

Language Virtualization for

Heterogeneous Parallel
Computing

Hassan Chafi, Arvind Sujeeth, Zach DeVito, Pat Hanrahan,
 Kunle Olukotun

Stanford University

Adriaan Moors, Tiark Rompf, Martin Odersky
EPFL

Era of Power Limited Computing

 Mobile

 Battery operated

 Passively cooled

 Data center

 Energy costs

 Infrastructure costs

Computing System Power

second

Ops
EnergyPower Op 

Heterogeneous Hardware

 Heterogeneous HW for energy efficiency
 Multi-core, ILP, threads, data-parallel engines, custom engines

 H.264 encode study

1

10

100

1000

4 cores + ILP + SIMD + custom

inst

ASIC

Performance

Energy Savings

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10)

Future performance gains will mainly come from heterogeneous

hardware with different specialized resources

DE Shaw Research: Anton

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize

100 times more power efficient

Molecular dynamics computer

Apple A4 in the i{Pad|Phone}

Contains CPU and GPU and …

Heterogeneous Parallel Computing
 Uniprocessor

 Sequential programming

 C

 CMP (Multicore)

 Threads and locks

 C + (Pthreads, OpenMP)

 GPU

 Data parallel programming

 C + (Pthreads, OpenMP) + (CUDA, OpenCL)

 Cluster

 Message passing

 C + (Pthreads, OpenMP) + (CUDA, OpenCL) + MPI

Intel

Pentium 4

Too many different programming models

Sun

T2

Cray

Jaguar

Nvidia

Fermi

It’s all About Energy
(Ultimately: Money)

 Human effort just like electrical power
 Aim: reduce development effort, increase

performance
 Increase performance now means:

 reduce energy per op
 increase # of targets

 Need to reduce effort per target!

A Solution For Pervasive Parallelism

 Domain Specific Languages (DSLs)
 Programming language with restricted expressiveness for a particular

domain

Performance

Productivity Completeness

The Holy Grail of Performance
Oriented Languages

The Holy Grail of Performance
Oriented Languages

Performance

Productivity Completeness

Target
DSLs

Benefits of Using DSLs for Parallelism

Productivity

•Shield average programmers from the difficulty of parallel
programming

•Focus on developing algorithms and applications and not on low
level implementation details

Performance

•Match generic parallel execution patterns to high level domain
abstraction

•Restrict expressiveness to more easily and fully extract available
parallelism

•Use domain knowledge for static/dynamic optimizations

Portability and forward scalability

•DSL & Runtime can be evolved to take advantage of latest
hardware features

•Applications remain unchanged

•Allows HW vendors to innovate without worrying about application
portability

We need to develop all these DSLs

Current DSL methods are unsatisfactory

New Problem

Current DSL Development Approaches

 Stand-alone DSLs
 Can include extensive optimizations
 Enormous effort to develop to a sufficient degree of maturity

 Actual Compiler/Optimizations
 Tooling (IDE, Debuggers,…)

 Interoperation between multiple DSLs is very difficult

 Purely embedded DSLs ⇒ “just a library”
 Easy to develop (can reuse full host language)
 Easier to learn DSL
 Can Combine multiple DSLs in one program
 Can Share DSL infrastructure among several DSLs
 Hard to optimize using domain knowledge
 Target same architecture as host language

Need to do better

Need to Do Better

 Goal: Develop embedded DSLs that
perform as well as stand-alone ones

 Intuition: General-purpose languages
should be designed with DSL
embedding in mind

 Can we make this intuition more
tangible?

