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Abstract—Recent work has explored using higher level lan-
guages to improve programmer productivity on GPUs. These
languages often utilize high level computation patterns (e.g., Map
and Reduce) that encode parallel semantics to enable automatic
compilation to GPU kernels. However, the problem of efficiently
mapping patterns to GPU hardware becomes significantly more
difficult when the patterns are nested, which is common in non-
trivial applications.

To address this issue, we present a general analysis frame-
work for automatically and efficiently mapping nested patterns
onto GPUs. The analysis maps nested patterns onto a logical
multidimensional domain and parameterizes the block size and
degree of parallelism in each dimension. We then add GPU-
specific hard and soft constraints to prune the space of possible
mappings and select the best mapping. We also perform multiple
compiler optimizations that are guided by the mapping to avoid
dynamic memory allocations and automatically utilize shared
memory within GPU kernels. We compare the performance of
our automatically selected mappings to hand-optimized imple-
mentations on multiple benchmarks and show that the average
performance gap on 7 out of 8 benchmarks is 24 %. Furthermore,
our mapping strategy outperforms simple 1D mappings and
existing 2D mappings by up to 28.6x and 9.6x respectively.

I. INTRODUCTION

Fixed power budgets combined with the continued demand
for higher performance have encouraged the use of graph-
ics processing units (GPUs) for general purpose computing.
However, in order to maximize the performance, application
programmers are required to understand the low-level hard-
ware details and manually apply optimizations using GPU-
specific programming models (e.g., CUDA). To make GPUs
more accessible to non-expert programmers, library and com-
piler developers have extended target independent high-level
languages to offload some part of the application to GPUs. In
particular, writing applications in terms of parallel patterns is
becoming increasingly popular. Examples are Copperhead [1],
Nikola [2], and Accelerate [3]. In addition to their higher pro-
ductivity, parallel patterns also allow compilers to more easily
reason about the program by providing more information
(e.g., the intrinsic parallelism and data access patterns) than
general purpose sequential language constructs. The compiler
can then use its own mapping strategy for each pattern onto
parallel GPU threads. For example, many systems similarly
map a Reduce operation using well-known techniques such as
utilizing shared memory and avoiding bank conflicts.

In practice, however, applications are typically naturally
expressed by composing multiple parallel patterns together.
In particular the multidimensional nature of data in many
domains (e.g., HPC, machine learning, graph analytics) makes
nested parallel constructs quite common. In fact nearly 75%
(14 out of 19) of the applications in the Rodinia benchmark

1 // m: matrix of size [R,C]
2 sumCols = m mapCols { c¢c => c reduce { (a,b) => a + b }
3 sumRows = m mapRows { r => r reduce { (a,b) => a + b }

Fig. 1: Examples of using nested patterns.
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(a) sumCols (sum each column) (b) sumRows (sum each row)

Fig. 2: 1D mapping (outer loop parallelization) for sumCols
and sumRows in Figure 1. T}, corresponds to k™ thread on
the GPU device, and dotted arrows show the elements each
thread touches.

suite for heterogeneous accelerators [4] contain kernels with
nested parallelism. To illustrate the issue of mapping nested
parallel patterns onto GPUs, we show a simple example in
Figure 1. sumCols adds elements in each column of a matrix
and sumRows adds elements in each row'. Both can be
represented as a nested pattern; the outer Map pattern for
iterating over each column (row), and the inner Reduce pattern
for reducing the elements in a column (row) into a single value.

For this nested pattern there exist multiple mapping strate-
gies onto the GPU. One simple mapping strategy is to only
parallelize the outer Map by assigning one GPU thread” for
each iteration as shown in Figure 2. We call such strategies that
ignore all but one level of parallelism a /D mapping. Several
systems employ this strategy [5], [6], [2]. Another mapping
strategy is to exploit both patterns’ parallelism by assigning
each iteration of the outer pattern to a thread block and
parallelize the inner pattern by threads within the thread block.
We call this strategy thread-block/thread mapping, which has
been previously implemented by Copperhead [1]. Finally, it is
also possible to assign each iteration of the outer pattern to a
warp and inner iterations to threads within a warp, as presented
by Hong et al. [7], which we call warp-based mapping. This
mapping was originally designed to deal with load imbalance
on graph algorithms, where the graph traversal is implemented
with a nested pattern.

Unfortunately, none of the three mapping strategies is
optimal in general. Figure 3 shows the performance of each
mapping on different matrix sizes. Since the number of

' Assume the matrix is stored in row-major order.
2Section II provides a brief explanation of GPU hardware characteristics
and terminology that will be assumed throughout this paper.
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Fig. 3: Performance of sumCols and sumRows on the GPU
with different mapping strategies, normalized to the optimal
execution time.

elements is the same for the three matrices, ideally all the
execution times in Figure 3 should be the same. However, we
find a difference of up to 58x. First of all, /D mapping shows
low performance for the sumCols calculation on a matrix of
size (64k,1k) since it launches only 1k threads, which is not
enough to fully utilize the GPU resources and hide memory
latency. The sumRows calculation is even more problematic,
especially on the (1k,64k) matrix. In addition to the problem
of resource underutilization the memory access pattern is not
optimal for GPUs. As shown in Figure 2 (b), adjacent threads
are accessing non-adjacent memory locations, which wastes
memory bandwidth. thread-block/thread mapping experiences
the overhead of too many thread blocks when assigning thread
blocks to the 64k dimension. In addition, since threads in
the block are accessing elements in a column for sumCols,
memory requests from adjacent threads cannot be coalesced.
warp-based mapping shows good performance on sumRows
but not on sumCols. The reason is again due to suboptimal
memory access patterns, similar to thread-block/thread map-
ping, since the mapping always assigns the inner pattern to
adjacent threads (threads in a warp).

