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Era of Power Limited Computing 

 Mobile 

 Battery operated 

 Passively cooled 

 Data center 

 Energy costs 

 Infrastructure costs 



Computing System Power 

second

Ops
EnergyPower Op 



Heterogeneous Hardware 

 Heterogeneous HW for energy efficiency 
 Multi-core, ILP, threads, data-parallel engines, custom engines 

 

 H.264 encode study 
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Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10) 

Future performance gains will mainly come from heterogeneous 

hardware with different specialized resources  



DE Shaw Research:  Anton 

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize 

100 times more power efficient  

Molecular dynamics computer 



Apple A4 in the i{Pad|Phone} 

Contains CPU and GPU and … 



Heterogeneous Parallel Computing 
 Uniprocessor 

 Sequential programming 

 C 
 

 CMP (Multicore) 

 Threads and locks 

 C + (Pthreads, OpenMP) 

 

 GPU 

 Data parallel programming 

 C + (Pthreads, OpenMP) + (CUDA, OpenCL) 

 

 Cluster 

 Message passing 

 C + (Pthreads, OpenMP) + (CUDA, OpenCL) + MPI 

Intel   

Pentium 4 

Too many different programming models 

Sun   

T2 
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It’s all About Energy  
(Ultimately: Money) 

 Human effort just like electrical power 
 Aim: reduce development effort, increase 

performance 
 Increase performance now means:  

 reduce energy per op  
 increase # of targets 

 Need to reduce effort per target! 







A Solution For Pervasive Parallelism 

 Domain Specific Languages (DSLs)  
 Programming language with restricted expressiveness for a particular 

domain 



Performance 

Productivity Completeness 

The Holy Grail of Performance 
Oriented Languages 



The Holy Grail of Performance 
Oriented Languages 

Performance 

Productivity Completeness 

Target 
DSLs 



Benefits of Using DSLs for Parallelism 

Productivity 

•Shield average programmers from the difficulty of parallel 
programming 

•Focus on developing algorithms and applications and not on low 
level implementation details 

Performance 

•Match generic parallel execution patterns to high level domain 
abstraction 

•Restrict expressiveness to more easily and fully extract available 
parallelism 

•Use domain knowledge for static/dynamic optimizations 

Portability and forward scalability 

•DSL & Runtime can be evolved to take advantage of latest 
hardware features 

•Applications remain unchanged 

•Allows HW vendors to innovate without worrying about application 
portability 



 
We need to develop all these DSLs 

 
  

Current DSL methods are unsatisfactory 
 

New Problem 



Current DSL Development Approaches 

 Stand-alone DSLs 
 Can include extensive optimizations 
 Enormous effort to develop to a sufficient degree of maturity 

 Actual Compiler/Optimizations 
 Tooling (IDE, Debuggers,…) 

 Interoperation between multiple DSLs is very difficult 
 

 Purely embedded DSLs ⇒ “just a library” 
 Easy to develop (can reuse full host language) 
 Easier to learn DSL  
 Can Combine multiple DSLs in one program 
 Can Share DSL infrastructure among several DSLs 
 Hard to optimize using domain knowledge 
 Target same architecture as host language 

 
 

Need to do better 



Need to Do Better 

 Goal: Develop embedded DSLs that 
perform as well as stand-alone ones 

 Intuition: General-purpose languages 
should be designed with DSL 
embedding in mind 

 Can we make this intuition more 
tangible? 



Virtualization Analogy 

Want to have a range of differently 
configured machines 

• Not practical to run as many physical machines 

• Hardware Virtualization: run the logical machines 
on virtualizable physical hardware 

Want to have a range of different 
languages 

• Not practical to implement as many compilers 

• Language Virtualization: embed the logical 
languages into a virtualizable host language 



Language Virtualization Requirements 

Expressiveness 

•Encompasses syntax, semantics and general ease of use for domain 
experts 

Performance 

•Embedded language must me amenable to extensive static and 
dynamic analysis, optimization and code generation 

 

Safety 

•Preserve type safety of embedded language 

•No loosened guarantees about program behavior  

Modest Effort 

•Virtualization is only useful if it reduces effort to embed high 
performance DSL 



Achieving Virtualization: Expressiveness 

 OOP allowed higher level of abstractions 
 Add your own types and define operations on them 

 But how about custom type interaction with language features 

 

 Overload all relevant embedding language constructs 

 

 

    maps to 

 

 

 DSL developer can control how loops over domain 
collection should be represented and executed by 
implementing withFilter and foreach for their DSL 
type 

 

for (x <- elems if x % 2 == 0) p(x) 

elems.withFilter(x => x % 2 == 0).foreach(x => p(x)) 



Achieving Virtualization: Expressiveness 

 For full virtualization, need to apply similar 
techniques to all other relevant constructs of the 
embedding language (for example) 

 

 

    maps to 

 

 

