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Executive Summary 
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 Pipeline-parallel applications are hard to schedule 

 Existing techniques either ignore pipeline parallelism, cannot 

handle its dependences, or suffer from load imbalance 

 

 Contributions: 

 Design a runtime that dynamically schedules pipeline-

parallel applications efficiently 

 Show it outperforms typical scheduling techniques from 

multicore, GPGPU and Streaming programming models 



Outline 
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 Introduction 

 GRAMPS Programming Model 

 GRAMPS Runtime 

 Evaluation 



High-Level Programming Models 
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 High-level parallel programming models provide: 

 Simple, safe constructs to express parallelism 

 Automatic resource management and scheduling 

 Many aspects; we focus on scheduling 

Model, scheduler and architecture often intimately related 

 In terms of scheduling, three main types of models: 

 Task-parallel models, typical in multicore (Cilk, X10) 

 Data-parallel models, typical in GPU  (CUDA, OpenCL) 

 Streaming models, typical in streaming architectures 

(StreamIt, StreamC) 



Pipeline-Parallel Applications 
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 Some models (e.g. streaming) define applications as a graph of 
stages that communicate explicitly through queues 

 Each stage can be sequential or data-parallel 

 Arbitrary graphs allowed (multiple inputs/outputs, loops) 

 

 

 

 

 Well suited to many algorithms 

 Producer-consumer communication is explicit  Easier to exploit 
to improve locality 

 Traditional scheduling techniques have issues dynamically 
scheduling pipeline-parallel applications 
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Task-Parallel – Task-Stealing 
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 Model: Task-parallel with fork-join dependences or 

independent tasks (Cilk, X10, TBB, OpenMP, …) 

 Task-Stealing Scheduler: 

Worker threads enqueue/dequeue tasks from local queue 

 Steal from another queue if out of tasks 

 

 Efficient load-balancing 

 Unable to handle dependences 

of pipeline-parallel programs 
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Data-Parallel – Breadth-First 
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 Model: Sequence of data-parallel kernels (CUDA, 
OpenCL) 

 Breadth-First Scheduler: Execute one stage at a time in 
breadth-first order (source to sink) 

 

 

 

 

 

 Very simple model 

 Ignores pipeline parallelism  works poorly with sequential 
stages, worst-case memory footprint 
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Streaming – Static Scheduling 
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 Model: Graph of stages communicating through streams 

 Static Scheduler: 

 Assume app and architecture are regular, known in advance  

 Use sophisticated compile-time analysis and scheduling to 

minimize inter-core communication and memory footprint 

 

 Very efficient if application and architecture are regular 

 Load imbalance with irregular applications or non-

predictable architectures (DVFS, multi-threading …) 



Summary of Scheduling Techniques 
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Task-Stealing 
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  

Supports pipeline-
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Supports irregular 
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  GRAMPS 



Outline 
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 Introduction 

 GRAMPS Programming Model 

 GRAMPS Runtime 

 Evaluation 



GRAMPS Programming Model 
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 Programming model for dynamic scheduling of irregular 

pipeline-parallel workloads 

 Brief overview here, details in [Sugerman 2010] 

 Shader (data-parallel) and Thread (sequential) stages 

 Stages send packets through fixed-size data queues 

 Queues can be ordered or unordered 

 Can enqueue full packets or push elements (coalesced by runtime) 
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GRAMPS: Threads vs Shaders 
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 Threads are stateful, instanced by the programmer 

 Arbitrary number of input and output queues 

 Blocks on empty input/full output queue 

 Can be preempted by the scheduler 

 

 Shaders are stateless, automatically instanced 

 Single input queue, one or more outputs 

 Each instance processes an input packet 

 Does not block 
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GRAMPS Scheduling 
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 Similar model to Streaming, but features ease dynamic 

scheduling of irregular applications: 

 Packet granularity  reduce scheduling overheads 

 Stages can produce variable output (e.g., push queues) 

 Data parallel stages, queue ordering are explicit 

 Static requires applications to have a steady state; 

GRAMPS can schedule apps with no steady state 

 

 GRAMPS was evaluated with an idealized scheduler 

when proposed; we implement a real multicore runtime 



Outline 
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 Introduction 

 GRAMPS Programming Model 

 GRAMPS Runtime 

 Evaluation 



GRAMPS Runtime Overview 
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 Runtime = Scheduler + Buffer Manager 

 

 Scheduler: Decide what to run where 

 Dynamic, low-overhead, keeps bounded footprint 

 Based on task-stealing with multiple task queues/thread 

 

 Buffer Manager: Provide dynamic allocation of packets 

Generic memory allocators are too slow for communication-

intensive applications 

 Low-overhead solution, based on packet-stealing 



Scheduler organization 
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 As many worker pthreads as hardware threads 