This example clearly shows that there does not exist a
fixed mapping strategy that works well in general, but rather
the mapping must be flexibly changed for each case. In this
paper we specifically address this problem. We present an
analysis technique for automatically mapping nested parallel
patterns on GPUs, which provides comparable performance
to hand optimized GPU code. The analysis uses the notion of
logical dimensions (e.g., x,y,z) for nested patterns and tries
to assign adjacent threads to a logical dimension that can
maximize data locality and resource utilization. To enable this,
we exploit hardware characteristics specific to GPUs (e.g.,
memory coalescing across threads in a warp) as well as the
input/output stencils of the patterns, calculating performance
estimate scores for each potential mapping and selecting the
one with the best score. The analysis is general enough to
generate effectively the same mappings as in the previous
work and can also flexibly change the mapping parameters
for different use cases. We also present compiler optimizations
that are coupled with the mapping analysis. For example, in
order to avoid the cost of dynamic memory allocations from
inner patterns (e.g., a Map nested within another Map), we pre-
allocate the space for the entire kernel and adapt the data
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Fig. 4: Overview of GPU hardware and mapping of threads
in a two dimensional block on a warp.

layout to best match the mapping decision (e.g., row-major
vs. column-major matrices) such that the memory accesses
are optimized.

Our specific contributions are as follows:

o We present an analysis for automatically mapping nested
parallel patterns onto GPUs that maximizes locality and
resource utilization. The analysis is more general and
flexible than previous mapping strategies which only
work well in certain cases (Section IV).

o We present compiler optimizations that interact with the
mapping analysis to further improve performance. The
cost of dynamic memory allocations from inner patterns
can be avoided and shared memory can also be efficiently
utilized for data sharing and prefetching (Section V).

o« We implemented a set of benchmark applications and
show that our mapping analysis and optimizations gen-
erate efficient GPU code that is comparable to manually
optimized CUDA code and performs better than alterna-
tive strategies (Section VI).

The rest of this paper is organized as follows. Section II
briefly presents relevant background information on GPU
hardware and programming models. In Section III we describe
the intermediate representation (IR) of applications as the input
to our analysis. Section IV explains in detail the analysis and
the decision process for efficiently mapping nested patterns on
GPUs. Section V presents additional optimizations to eliminate
dynamic allocations and efficiently utilize shared memory.
Section VI presents performance results and Section VII
presents related work. We conclude in Section VIIIL.

II. GPU BACKGROUND

This section briefly explains the components of GPU hard-
ware and programming models that are useful for under-
standing the following sections. Each vendor uses different
terminology for similar components, but for this paper we will
use those from NVIDIA GPUs and the CUDA programming
model.

GPU Hardware: Figure 4 (a) shows the typical structure
of GPU hardware. A set of arithmetic units are grouped



Pattern | Description Example
map construct a new collection by applying a pure function to every element inmap {e =>e + 1}
zipWith | construct a new collection by applying a pure function to every pair of elements | inA zipWith(inB) {(eA,eB) => eA + eB}
foreach | mutates existing collections by applying an effectful function to every element inA foreach {e => if(e>0) inB(e) = true}
filter filter elements in a collection by applying a boolean predicate in filter {e =>¢ > 0}
reduce reduce elements from a collection by applying an associative binary function in reduce {(el,e2) => el + e2}
groupBy | group elements in a collection based on the keys computed from a key function | in groupBy {e => e.id}

TABLE I: Supported parallel patterns and their usage examples.

together to form a SIMD execution unit. Each assembly
instruction defines its operation over multiple data elements
called a warp (32 in NVIDIA GPUs), whereas each individual
element is called a thread. To hide memory latency, multiple
warps can be scheduled on a single hardware SIMD unit and
context switches occur between warps for certain instructions
such as memory load. Multiple SIMD units typically share
resources such as the memory controller, local software-
controlled shared memory, and sometimes an L1 cache. This
group of hardware is called a streaming multiprocessor (SM)
for NVIDIA GPUs. In order to improve DRAM memory band-
width utilization, the memory controller is often implemented
to coalesce adjacent memory requests from adjacent threads
in a warp into a single bulk request. Finally to provide even
higher FLOPs and bandwidth, multiple SMs are included on
a GPU device (e.g., 14 for NVIDIA C2050), and all share a
global device memory.

GPU Programming Model: Since GPU compute units are
hierarchical (e.g, SIMD cores and SMs), programming models
expose both individual threads as well as local groups of
threads (called a thread block in CUDA) to programmers. A
GPU kernel is written by describing the execution of each
thread, and the kernel is launched with a number of threads in
a block and a number of blocks. Threads within a block can be
synchronized with an API call (__syncthreads()), while threads
across different blocks cannot be naturally synchronized. Each
thread and block has a unique logical ID, which are mapped to
warps in consecutive order and therefore GPU programmers
should write kernels that issue adjacent memory requests
from adjacent threads to coalesce memory requests. CUDA
also allows IDs to be multi-dimensional (e.g., threadldx.x,
blockIdx.y). Since SIMD units on GPUs are actually one-
dimensional, multi-dimensional IDs must be mapped to one-
dimensional IDs before execution. Currently in CUDA this
linearization is deterministic such that indices in dimension
x vary the fastest, followed by dimension y, etc. Therefore,
multi-dimensional thread blocks are essentially syntactic sugar
for a fixed linearization strategy (the user could also linearize
the kernel manually completely equivalently). Figure 4 (b)
shows how threads in a two dimensional block are mapped
onto a warp.

III. INTERMEDIATE REPRESENTATION (IR)

In this section, we explain the intermediate representation
(IR) that we use as input to our analysis. Our IR is based
on previous parallel pattern and data parallel languages [1],
[51, [8], [9], [10], and can be generated from a compiler
front-end. Since our analysis and optimizations are not tied
to a specific front-end but rather generally applicable to any

nodes map { n =>
nbrsWeights = n.nbrs map { w =>
getPrevPageRank (w) / w.degree
}
sumWeights = nbrsWeights reduce { (a,b) => a + b }
((1 - damp) / numNodes) + damp * sumWeights
}

NN R W=

Fig. 5: Snippet of PageRank implemented in our language
using nested patterns. For each node n (outer map), calculate
its neighbors’ weights (inner map) and aggregate them (inner
reduce).

high-level language that encodes parallel pattern information
in the IR, it is easy to integrate our framework into existing
/ new languages that perform GPU code generation, without
modifying their language.

Expressions in the IR are either basic sequential statements
(allocations, control flow, primitive arithmetic, logical tests)
or instances of a parallel pattern. Table I lists the parallel
patterns currently supported. Each pattern requires a user-
defined function to specify the body of the computation. This
function can include any of the language constructs, thereby
allowing patterns to be nested. The structured nature of these
patterns provides information like the inherent parallelism,
internal communication, and write-sets that are required for the
mapping analysis. Having this high-level information directly
from the IR is one of the major differences from other systems
without patterns (e.g., using polyhedral analysis [11], [12]) that
cannot easily optimize patterns such as Filter.