 DSL developer can control the meaning of 
conditionals by providing overloaded variants 
specialized to DSL types 

 

if (cond) something else somethingElse 

__ifThenElse(cond, something, somethingElse) 



Outline 

 Introduction 
 Using DSLs for parallel programming 

 

 Language Virtualization 
 Enhancing the power of DSL embedding languages 

 

 Polymorphic Embedding and Modular Staging 
 Enhancing the power of embedded DSLs 

 

 Example DSLs 
 OptiML – targets machine learning applications 

 Liszt – targets scientific computing simulations 

 

 Conclusion 



Embedded DSL gets it all for free, 
but can’t change any of it 

Lightweight Modular Staging Approach 

Lexer Parser 
Type 

checker 
Analysis Optimization 

Code 
gen 

DSLs adopt front-end from 
highly expressive 

embedding language 

but can customize IR and 
participate in backend phases 

Stand-alone DSL 
implements everything 

                 Typical Compiler  

Modular Staging provides a hybrid approach 

GPCE’10: Lightweight modular staging: a pragmatic  
approach to runtime code generation and compiled DSLs 



Linear Algebra Example 

trait TestMatrix {  

 
  def example(a: Matrix, b: Matrix, c: Matrix, d: Matrix) = { 
    val x = a*b + a*c 
    val y = a*c + a*d 
    println(x+y) 
  } 
 
} 

a*b + a*c + a*c + a*d 
= 

a * ( b + c + c + d) 



Abstract Matrix Usage 

trait TestMatrix { 

 
  def example(a: Rep[Matrix], b: Rep[Matrix],  

         c: Rep[Matrix] , d: Rep[Matrix]) = { 

    val x = a*b + a*c 
    val y = a*c + a*d 
    println(x+y) 
  } 
 
} 

 Rep[Matrix]: abstract type constructor ⇒ range of possible 

implementations of Matrix 

 

 Operations on Rep[Matrix] defined in MatrixArith trait 

this: MatrixArith => 



Lifting Matrix to Abstract 
Representation 
 DSL interface building blocks structured as traits 

 Expressions of type Rep[T] represent expressions of type T 
 Can plug in different representation  

 Need to be able to convert (lift) Matrix to abstract 
representation 

 Need to define an interface for our DSL type 
 

 
 
 
 
 
 
 
 
 
 

 
 

 Now can plugin different implementations and representations 
for the DSL 
 
 
 
 
 
 
 
 

 

 

trait MatrixArith { 
 
    type Rep[T] 
 
    implicit def liftMatrixToRep(x: Matrix): Rep[Matrix]  
 
    def infix_+(x:Rep[Matrix], y: Rep[Matrix]): Rep[Matrix] 
    def infix_*(x:Rep[Matrix] , y: Rep[Matrix]): Rep[Matrix]  
 
  } 



Now Can Build an IR 

 Start with common IR structure to be shared among DSLs 
 
 
 
 
 
 
 
 
 
 
 
 

 Generic optimizations (e.g. common subexpression and 
dead code elimination) handled once and for all 
 

trait Expressions { 
     // constants/symbols (atomic) 
    abstract class Exp[T] 
    case class Const[T](x: T) extends Exp[T] 
    case class Sym[T](n: Int) extends Exp[T] 
 
    // operations (composite, defined in subtraits) 
    abstract class Op[T] 
 
    // additional members for managing encountered definitions 
    def findOrCreateDefinition[T](op: Op[T]): Sym[T] 
 
    implicit def toExp[T](d: Op[T]): Exp[T] = findOrCreateDefinition(d) 
  } 



Customize IR with Domain Info 

 Choose Exp as representation for the DSL types 
 Define Lifting function to create expressions 
 Extend generic IR with domain-specific node types 
 DSL methods build IR as program runs 

trait MatrixArithRepExp extends MatrixArith with Expressions { 
 
  type Rep[T] = Exp[T] 
 
  implicit def liftMatrixToRep(x: Matrix) = Const(x)  
 
  case class Plus(x: Exp[Matrix],y: Exp[Matrix]) extends Op[Matrix] 
  case class Times(x: Exp[Matrix],y: Exp[Matrix]) extends Op[Matrix] 
 
  def infix_+(x: Exp[Matrix],y: Exp[Matrix]) = Plus(x, y) 
  def infix_*(x: Exp[Matrix],y: Exp[Matrix]) = Times(x, y) 
} 



DSL Optimization 

 Use domain-specific knowledge to make optimizations in a modular 
fashion 

 

 

 

 

 

 

 

 

 Override IR node creation 

 Construct Optimized IR nodes if possible 

 Construct default otherwise 

 

 Rewrite rules are simple, yet powerful optimization mechanism 

 Access to the full domain specific IR allows for application of much 
more complex optimizations 

trait MatrixArithRepExpOpt extends MatrixArithRepExp { 
 
    override def infix_+(x: Exp[Matrix], y: Exp[Matrix]) = (x, y) match { 
 
      case (Times(a, b), Times(c, d)) if (a == c) => infix_*(a, infix_+(b,d)) 
 
      case _ => super.plus(x, y) 
  