Virtualization Analogy

Want to have a range of differently
configured machines

• Not practical to run as many physical machines

• Hardware Virtualization: run the logical machines
on virtualizable physical hardware

Want to have a range of different
languages

• Not practical to implement as many compilers

• Language Virtualization: embed the logical
languages into a virtualizable host language

Language Virtualization Requirements

Expressiveness

•Encompasses syntax, semantics and general ease of use for domain
experts

Performance

•Embedded language must me amenable to extensive static and
dynamic analysis, optimization and code generation

Safety

•Preserve type safety of embedded language

•No loosened guarantees about program behavior

Modest Effort

•Virtualization is only useful if it reduces effort to embed high
performance DSL

Achieving Virtualization: Expressiveness

 OOP allowed higher level of abstractions
 Add your own types and define operations on them

 But how about custom type interaction with language features

 Overload all relevant embedding language constructs

 maps to

 DSL developer can control how loops over domain
collection should be represented and executed by
implementing withFilter and foreach for their DSL
type

for (x <- elems if x % 2 == 0) p(x)

elems.withFilter(x => x % 2 == 0).foreach(x => p(x))

Achieving Virtualization: Expressiveness

 For full virtualization, need to apply similar
techniques to all other relevant constructs of the
embedding language (for example)

 maps to

 DSL developer can control the meaning of
conditionals by providing overloaded variants
specialized to DSL types

if (cond) something else somethingElse

__ifThenElse(cond, something, somethingElse)

Outline

 Introduction
 Using DSLs for parallel programming

 Language Virtualization
 Enhancing the power of DSL embedding languages

 Polymorphic Embedding and Modular Staging
 Enhancing the power of embedded DSLs

 Example DSLs
 OptiML – targets machine learning applications

 Liszt – targets scientific computing simulations

 Conclusion

Embedded DSL gets it all for free,
but can’t change any of it

Lightweight Modular Staging Approach

Lexer Parser
Type

checker
Analysis Optimization

Code
gen

DSLs adopt front-end from
highly expressive

embedding language

but can customize IR and
participate in backend phases

Stand-alone DSL
implements everything

 Typical Compiler

Modular Staging provides a hybrid approach

GPCE’10: Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs

Linear Algebra Example

trait TestMatrix {

 def example(a: Matrix, b: Matrix, c: Matrix, d: Matrix) = {
 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 }

}

a*b + a*c + a*c + a*d
=

a * (b + c + c + d)

Abstract Matrix Usage

trait TestMatrix {

 def example(a: Rep[Matrix], b: Rep[Matrix],

 c: Rep[Matrix] , d: Rep[Matrix]) = {

 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 }

}

 Rep[Matrix]: abstract type constructor ⇒ range of possible

implementations of Matrix

 Operations on Rep[Matrix] defined in MatrixArith trait

this: MatrixArith =>

Lifting Matrix to Abstract
Representation
 DSL interface building blocks structured as traits

 Expressions of type Rep[T] represent expressions of type T
 Can plug in different representation

 Need to be able to convert (lift) Matrix to abstract
representation

 Need to define an interface for our DSL type

 Now can plugin different implementations and representations
for the DSL

trait MatrixArith {

 type Rep[T]

 implicit def liftMatrixToRep(x: Matrix): Rep[Matrix]

 def infix_+(x:Rep[Matrix], y: Rep[Matrix]): Rep[Matrix]
 def infix_*(x:Rep[Matrix] , y: Rep[Matrix]): Rep[Matrix]

 }

Now Can Build an IR

 Start with common IR structure to be shared among DSLs

 Generic optimizations (e.g. common subexpression and
dead code elimination) handled once and for all

trait Expressions {
 // constants/symbols (atomic)
 abstract class Exp[T]
 case class Const[T](x: T) extends Exp[T]
 case class Sym[T](n: Int) extends Exp[T]

 // operations (composite, defined in subtraits)
 abstract class Op[T]