For data structures, we currently support scalar types, arrays,
and structs. Structs can compose other primitive data struc-
tures, which allows a rich set of higher level data structures in
the language or in the application. For example, a graph data
structure can be implemented with a struct of three arrays
(CSR format).

To demonstrate our work, we implemented a data parallel
language that provides a thin wrapper around the IR described
above. Figure 5 shows pseudocode demonstrating how the
PageRank [13] algorithm can be implemented in our language
using nested patterns.

IV. MAPPING ANALYSIS

In this section, we present an analysis that determines an
efficient mapping for nested patterns. A mapping result is
generated for each level of a nested pattern. A level defines
how deep each pattern is from the outermost enclosing pattern,
starting from level O for the outermost pattern and increment-
ing the number for each nest. For example, Figure 5 shows a
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two level nested pattern with a Map pattern at level 0 and a
Map and Reduce pattern both at level 1.

A. Mapping Parameters

A mapping decision for a nested pattern consists of the
following three parameters at each level.

Dimension: A unique logical dimension (e.g., x, y, etc) is
assigned to each nest level.> Logical indices for each di-
mension are eventually translated to thread indices on the
GPU. Since GPU hardware coalesces adjacent memory
requests issued from adjacent threads (threads in a warp),
the translation should be done such that a dimension that
contains adjacent memory requests is assigned threads
with adjacent indices. This translation can be done either
manually or by utilizing the multidimensional kernel
abstraction of the GPU programming model.

Block size: Block size specifies the number of threads
for a given dimension in a CUDA thread block. The total
number of threads in one thread block is then simply
the product of the number of threads in each dimension.
There is a maximum number of thread blocks that can run
in parallel within each SM, and therefore the resources
may be underutilized if the thread block size is too small
(e.g., less than 64).

Degree of Parallelism: We refer to degree of parallelism
(DOP) as the number of parallel computations enabled by
a particular mapping. For a given dimension and block
size decision, the DOP can be controlled by specifying
its Span, the portion of the index domain covered by
the block. Figure 6 shows a block of size 64 x 16 and
the two dimensional index domain of size M x N. The
gray area indicates the index domain a block covers. We
define Span(n) to mean that a single thread covers n
points in the index domain. For example, if we have
a two dimensional domain with disjoint accesses one
common parallelization strategy is to assign one element
in the domain to each thread, launching M /64 x N/16
blocks as shown in Figure 6 (a). We therefore specify this
by assigning Span(1) for both dimensions. Since all the
elements in the index domain are parallelized, the DOP is
M x N. By increasing the span factor to Span(n) in one
of the dimensions, thereby assigning n elements to each

3Logical dimensions are not necessarily tied to multidimensional thread
blocks of GPU programming models since the number of logical dimensions
can be arbitrary depending on the nest level. This allows easily exposing more
parallelism with more logical dimensions.

pattern (1) // assign a thread-block DimY, 1, Span(1)

pattern (J) //threads (1024) in a block DimX, 1024, Span(all)

(a) Thread-block / thread mapping and its equivalent mapping

pattern (1) // assign a warp DimY, 16, Span(1)

pattern (J) // threads (32) in a warp DimX, 32, Span(all)

(b) Warp-based mapping and its equivalent mapping

Fig. 7: Effectively equivalent mappings to strategies in pre-
vious work. (a) thread-block/thread mapping (b) warp-based
mapping. I and J represent the size of each pattern.

thread, we can decrease the DOP by a factor of n. The
reason for doing this is because (1) there is a limit on the
number of blocks that can be launched and (2) threads
can reuse the result of statements inside the outer pattern
while iterating over the inner pattern multiple times.

A useful special case with minimal DOP is Span(all),
where only one block is launched for the dimension. In
this case all the indices in the dimension are covered by
threads in a single block. There are two instances where
we assign Span(all) to a specific dimension. The first
is when the size of the dimension is not known at the
time of kernel launch (e.g., when the size of an inner
pattern is calculated dynamically). The second is when
the data accesses for the pattern in that dimension requires
a global synchronization to produce final results (e.g.,
Reduce), since synchronization across thread blocks is
not supported on GPUs. Figure 6 (b) shows a different
assignment of Span types on the same index domain as
in Figure 6 (a). DOP for this case is 64 x (N/2) = 32N.
Since Span(all) can reduce DOP too much to saturate the
GPU we introduce Split(n), which splits the dimension
into n blocks at the cost of inter-block synchronization.
Split(n) can only be applied when Span(all) was assigned
to satisfy the synchronization requirements, and requires
launching a subsequent combiner kernel to globally syn-
chronize partial results from each split section. Figure 6
(c) shows an example of applying Split(3) to Figure 6 (b)
on dimension x, which increases DOP by a factor of 3.

B. Mapping Coverage and Flexibility

Figure 7 shows how the mapping strategies from previous
work discussed in Section I (thread-block/thread mapping and



Weight | Scope | Constraint
Hard Local | For patterns that require global synchronization (e.g., Reduce), assign Span(all)
Hard Global | Pick the most conservative span for all patterns for each level (Span(all) is more conservative than Span(n))
Soft Local | For patterns that generate sequential memory requests, assign Dim(x) and block size multiple of WARP_SIZE
Soft Global | Threads in block (combining all dimensions) is greater than MIN_BLOCK_SIZE (64)

TABLE II: Examples of constraints used for our mapping analysis.

warp-based mapping) are covered by the mapping space of
our analysis.

Thread-block/thread mapping: Figure 7 (a) shows an
example of mapping each iteration of the outer pattern to
a thread block and the inner pattern to threads within the
thread block (M AX_BLOCK_SIZFE 1024). The effectively
equivalent mapping based on our parameters is specified on the
right, with the DOP of I x min(J, MAX_BLOCK_SIZFE)
since the parallelism of the inner loop is limited to
MAX_BLOCK_SIZE.

Warp-based mapping: Figure 7 (b) shows an example
of mapping each iteration of the outer pattern to a warp
and the inner pattern to threads within the warp. And the
effectively equivalent mapping shown on the right* has DOP
of I x min(J,WARP_SIZE).

