Overview

Everyone uses Gibbs sampling!

> De facto Markov Chain Monte Carlo method for inference.

> Works very well in practice.

> Used by many systems such as Factorie, OpenBugs, PGibbs,
and DeepDive — including competition-winners.
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But it’s hard to tell when Gibbs sampling will work!

> Standard metric is mixing time, the amount of time needed to
produce samples that are “close” to the true distribution.
> Finding the mixing time is hard — there’s little theory.

Our contribution: fast mixing with hierarchy width

> Introduce a new factor graph width: the hierarchy width.

> Hierarchy width is a structural property of the factor graph.

> Bounding the hierarchy width is a sufficient condition to en-
sure that Gibbs sampling will mix in polynomial time.

> This gives us new understanding of a class of factor graphs
for which Gibbs sampling is guaranteed to be feasible.

Problem Setup

Gibbs sampling: Sample from distribution 7 over variables V/

Require: Initial state X; for ¢ € V', number of samples 7'.
fort=0to7 — 1do
Select 4; uniformly from V.
Resample X, conditionally from 7 given Xy~ ;3.
Output sample z; < X.
end for

We study Gibbs sampling on discrete-valued factor graphs. A
factor graph is a graphical model over a set of variables V' and
factors @ that has distribution

w(1) = Zexp [ 3 6(1)

ped

where [ 1s a world — an assignment of a value to each variable
in V' — and Z 1s the constant required to make 7 a distribution.

We focus on bounding the mixing time, the first time ¢ at which
the estimated distribution i, 1s close to the true distribution .
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tmix = min {t - max i (A) —m(A)| < 4} .
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The hierarchy width hw(G) of a factor
graph G is defined such that, for any con-
nected factor graph G = (V, ),

w(G) =1+ i (V. @ — {6°})).

and for any disconnected factor graph GG
with connected components G+, Go, . . .,

hw(G) = max hw(G;).
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All factor graphs G with no factors have
hw((V,0)) = 0.

Example: Voting model (logical).
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This model has only two (large) factors,
which can’t have the same label because
they are adjacent. Therefore, its hierarchy
width is hw(G) = 2.

> Actually mixes in O(n logn) time.

Main Theorem: Bounding the mixing time.

Hierarchy Width and Rapid Mixing

Let G = (V,®) be a factor graph with n variables, at most s
states per variable, e factors, and hierarchy width A. If we let

M = max (max ¢(I) — min qﬁ([)) :
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then we can bound the mixing time of Gibbs sampling on GG
with

tmix < (log(4) + nlog(s) + eM) nexp(3hM).

In particular, if AM = O(logn), then Gibbs sampling mixes in
polynomial time.

Intuitively, we can think of labeling each factor with a positive integer, its level in the hierarchy. For two factors F' and G to have the
same level, they must only interact through their superiors: every path from F' to G must pass through a factor with a smaller label. The
hierarchy width is the minimum value, across all labellings, of the largest label. Here are some examples (labels in red).

Example: Voting model (linear).

This model has 2n factors, all of which are
adjacent. Therefore, its hierarchy width is
hw(G) = 2n.

> Actually mixes in exp(£2(n)) time.

> This means Gibbs is infeasible.

Hierarchy Width Examples

Example: Path graph.
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Removing factor ¢ disconnects the graph,
so we can label both ¢; and ¢3 as 2. So,
this graph has hw(G) = 2.

OF 08 RON EOSISe

In general, the path graph has hierarchy
width hw(G) = [logy n].

> Guaranteed to mix in polynomial time.

Convergence of Voting Model (n = 500)
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The first plot shows that, of the two voting models, the bounded-hierarchy-width model has lower error. The second plot shows the
same thing for templates on a real dataset — in particular, the model in Hierarchical 2 was used as part of a competition-winning
system (TAC KBP ’14). The third plot shows, for an ensemble of synthetic Ising models, how error varies with hierarchy width.
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Facts about Hierarchy Width

One of the useful properties of the hierarchy width is that, for
any fixed k, computing whether a graph G has hierarchy width
hw(G) < k can be done in time polynomial in the size of G.

> This is similar to many other useful graph widths.

Hierarchy width is an upper bound on the commonly-used graph
metric, hypertree width. Hierarchy width is also an upper bound
on the maximum degree of a variable in the graph.

Hierarchical Templates

A factor graph template is an abstract model that can be instanti-
ated on a dataset to produce a factor graph. They are commonly
used to construct models, including in state-of-the-art systems.

Our contribution: we introduce hierarchical templates, which
when instantiated on any dataset produce models that are guar-
anteed to mix in polynomial time.

A template consists of template factors like
¢ (TweetedAbout(z, 1), IsPopular(z)) .

We call x a head symbol, and y a body symbol. (Details of tem-
plate instantiation appear in the paper.)

A template factor is hierarchical if all its head symbols appear
in the same order in each of its terms. (In particular, our example
above i1s hierarchical.) A template is hierarchical if all its factors
are hierarchical.

Hierarchical templates always mix fast.

The hierarchy width of a template instance is no greater
than the number of template factors in the template. Com-
bining this with our other result, hierarchical templates
produce models that always mix in polynomial time!

Here 1s an outline of our results:
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