 // additional members for managing encountered definitions
 def findOrCreateDefinition[T](op: Op[T]): Sym[T]

 implicit def toExp[T](d: Op[T]): Exp[T] = findOrCreateDefinition(d)
 }

Customize IR with Domain Info

 Choose Exp as representation for the DSL types
 Define Lifting function to create expressions
 Extend generic IR with domain-specific node types
 DSL methods build IR as program runs

trait MatrixArithRepExp extends MatrixArith with Expressions {

 type Rep[T] = Exp[T]

 implicit def liftMatrixToRep(x: Matrix) = Const(x)

 case class Plus(x: Exp[Matrix],y: Exp[Matrix]) extends Op[Matrix]
 case class Times(x: Exp[Matrix],y: Exp[Matrix]) extends Op[Matrix]

 def infix_+(x: Exp[Matrix],y: Exp[Matrix]) = Plus(x, y)
 def infix_*(x: Exp[Matrix],y: Exp[Matrix]) = Times(x, y)
}

DSL Optimization

 Use domain-specific knowledge to make optimizations in a modular
fashion

 Override IR node creation

 Construct Optimized IR nodes if possible

 Construct default otherwise

 Rewrite rules are simple, yet powerful optimization mechanism

 Access to the full domain specific IR allows for application of much
more complex optimizations

trait MatrixArithRepExpOpt extends MatrixArithRepExp {

 override def infix_+(x: Exp[Matrix], y: Exp[Matrix]) = (x, y) match {

 case (Times(a, b), Times(c, d)) if (a == c) => infix_*(a, infix_+(b,d))

 case _ => super.plus(x, y)

 }}

Outline

 Introduction
 Using DSLs for parallel programming

 Language Virtualization
 Enhancing the power of DSL embedding languages

 Polymorphic Embedding and Modular Staging
 Enhancing the power of embedded DSLs

 Example DSLs
 OptiML – targets machine learning applications

 Liszt – targets scientific computing simulations

 Conclusion

OptiML: A DSL for Machine Learning

 Learning patterns from data
 Regression
 Classification (e.g. SVMs)
 Clustering (e.g. K-Means)
 Density estimation (e.g. Expectation Maximization)
 Inference (e.g. Loopy Belief Propagation)
 Adaptive (e.g. Reinforcement Learning)

Why Machine Learning

 A good domain for studying parallelism
 Many applications and datasets are time-

bound in practice
 A combination of regular and irregular

parallelism at varying granularities
 At the core of many emerging applications

(speech recognition, robotic control, data
mining etc.)

OptiML Language Features

 Implicitly parallel data structures
 General linear algebra data types : Vector[T], Matrix[T]

 Independent from the underlying implementation

 Special data types : TrainingSet, TestSet, IndexVector, Image,
Video ..

 Encode semantic information

 Implicitly parallel control structures
 Sum{…}, (0::end) {…}, gradient { … }, untilconverged { … }

 Encode restricted semantics within passed in code block

 Domain specific optimizations
 Trade off a small amount accuracy for a large amount of

performance

 Relaxed dependencies

 Best effort computing

// x : TrainingSet[Double]
// mu0, mu1 : Vector[Double]

val sigma = sum(0,x.numSamples) {
 if (x.labels(_) == false)
 (x(_)-mu0).trans.outer(x(_)-mu0)
 else
 (x(_)-mu1).trans.outer(x(_)-mu1)
}

OptiML Code Example

 Gaussian Discriminant Analysis

ML-specific data types

Parallel Control
structures

Restricted index

semantics

Performance Study (CPU)

1
.0

1
.8

3
.6

6
.3

1
.1

1
.2

1
.2

1
.2

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

K-means

1
.0

3
.1

4
.4

5
.5

0
.7

1
.6

2
.1

2
.3

0.00

0.50

1.00

1.50

1 CPU 2 CPU 4 CPU 8 CPUN
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

SVM

1
.0

1
.9

3
.4

5
.2

0
.1

0
.1

0
.1

0
.1

0.00

2.00

4.00

6.00

8.00

1 CPU 2 CPU 4 CPU 8 CPU

LBP

1
.0

1
.9

3
.1

3
.0

1
.0

1
.9

3
.4

4
.7

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

RBM

1
.0

1
.7

1
.8

1
.9

0
.5

1
.0

1
.4

1
.6

0.00

0.50

1.00

1.50

2.00

1 CPU 2 CPU 4 CPU 8 CPUN
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

GDA

1
.0

2
.0

3
.4

4
.6

0
.6

0
.8

1
.0

1
.1

 0.00

 0.50

 1.00

 1.50

 2.00

1 CPU 2 CPU 4 CPU 8 CPU

Naive Bayes

OptiML on DELITE Explicitly Parallelized MATLAB

Performance Study (GPU)