Discussion: Re-expressing thread-block/thread mapping
and warp-based mapping in terms of the general parameters
of our analysis, we see that despite their apparent differences,
both strategies are fundamentally quite similar. We can emu-
late either strategy using the same logical dimension and span
mapping just by varying the block size.

As the similarity in their mappings implies, both strategies
have similar problems. First, they do not take into account the
access pattern of the kernel and may result in poor locality.
For example, if the memory accesses are sequential relative
to the indices of the outer pattern (e.g., sumCols example
in Figure 1), then both mappings cannot coalesce memory
requests since the inner pattern indices are already assigned
to warps. With our analysis, just switching the dimension
assignment of the patterns allows coalescing. Second, since
the block size of the inner dimension is fixed, both mappings
can suffer from resource underutilization when the loop sizes
are skewed (e.g., inner loop is too small while outer loop is
large). With our analysis, the DOP can be easily controlled
by changing the span type and block size parameters so that
enough threads can be launched. Finally, if the pattern was
triply nested, both thread-block/thread mapping and warp-
based mapping can only take advantage of two levels of
parallelism while our analysis only needs to add one more
logical dimension to exploit the parallelism at all levels.

These examples clearly show the flexibility of our mapping
analysis. Rather than having a fixed mapping strategy as
thread-block/thread mapping and warp-based mapping, we
allow the mapping parameters (dimension, block size, span/s-
plit) to be flexibly changed to optimize locality, parallelism,
and resource utilization. Our mapping parameters also provide
a better view of the similarities and differences between
different mapping strategies. Finally, our mapping parameters

4For the block size of the outer pattern, other choices are also possible, but
16 was chosen to have enough total threads in a block.

are general enough to cover various mapping strategies in
previous work. Therefore, our mapping parameters can be used
by other compiler or auto-tuners to explore the mapping space.

C. Constraints

We use an analysis to add a variety of constraints which
inform the automatic selection of an efficient mapping. While
traversing the IR, mapping constraints are added based on the
memory accesses within the pattern as well as the type and
size of the pattern. We also add additional constraints to model
restrictions in the hardware and CUDA programming model.
We then calculate a score for each potential mapping based on
the constraints it satisfies, and choose the mapping with the
highest score. Constraints can be grouped by two orthogonal
categories: scope (Local / Global) and weight (Hard / Soft).
Table II shows examples of constraints and their categories.

Local Constraints are constraints applied to a specific
pattern in a nested pattern structure. For example, when the
memory accesses in a pattern are found to be sequential, we
add a local constraint that the corresponding pattern should be
mapped to the logical dimension x (the fastest varying dimen-
sion by convention), and the size of the block in dimension x
should be a multiple of WARP_SIZFE to maximize memory
coalescing.

Global Constraints are constraints that need to consider
multiple patterns together. For example, when there are mul-
tiple patterns at the same level, the span type for the level
should be the most conservative one required for any pattern
at that level(e.g., Span(1) and Span(all) at a same level results
in Span(all) for that level).

Hard Constraints are constraints that must be satisfied for
correct execution. Restrictions arising from the target GPU or
programming model are often added as hard constraints, such
as the maximum number of threads for a block and for each
dimension.

Soft Constraints provide performance hints; the execution
will still be correct even when soft constraints are violated.
We therefore associate a weight with each soft constraint and
satisfying a soft constraint increases the total score of the
mapping. We selected a set of common optimizations GPU
experts often apply in order to maximize bandwidth utilization,
avoid thread divergence, and provide enough parallelism. Each
soft constraint has an intrinsic weight associated with it that
indicates the relative importance of the constraint based on
our observations on the performance impact. In particular, the
applications written using parallel patterns are often bandwidth
limited, and therefore we assign the highest intrinsic weight
on the soft constraint that allows memory coalescing. The
intrinsic weight of each soft constraint is then multiplied
by the number of times the related code will be executed
(e.g., enclosing loop size(s)), and discounted by any enclosing



1 Patternl with i in Domain(0,I) {
2 arraylD (i) #weight: axI

3 Pattern2 with j in Domain(0,J) {
4 array2D (i, ) #weight: axIxJ
5 1}

Fig. 8: Constraints with different derived weights based on the
size of patterns. I and J represents the size of each pattern and
« represents the intrinsic weight of the constraint.

branches (e.g., if it will only be executed in the Then branch
of an IfThenElse statement). Therefore, the mapping decision
prioritizes the more important soft constraints within the same
loop nest level but a deeper loop nest still has the most power
to gear the decision. When the size of a pattern is not known
as a constant value during analysis, a default size is assumed
(1000 by default), but users can provide the size information
from the application to enable better optimization. Note that in
many cases the absolute size values are actually not necessary
since inner patterns will always execute strictly more times
than outer patterns, and our strategy naturally gives higher
priority to more deeply nested patterns.

Figure 8 shows a simple example of calculating soft
constraint weights with nested patterns. Both Patternl and
Pattern2 add a constraint that it should be assigned to
dimension x because of the array accesses in line 2 and 4,
respectively, but it is not possible to satisfy both. However,
since array2D(i,3j) (line 4) is accessed more often than
arraylD (i) (line 2) by factor of J, the constraint on Pattern2
will end up with a higher derived weight, thereby giving the
mapping that assigns Pattern2 to dimension x a higher total
score than the mapping that assigns Patternl.

D. Search for an Efficient Mapping

Once all of the constraints have been added during IR
traversal, a search process for an efficient mapping begins,
as described in Algorithm 1. The input to the search process
is a set of constraints added for each level (CSet). First, all
of the candidate mappings are created by constructing the
possible combinations that satisfy hard constraints (C'andSet).
For span parameters, only Span(1) or Span(all) are assigned
initially, which are replaced with span(n) or split(k) when
manipulating DOP later. The search space is exponential to
the level of loop nests with the base of | DimSet|*|SizeSet|
|SpanSet| (less than 100), and for typical loops (1 to 3 levels)
it takes less than a few seconds for brute-force search to find
an efficient mapping.