  }} 



Outline 

 Introduction 
 Using DSLs for parallel programming 

 

 Language Virtualization 
 Enhancing the power of DSL embedding languages 

 

 Polymorphic Embedding and Modular Staging 
 Enhancing the power of embedded DSLs 

 

 Example DSLs 
 OptiML – targets machine learning applications 

 Liszt – targets scientific computing simulations 

 

 Conclusion 



OptiML: A DSL for Machine Learning 

 Learning patterns from data 
 Regression 
 Classification (e.g. SVMs) 
 Clustering (e.g. K-Means) 
 Density estimation (e.g. Expectation Maximization) 
 Inference (e.g. Loopy Belief Propagation) 
 Adaptive (e.g. Reinforcement Learning) 

 
 

 



Why Machine Learning 

 A good domain for studying parallelism 
 Many applications and datasets are time-

bound in practice 
 A combination of regular and irregular 

parallelism at varying granularities 
 At the core of many emerging applications  

(speech recognition, robotic control, data 
mining etc.) 
 

 



OptiML Language Features 

 Implicitly parallel data structures 
 General linear algebra data types : Vector[T], Matrix[T] 

 Independent from the underlying implementation 

 Special data types : TrainingSet, TestSet, IndexVector, Image, 
Video .. 

 Encode semantic information 

 

 Implicitly parallel control structures 
 Sum{…}, (0::end) {…}, gradient { … },  untilconverged { … } 

 Encode restricted semantics within passed in code block  

 

 Domain specific optimizations 
 Trade off a small amount accuracy for a large amount of 

performance 

 Relaxed dependencies 

 Best effort computing 



// x : TrainingSet[Double] 
// mu0, mu1 : Vector[Double] 
 
val sigma = sum(0,x.numSamples) {  
  if (x.labels(_) == false) 
      (x(_)-mu0).trans.outer(x(_)-mu0) 
  else  
    (x(_)-mu1).trans.outer(x(_)-mu1) 
} 

OptiML Code Example 

 Gaussian Discriminant Analysis 

ML-specific data types 

 

Parallel Control 
structures 

 
Restricted index 

semantics 

 



Performance Study (CPU) 
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SVM 
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GDA 
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Performance Study (GPU) 
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Domain Specific Optimizations 
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K-means Best-effort (1.2% error)

Best-effort (4.2% error) Best-effort (7.4% error)

SVM Relaxed SVM (+ 1% error)

1.0x 

1.8x 

4.9x 

12.7x 

1.0x 

1.8x 

 Best Effort Computation  Relaxed Dependencies 
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Fuel injection 

Transition Thermal 

Turbulence 

Turbulence 

Combustion 

Liszt: A DSL for PDEs 

 Mesh-based 

 Numeric Simulation 

 Huge domains  

 millions of cells 

 Example: Unstructured 
Reynolds-averaged Navier 
Stokes (RANS) solver 

 



Liszt Language Features 

 Built-in mesh interface for arbitrary 
polyhedra 
 Vertex, Edge, Face, Cell 

 Collections of mesh elements 
 Element Sets: faces(c:Cell), edgesCCW(f:Face) 

 Mesh-based data storage 
 Fields: val vert_position = position(v) 

 Parallelizable iteration 
 forall statements: for( f <- faces(cell) ) { … } 



Liszt Code Example 

Simple Set Comprehension 

Functions, Function Calls 

Mesh Topology Operators 

Field Data Storage 

 

for(edge <- edges(mesh)) { 

   val flux = flux_calc(edge) 

   val v0 = head(edge) 

   val v1 = tail(edge) 

   Flux(v0) += flux 

   Flux(v1) -= flux 

} 

 

 

 

Code contains possible write conflicts!  

We use architecture specific strategies guided 
by domain knowledge 

 MPI: Ghost cell-based message passing 

 GPU: Coloring-based use of shared memory 

 



MPI Performance 
  

 Using 8 cores per node, scaling up to 96 
cores (12 nodes, 8 cores per node, all 
communication using MPI) 
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GPU Performance 
  

 Scaling mesh size from 50k (unit-sized) cells to 750k 
(16x) on a Tesla C2050. Comparison is against single 
threaded runtime on host CPU (Core 2 Quad 2.66Ghz) 

Single-Precision: 31.5x, Double-precision: 28x 
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Conclusions 

 DSLs can be an answer to the heterogeneous 
parallel programming problem 
 

 Need embedding languages to be more 
virtualizable 
 

 First steps in virtualizing Scala 
 

 Lightweight modular staging allows for more 
powerful embedded DSLs 
 

 Early embedded DSL results are promising  
 

 No unicorns were harmed during production 