0.50

1.00

2.00

4.00

8.00

16.00

32.00

GDA RBM SVM KM NB LBP

N
o

r
m

a
li

z
e
d

 S
p

e
e
d

u
p

Domain Specific Optimizations

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

K-means Best-effort (1.2% error)

Best-effort (4.2% error) Best-effort (7.4% error)

SVM Relaxed SVM (+ 1% error)

1.0x

1.8x

4.9x

12.7x

1.0x

1.8x

 Best Effort Computation  Relaxed Dependencies

Outline

 Introduction
 Using DSLs for parallel programming

 Language Virtualization
 Enhancing the power of DSL embedding languages

 Polymorphic Embedding and Modular Staging
 Enhancing the power of embedded DSLs

 Example DSLs
 OptiML – targets machine learning applications

 Liszt – targets scientific computing simulations

 Conclusion

Fuel injection

Transition Thermal

Turbulence

Turbulence

Combustion

Liszt: A DSL for PDEs

 Mesh-based

 Numeric Simulation

 Huge domains

 millions of cells

 Example: Unstructured
Reynolds-averaged Navier
Stokes (RANS) solver

Liszt Language Features

 Built-in mesh interface for arbitrary
polyhedra
 Vertex, Edge, Face, Cell

 Collections of mesh elements
 Element Sets: faces(c:Cell), edgesCCW(f:Face)

 Mesh-based data storage
 Fields: val vert_position = position(v)

 Parallelizable iteration
 forall statements: for(f <- faces(cell)) { … }

Liszt Code Example

Simple Set Comprehension

Functions, Function Calls

Mesh Topology Operators

Field Data Storage

for(edge <- edges(mesh)) {

 val flux = flux_calc(edge)

 val v0 = head(edge)

 val v1 = tail(edge)

 Flux(v0) += flux

 Flux(v1) -= flux

}

Code contains possible write conflicts!

We use architecture specific strategies guided
by domain knowledge

 MPI: Ghost cell-based message passing

 GPU: Coloring-based use of shared memory

MPI Performance

 Using 8 cores per node, scaling up to 96
cores (12 nodes, 8 cores per node, all
communication using MPI)

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Sp
e

e
d

u
p

 o
ve

r
Sc

al
ar

Number of MPI Nodes

MPI Speedup 750k Mesh

Linear Scaling Liszt Scaling Joe Scaling

1

10

100

1000

0 20 40 60 80 100 120

R
u

n
ti

m
 L

o
g

Sc
al

e
 (

se
co

n
d

s)

Number of MPI Nodes

MPI Wall-Clock Runtime

Liszt Runtime Joe Runtime

GPU Performance

 Scaling mesh size from 50k (unit-sized) cells to 750k
(16x) on a Tesla C2050. Comparison is against single
threaded runtime on host CPU (Core 2 Quad 2.66Ghz)

Single-Precision: 31.5x, Double-precision: 28x

0

5

10

15

20

25

30

35

0 5 10 15 20

Sp
e

e
d

u
p

 o
ve

r
Sc

al
ar

Problem Size

GPU Speedup over Single-Core

Speedup Double

Speedup Float

Conclusions

 DSLs can be an answer to the heterogeneous
parallel programming problem

 Need embedding languages to be more
virtualizable

 First steps in virtualizing Scala

 Lightweight modular staging allows for more
powerful embedded DSLs

 Early embedded DSL results are promising

 No unicorns were harmed during production