For each candidate mapping that satisfies hard constraints,
we iterate over the soft constraints in C'Set and add the weight
of the constraint to the mapping score if the constraint is
satisfied. If the score is higher than the previous best score,
we assign the current mapping and score to be the best one.
When the score is the same as the previous best score, the one
with higher DOP value is selected, and if the DOP values are
also the same, we pick randomly. After all candidates are enu-
merated, we check DOP criteria (procedure Control DO P) on
the best scored mapping. This procedure is parameterized by
two values, MIN_DOP and MAX_DOP, which specify

Algorithm 1 Efficient Mapping Search Process

: Input: CSet: Map[level, Set[Constraint]]

: DimSet :={x,y,z,w, .}
SizeSet :={1,2,4,8, ..,1024 }

: SpanSet ::= { Span(1), Span(all) }

: procedure CONTROLDOP(mapping)

if CURRENT_DOP of mapping < MIN_DOP then
k = MIN_DOP / CURRENT_DOP

9: Span(all) — Split(k)

10: if CURRENT_DOP of mapping > MAX_DOP then

11: n = CURRENT_DOP / MAX_DOP

12: Span(1) — Span(n)

e A A ol

14: # returns Map[level, (dim,size,span/split)]

15: procedure SEARCH

16: CandSet = {(level,(dim,size,span)) | level € CSet keys,
17: dim € DimSet, size € SizeSet, span € SpanSet}

18: bestScore = 0; bestMapping = NULL;

19: # filter out candidates by hard constraints

20: for mapping < candidate filtered by hard constraints do
21: score = 0

22: for constraint <— soft constraints do

23: if mapping satisfies constraint then

24: score += constraint.weight

25: if score > bestScore then

26: bestScore = score; bestMapping = mapping;

27: # control degree of parallelism

28: ControlDOP (bestMapping);

the minimum and maximum number of threads that should
be launched for a particular device. For example, Tesla K20c
GPU has 13 SMs with maximum of 2048 threads per SM, and
therefore we set M IN_DOP of 13 %2048 to provide enough
parallel threads and M AX_DOP of 100 « MIN_DOP to
limit the number of thread blocks. If the DOP is lower than
MIN_DOP, we increase it by replacing Span(all) to Split(k),
and if the DOP is greater than M AX_DOP we decrease it by
replacing Span(1) with Span(n). Note that span(all) contributes
to DOP not in terms of its loop size but in terms of the block
size, making DOP calculation less sensitive to heuristic values
(e.g., 1000 for statically unknown loop size). Also, once the
mapping decision that determines the generated code structure
is made (e.g, dim x.y,... or span/split), certain parameters are
adjusted at runtime using the actual loop size. For example,
the block sizes and span/split factors can be dynamically
changed without recompiling the code. Having both static
decision (global) and dynamic decision (local) minimizes the
runtime decision overhead while allowing fine tuning based
on dynamic values.

E. Code Generation

Once the mapping decision has been made, the code gener-
ation process is relatively simple. The code generator has a set
of high-level templates for each pattern. Just having a fixed
template for each pattern is not sufficient since different map-
ping decisions may require different code structures, not just
changing the launching parameters (e.g., number of threads).
For example, Figure 9 shows the generated code for sum Rows
in Figure 1, and the mapping decision specified at the top. For



1 // Level 0: [DimY, size 64, span(l)]

2 // Level 1: [DimX, size 32, span(all)]

3 __global__ kernel(double xm, int cols, double #out) {
4 int y = threadIdx.y + blockIdx.y * blockDim.y;

5 __shared__ double smem[64] [32];

g double local_sum = 0.0;

8 for (int cidx = threadIdx.x; cidx < cols; cidx += 32)
9 local_sum += m[yxcols + cidx];

10 smem[threadIdx.y] [threadIdx.x] = local_sum;

11 __syncthreads();

12

13 /% reduce 32 values in smem[threadIdx.y][+] */

14

15 if (threadIdx.x == 0) out[y] = smem[threadIdx.y][0];
16

Fig. 9: Generated CUDA code for sumRows.

collection map { e => //size M
// requires allocation for each e
res = e map { // some function } //size N
// uses res

res reduce { // some function }

}

NNk W~

Fig. 10: Example of dynamic allocation for inner patterns.
Each parallel thread must perform a local allocation to com-
pute res.

this mapping decision, the inner reduce pattern in Figure 9 uses
shared memory to combine data across threads (line 13, well
known warp synchronous programming technique, omitted for
brevity), which would not be needed if each inner reduce
pattern was not parallelized. If the mapping for the reduce
pattern was split(k), global memory is allocated for partial
outputs and another kernel is generated for the final reduce
operation across blocks. Therefore, depending on the mapping
decision our code generator selects the appropriate template
for the pattern and generates complete CUDA code.

V. OPTIMIZATIONS

In this section, we describe compiler optimizations that
further improve the performance of nested patterns. These
optimizations are well-known and often manually applied by
GPU programming experts, and here we show how they can
instead be applied automatically as well as how they interact
with the mapping analysis.

A. Dynamic Memory Allocation

A common characteristic of functional parallel pattern lan-
guages is that they tend to allocate more memory than hand-
optimized code. Therefore when parallel patterns are nested,
inner patterns may require dynamic memory allocations. Fig-
ure 10 shows a nested pattern where both the outer pattern and
the inner pattern are Map, which is a natural way people use
nested patterns. Since the outer pattern is parallelized, possibly
launching thousands of threads, the overhead of calling malloc
per thread to store the result of the inner Map is significant.

However, when the size of the allocation is the same across
all of the outer loop iterations, we can avoid the cost of
dynamic allocations by preallocating the space for the entire

(a) offset=m * N
stride=1

(b) offset=m
stride=N

Fig. 11: Two different layouts for the allocations in Figure 10

optimized for different mapping results. The gray area spec-

ifies the area assigned for the first iteration of the outer Map,

and m is the iteration index.

outer pattern (i.e., size M x N) at once before launching the
kernel. In addition, we can also choose an efficient layout
for the allocation based on the mapping decision. Consider
two possible mapping decisions for the code example in
Figure 10. When dimension y is assigned for the outer Map
pattern and dimension x for the inner Map, the optimal layout
of the allocation is shown in Figure 11 (a). On the other
hand, when the dimension assignments are reversed (outer
Map on dimension x), the optimal layout for the allocation is
Figure 11 (b). Therefore, by rewriting accesses in the kernel
to use the proper offset and stride values for each mapping
decision as shown in the figure, the memory accesses can be
coalesced for both situations. We currently only apply this
transformation when the inner allocation(s) do not escape the
kernel. It can also be applied when the allocation escapes, but
then either subsequent kernels must be rewritten to conform
to the selected data layout or the data must be copied back to
the expected layout, which is not always faster in general.