 Work is represented with tasks 

 

 Shader stages are function calls (stateless, non-

preemptive) 

 One task per runnable shader instance 

 Thread stages are user-level threads (stateful, preemptive) 

 User-level threads enable fast context-switching (100 cycles) 

 One task per runnable thread 



Scheduler: Task Queues 
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 Load-balancing with task stealing 

 Each thread has one LIFO task queue per stage 

 Stages sorted by breadth-first order (higher priority to consumers) 

 Dequeue from high-priority first, steal low-priority first 

 Higher priority tasks drain the pipeline, improve locality 

 Lower priority tasks produce more work (less stealing)  

Camera Camera 

Camera Camera 3 

2 
1 4 2 

2 

2 

2 

3 

3 

4 1 

Dequeue order 

Steal order 



Scheduler: Data Queues 
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 Thread input queues maintained as linked lists 

 Shader input queues implicitly maintained in task queues 

 Each shader task includes a pointer to its input packet 

 Queue occupancy tracked for all queues 

 Backpressure: When a queue fills up, disable dequeues 

and steals from queue producers 

 Producers remain stalled until packets are consumed, workers 

shift to other stages 

Queues never exceed capacity  bounded footprint 

 Queues are optionally ordered (see paper for details) 



Example 
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Example (cont.) 
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Packet-Stealing Buffer Manager 
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 Packets pre-allocated to a set of pools 

 Each pool has packets of a specific size 

 

 Each worker thread maintains a LIFO queue per pool 

 Release used input packets to local queue 

 Allocate new output packets from local queue, if empty, steal 

 Due to bounded queue sizes, no need to dynamically 

allocate packets 

 LIFO policy results in high locality and reuse 

 



Outline 
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 Introduction 

 GRAMPS Programming Model 

 GRAMPS Runtime 

 Evaluation 



Methodology 
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 Test system: 2-socket, 12-core, 24-thread Westmere 

 32KB L1I+D, 256KB private L2, 12MB per-socket L3 

 48GB 1333MHz DDR3 memory, 21GB/s peak BW 

 

 Benchmarks from different programming models: 

GRAMPS: raytracer 

MapReduce: histogram, lr, pca 

 Cilk: mergesort 

 StreamIt: fm, tde, fft2, serpent 

 CUDA: srad, recursiveGaussian 

 

Split Camer

a 

Camer

a 
Map 

Camera Camera 
Combine 

(opt) Reduce 

Part Camer

a 

Camer

a 

Serial 

Sort Camera Camera Combine 
Camera Camera Merge 



Alternative Schedulers 
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 GRAMPS scheduler can be substituted with other 

implementations to compare scheduling approaches 

 Task-Stealing: Single LIFO task queue per thread, no 

backpressure 

 Breadth-First: One stage at a time, may do multiple 

passes due to loops, no backpressure 

 Static: Application is profiled first, then partitioned using 

METIS, and scheduled using a min-latency schedule, 

using per-thread data queues 



GRAMPS Scheduler Scalability 
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 All applications scale well 

 Knee at 12 threads due to HW multithreading 

 Sublinear scaling due to memory bandwidth (hist, CUDA) 

Numbers…fucking PowerPoint import… 



Performance Comparison 
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GRAMPS MapReduce Cilk StreamIt CUDA 



Performance Comparison 
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 Dynamic runtime overheads are small in GRAMPS 

 Task-Stealing performs worse on complex graphs (fm, tde, fft2) 

 Breadth-First does poorly when parallelism comes from pipelining 

 Static has no overheads and better locality, but higher stalled 
time due to load imbalance 



Footprint Comparison 
28 

 Task-Stealing fails to keep footprint bounded (tde) 

 Breadth-First has worst-case footprints  much higher 

footprint, memory bandwidth requirements 



Buffer Manager Performance 
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 Dynamic: Allocate packets using malloc/free (tcmalloc) 

 Per-Queue:  Use per-queue, shared packet buffers  



Buffer Manager Performance 
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 Generic dynamic memory allocator causes up to 6x 
slowdown on buffer-intensive applications 

 Per-queue allocator degrades locality, performance with lots 
of stages (tde) 

 Packet-stealing has low overheads, maintains locality 



Conclusions 
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 Traditional scheduling techniques have problems with 

pipeline-parallel applications 

 Task-Stealing: fails on complex graphs , ordered queues 

 Breadth-First: no pipeline overlap, terrible footprints 

 Static: load imbalance with any irregularity 

 

 GRAMPS runtime performs dynamic fine-grain 

scheduling of pipeline-parallel applications efficiently 

 Low scheduler and buffer manager overheads 

Good locality 
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