAMPS runtime performs dynamic fine-grain

scheduling of pipeline-parallel applications efficiently

 Low scheduler and buffer manager overheads

Good locality

THANK YOU FOR

YOUR ATTENTION

QUESTIONS?