Note that this optimization provides a way to satisfy more
soft constraints for a mapping. Freedom in the physical layout
of the preallocated memory relaxes the constraints that were
imposed by the logical access patterns. Therefore, the mapping
analysis prioritizes other non-flexible constraints when search-
ing for an efficient mapping and then determines the physical
layout after the mapping.

B. Shared Memory

When patterns are imperfectly nested (i.e., memory accesses
exist outside the innermost pattern), any multidimensional
kernel will have idle threads when computing the outer
level(s). Considering the example in Figure 8, a simple two-
dimensional strategy is to launch [ % J threads to cover the
index domain. While all [ % J threads are active to compute
line 4, only I threads are needed to compute line 2. Therefore,
during this portion of the execution the remaining [ * J — I
threads will be idle. This is typically accomplished by adding
a guard in the CUDA code so that only one thread in a
dimension computes the outer level operations and then all
the threads synchronize before using the result of that thread’s
computation. In addition, for situations such as Figure 8 where
multiple levels have memory accesses that could in theory be
coalesced, but the mapping strategy can only satisfy one level,
the memory accesses for the outer level computation will be
suboptimal.
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Fig. 12: Performance of Rodinia benchmark applications compared to manually optimized and one-dimensional implementa-

tions. Execution times are normalized to manual.

We can solve both of these problems by exploiting the
GPU’s software-controlled shared memory, which provides
fast random access within a thread block. When the analysis
detects imperfectly nested loops, we automatically implement
a form of prefetching. Multiple threads in one dimension all
read a contiguous chunk of the data at the outer level and
store it in shared memory. This solves the underutilization
problem because we fetch data for multiple outer loop iter-
ations simultaneously using multiple threads. In addition, by
using dimension x to perform the prefetch, this also results in
coalesced memory accesses for both the outer pattern (which
was assigned to dimension y) and the inner pattern (assigned
to dimension x). Once the kernel enters the inner parallel
computation, each thread can access any element of the loaded
chunk quickly from shared memory and the kernel performs
multiple iterations of the outer loop without accessing main
memory again.

VI. EXPERIMENTS
A. Rodinia Benchmarks

In this section we present performance results of multiple
benchmarks and applications running on a system with a
multi-core CPU and GPU. For evaluation, we implemented
applications in our data parallel language described in Sec-
tion III. The compiler traverses the IR to perform the mapping
analysis as described in Section IV and then emits CUDA
kernels corresponding to the optimal mapping. We refer to this
implementation as “MultiDim” in the experimental results.

B. Methodology

Our experiments were run on a Dell Precision T7500n with
two quad-core Xeon 2.67 GHz processors, 96GB of RAM,
and an NVIDIA Tesla K20c. CUDA v5.0 is used to compile
the generated kernels. For each experiment we measure the
total execution time across all kernels, ignoring the cost of
transferring the input data to the GPU’s main memory except
in Section VI-E.

C. Simple Nested Patterns

We first quickly wrap up our running example of sumRows
and sumC'ols from Sections 1. As previously discussed, fixed
execution strategies are sensitive to both the data dimensions
as well as the data access patterns. However our analysis

automatically selects a strategy that is optimal for each variant.
The execution times in Figure 3 are all normalized to our
strategy’s execution time, which is the same value for every
data size for both sumRows and sumCols. Note that this
is the ideal case since the total number of data elements is
held constant, and when mapped correctly all main memory
accesses are sequentially adjacent.

We selected a set of applications from the Rodinia bench-
mark suite [4] that contains nested parallelism. We rewrote
each application shown using our data parallel language
and present the execution time of the automatically chosen
mapping strategy. We compare our results to a /D mapping
strategy as well as to the hand-optimized implementations
provided by Rodinia. To generate the /D mapping implemen-
tations, we used our same applications and compiler, and just
added a directive that forces the compiler to ignore all but the
outermost level of parallelism.

Applications in Rodinia consist of one or two levels of
parallelism. Nearest Neighbor contains only one dimension
of parallelism, and we include it here as a baseline to see
how efficient our generated code is to hand-written CUDA in
general. As shown in Figure 12, our generated code is 20%
slower than manually-optimized. The primary reason is that we
currently generate class wrappers for multidimensional arrays
that have multiple extra fields (e.g., offset, stride), and the
physical index is dynamically calculated at each access from
the logical index and the fields. The manual code on the other
hand uses raw pointers and avoids excess index calculations.
We believe this can be optimized by specializing the data
structures we use to minimize the overhead. Since this is a one-
dimensional application the /D mapping strategy of course
produces identical performance.

For Gaussian Elimination and Breadth First Search (BFS),
our compiler actually generated better code than the hand-
optimized versions provided by Rodinia. For Gaussian Elimi-
nation, one of the two-level nested patterns was not written to
coalesce memory accesses in the manual version, whereas our
analysis figured it out automatically and assigned the proper
dimension for each level. BFS also benefits from our analysis
as the manual code was only written to take advantage of
the top-level parallelism (each node in the graph but not the
neighbors of each node), equivalent to the /D mapping. Our
analysis, however, chooses to parallelize both the outer and



B MultiDim

M ThreadBlock/Thread

Warp-based

3.0

2.5

. 1635 1515 = 16

15 110 i1p 1010
1.0 -

0.0 - : :

o
£ 9.15.6
[
c
.0
=1
S
o
Q
X
w
°
O
N
E
5 Gaussian Gaussian Hotspot Hotspot
z Elimination Elimination (R) (€)
(R) ()

Mandelbrot Mandelbrot Srad Srad
(R) () (R) (9]

Fig. 13: Performance of a subset of Rodinia benchmark applications compared to previous two-dimensional strategies. Execution

times are normalized to our MultiDim results.

the inner patterns. This produces better load balancing across
nodes with varying numbers of neighbors, and therefore better
overall performance. These two examples clearly show that
expert GPU programmers can make incorrect decisions. We
believe such mistakes are more likely in more complicated
applications, and therefore we see the benefit of our automated
approach.

Hotspot, Mandelbrot, and Srad all perform very poorly with
a ID mapping strategy compared to the optimized code. Only
parallelizing the outer pattern results in the kernel under-
utilizing the GPU’s resources. By exploiting the parallelism
at multiple levels, however, the size of each individual pat-
tern does not need to be very large as long as the total
inherent parallelism in the application (the product of the
parallelism at each level) is large enough to fully utilize the
GPU’s resources. Also parallelizing only the outer pattern can
yield non-coalesced memory accesses depending on how the
application is written. Whereas our analysis is tolerant to how
the application is written by assigning the appropriate dimen-
sion to produce coalesced accesses. As shown in Figure 12,
our analysis produces code that performs comparably to the
manually-optimized code for each of the three applications.

Pathfinder and LUD show significant performance differ-
ences even when using our analysis. Both applications have a
common computation pattern. They are iterative applications
where each iteration performs a stencil-based data-parallel
operation, and the input to each iteration is the result from
the previous iteration. The manually-optimized code com-
bines multiple iterations of data-parallel operations into a
single kernel call and uses the GPU’s shared memory to
store intermediate results. Since computing each new value
requires reading multiple overlapping previous values (the
stencil), the implementation trades off work duplication for
fewer main memory accesses in order to combine multiple
iterations into one CUDA kernel. This is described in more
detail by Rodinia [4]. The stencil uses are quite complicated
and it is unclear how to automatically infer the stencil from
the application and automatically map it to shared memory
without more domain-level or application-level knowledge. In
addition we currently have a one-to-one mapping of outer-level
parallel patterns to kernels, and do not attempt to make any
trade-off between fusing multiple patterns into a single kernel
at the cost of work duplication (this is obviously not always

correct in general).

D. Comparison to Fixed Two-Dimensional Strategies

We next compare the performance of our multidimensional
mapping strategy to the thread-block/thread mapping and
warp-based mapping strategies on the Rodinia benchmarks
in Figure 13. In order to isolate the performance differences
caused by the strategies themselves, we use our same compiler
to generate CUDA kernels but manually select the mappings
listed in Figure 7. Among the applications in Figure 12,
we selected a subset that can be naturally written in two
ways; a row-major traversal order (R) and a column-major
traversal order (C). 3 For the row-major implementations all
three strategies give relatively similar performance, but our
strategy performs at least as well as the others in all cases,
providing up to 50% speedup over the fixed strategies. The
main reason for the performance improvement is that our
strategy exploits all available parallelism in all dimensions,
whereas the other strategies have a fixed degree of parallelism
in the inner dimension. For the column-major traversal, the
performance difference is much more significant since the
fixed strategies cannot automatically adapt to properly coalesce
memory accesses, which produces between 1.5x and 9.6x
slowdown compared to the MultiDim strategy. Therefore,
our flexible mapping strategy provides significant benefit to
application programmers since they are no longer required
to write their application in a specific way to maximize the
performance on different targets.

E. Application Case Studies

In these experiments, we demonstrate that our multidimen-
sional mapping strategy is also applicable to and performs well
on real-world applications, shown in Figure 14. We compare
the kernels generated from the multidimensional mapping both
to a simple one-dimensional mapping and to the original
optimized multi-core CPU reference implementations.

We first consider QPSCD HogWild!, which is a quadratic
programming solver implemented using a lock-free version of
stochastic coordinate descent [14]. The application is stochas-
tic such that the main outer pattern is over random rows, while

SFor the rest of the benchmarks, our compiler performs at least as well
as fixed strategies; warp-based mapping was within 10%, thread-block/thread
mapping was 3-4x slower in some cases.
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Fig. 14: Performance of real-world applications compared to
multi-core CPU and one-dimensional implementations. Exe-
cution times are normalized to multi-core.

the inner pattern iterates over a row sequentially. Since the
outer access pattern is random, parallelizing only the outer
pattern (/D mapping) results in memory requests that cannot
be coalesced, leading to the performance worse than the CPU.
In contrast, MultiDim assigns the sequential inner pattern to
dimension x, which results in a speedup of 4.38x over the
multi-core implementation and 8.95x over /D mapping.

The next application we consider is MSMBuilder [15],
an open source software package for accelerating molecular
dynamics simulations and building Markov State Models
(MSMs). We implemented the performance-critical trajectory
clustering portion of this code and applied MultiDim to it.
The reference multi-core C++ implementation we compare
against is heavily hand-optimized (including using manual
SSE3 intrinsics). The results for MSMBuilder look similar to
QPSCD, but for different reasons. In this application one of
the nested patterns has a relatively small domain in each di-
mension (around 100 elements each) therefore the 1D mapping
strategy greatly underutilizes the GPU’s hardware. MultiDim
however parallelizes over the product of the domain, produc-
ing significantly better hardware utilization, and achieves a
speedup of 2.4x over the multi-core implementation and 8.7x
over 1D mapping.

The last application is a spam document classifier using the
Naive Bayes model. Given a training dataset (a matrix, each
row representing words in a document), the application calcu-
lates both the number of words per document and the number
of documents for each spam/non-spam word. Therefore there
exists different data access patterns on the same training data.
1D mapping can only satisfy one of the access patterns while
MultiDim’s flexibility enables data accesses from all the GPU
kernels in the application to be optimized, achieving a speedup
of 12.5x over the multi-core implementation and 4.5x over /D
mapping. This application includes significant overhead for
the input data transfer cost, whereas the iterative nature of the
previous two applications amortized this overhead. As shown
in Figure 14, MultiDim is 15% better than multi-core when
including the input data transfer time.

F. Optimizing Dynamic Memory Allocations

All previous results utilized the optimizations presented in
Section V where applicable, and now we study the impact

// m: matrix of size [R,C]

// v: vector of size [C]

sumiWleightedCols = m mapCols { c =>
temp = c zipWith v { (a,b) => a ~ b }
temp reduce { (a,b) => a + b }

}

AN W~

Fig. 15: Modified version of sumCols to multiply a weight
vector before the sum. The zipwith pattern allocates memory
for its output, which occurs per outer pattern iteration.
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Fig. 16: Performance impact of optimizing dynamic alloca-
tions. Execution times are normalized to the fully optimized
execution

of these optimizations in isolation on a micro-benchmark.
Figure 16 shows the impact of optimizing the usage of
dynamically allocated memory in nested patterns. For this
experiment, sumRows and sumCols is slightly modified to
multiply a weight vector before reducing each row or column,
where sumWeightedCols is shown in Figure 15. In this
example multiplying the weight vector logically creates a new
allocation within each outer pattern iteration. As discussed in
Section V-A, we can eliminate the thread-local allocations
by preallocating memory for the entire kernel upfront and
assigning each thread a unique region that it can use within the
kernel. For a fixed allocation layout strategy (we chose row-
major for this experiment), this optimization provides over 16x
speedup for sumW eighted Rows, but only 4x speedup for
sumW eightedCols since the access patterns to the temporary
memory are not properly aligned. Each row of the allocated
matrix is given to each outer pattern iteration, which cannot
be coalesced since the analysis assigns dimension x to the
outer pattern. However, by using the mapping information we
can choose the proper layout based on the access patterns,
as shown in Figure 11 (b), and this provides an additional
5x speedup for sumW eightedCols. After choosing the op-
timal layout of temporary memory for each version, both
sumW eighted Rows and sumW eightedCols execute in the
same amount of time for a given input size as expected.

G. Performance and Mapping Scores

Figure 17 shows the performance and the mapping score
for various mappings generated from our framework. The
Mandelbrot benchmark is used for this experiment, and we
chose the output matrix to be skewed (50,20K) to show the
flexibility of our framework. We can see a region of high
scored mappings (region A) that provide the best performance,
and our framework manages to produce a mapping in this
region. The reason for the region of similar performance is



1000 >

.f Se
z cet?
a . .
w100 t’
2 )
£ §Oo§ ‘
L= K . .
5 ** **
2 10 .
5
g C o ¢ *
“ e
IS = xx Y
1 , , : :

0.00 0.50 1.00 1.50 2.00 2.50
Score

Fig. 17: Performance and score of various mappings generated
from our framework. (A: best performance region, B: warp-
based mapping, C: false negatives)

that minor variations in the mapping decision (e.g., block
size of [128,4] or [256,2]) only have a small impact on the
performance. We can also see that even when the size is
skewed, which is not known at compile time, the system can
dynamically select the kernel launch parameters based on the
runtime size to maximize performance. In contrast, warp-based
mapping (region B) shows poor performance due to its fixed
strategy, which leads to resource underutilization.

Although our analysis selects a mapping in the best perfor-
mance region by trying to satisfy soft constraints as much as
possible, there are still false negatives (region C: low score
and high performance). The main reason is that we used
fixed intrinsic values for the soft constraints and the scoring
calculation only considers loop counts and branching behavior.
In order to have a more sophisticated scoring policy, the
intrinsic values need to be fine-tuned based on the application
characteristics such as the arithmetic intensity and memory ac-
cess patterns. There has been recent work on analytical models
for GPU performance estimation [16], [17], and integrating
such a model into our framework is a subject of future work.

VII. RELATED WORK

Compiling high-level languages to GPUs: Many previous
systems have chosen to automatically target GPUs from a
higher-level programming environment. Nikola [2] is an ar-
ray language embedded in Haskell which uses type-directed
techniques and parallel patterns to automatically translate from
Haskell to CUDA. Nystrom et al. [6] use a library-based
approach for translating Scala programs to OpenCL via Java
bytecode translation. Thrust [5] is a C++ library that simplifies
many of the low-level details of CUDA programming and
also provides a data-parallel pattern API that automatically
creates and launches CUDA kernels. Other systems designed
specifically to simplify the CUDA programming model include
hiCUDA [18] and CUDA-lite [19]. Yang et al. [20] presents a
compiler that optimizes naive GPU programs. Sponge [21] is a
compiler which generates CUDA code from the Streamlt [22]
programming language. Udupa et al. [23] also target Streamlt
for GPUs. Jablin et al. [24] focused on optimizing CPU-GPU
communication in auto-parallelized C/C++ code using runtime
APIs. Lime can compile to both Verilog for FPGA accelera-
tors [25] and OpenCL for GPU and multi-core execution [26].
Delite [8] is a compiler infrastructure for building parallel

DSLs that is based on parallel patterns and targets multi-core
CPUs and GPUs. Dandelion [27] also automatically generates
code for both CPUs and GPUs from a data-parallel subset of
C#. All of these systems are similar in that they do not present
a strategy for automatically handling nested parallel patterns
efficiently.

Nested parallelism on GPUs: Copperhead [1] generates
CUDA code automatically from a data-parallel subset of
Python, and is capable of exploiting nested parallelism by
mapping the outer parallel computation to CUDA thread
blocks and the inner parallel computation threads within a
thread block. However, as discussed in this paper such a
fixed mapping strategy is not always sufficient to maximize
performance. In addition the strategy is limited to a single
level of nesting / can only exploit two dimensions of paral-
lelism. Hong et al. [7] take a more domain-specific approach
and optimize specifically for nested graph computations on
datasets with high skew, whereas our system can replicate
their strategy in a more general framework. NESL [28] flat-
tens nested parallelism, which can be an effective strategy
to improve load balancing across the (formerly) inner loop.
However, for hardware designs that are naturally hierarchical
like GPUs flattening is not necessarily the best strategy and
incurs additional overheads. Nested parallelism on GPUs has
also been investigated using polyhedral models [11], [12],
tiling, and mapping different loops onto threads and thread
blocks. However, the applications are written using affine
loops, which makes it difficult to recover high-level semantic
knowledge like parallel patterns, and therefore limits their
possible mapping strategies (e.g., a reduction or filter using
multiple kernel launches cannot be generated). CUDA-NP [29]
tries to parallelize inner loops using OpenMP style pragmas
and automatically generates different mappings, but it still
requires programmers to write CUDA code.

VIII. CONCLUSION

In this paper we presented an analysis framework for
automatically and efficiently mapping nested parallel patterns
onto GPUs. Our analysis maps nested patterns onto a logical
multidimensional domain space and includes parameters to
control the GPU block size and degree of parallelism. We
then add constraints based on the types of patterns and internal
memory accesses and find the mapping that best satisfies the
given constraints in the search space. Previous strategies for
executing nested patterns on GPUs can be seen as using a
fixed set of parameters in our available search space, whereas
our system can adapt to run a broader range of nested patterns
efficiently on GPUs. We also presented additional optimiza-
tions to eliminate dynamic memory allocations and utilize the
GPU’s shared memory to improve the performance of the
selected mapping strategy. We showed that the performance of
our automatically selected mappings is competitive with hand-
optimized implementations in most cases and up to 28x faster
than a simple 1D mapping. Finally we show experimentally
that our strategy always performs at least as well (and in
certain cases significantly better) than previous solutions due
to its inherent greater flexibility.
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