(L) PERVASIVE
[; 5 PARALLELISH |
Nl] LABORATORY |

Locality-Aware Mapping of
Nested Parallel Patterns on GPUs

HyoukJoong Lee", Kevin Brown®, Arvind Sujeeth”, Tiark Rompft,
Kunle Olukotun®

"Pervasive Parallelism Laboratory, Stanford University

tPurdue University, ¥Oracle Labs

@ el > 8
v High-level Languages for GPUs i IR

m Provide higher productivity and portable performance

m Parallel patterns are becoming a popular abstraction for computations
= map, reduce, filter, groupby, ...
» Supported by Copperhead, Lime, Accelerate, Thrust, ..

» Provide high-level information on parallelism and internal communication

m Compilers often support a fixed mapping strategy for each pattern

“ ““ out = in.map(f) out = in.reduce(f)

6B el > 8
@ Chal Ien ges LABORATORY =

m Parallel patterns are often nested in applications

m > 70% apps in Rodinia benchmark contain kernels with nested parallelism

m Efficiently mapping parallel patterns on GPUs becomes significantly
difficult when patterns are nested

= Many factors to consider together (e.g., coalescing, divergence, dynamic
allocations)

» Large space of possible mappings

serialize

// Pager algorithm
nodes {n=>
nbrsWeights = n.nbrs|map|{ w =>
getPrevPageRank(w) / w.degree

}

sumWeights = nbrsWeights |reduce|{ (a,b) => a + b }
((1 - damp) / numNodes + damp * sumWeights

e .
@d Existing Mapping Strategies i =

® |D mapping

Only parallelize one of the loops (often either inner-most or outer-most)
Sequentially execute other loops
Default mapping strategies for many compilers

®m Thread-block / thread mapping
Assign each outer loop iteration to a thread-block
Inner loop is parallelized by threads within a thread-block

Bryan Catanzaro, et al. “Copperhead: Compiling an Embedded Data Parallel Language”,
PPoPP 201 |

® Warp-based mapping
Assign a warp (32 SIMD execution unit) to one or more outer loop iterations
Inner loop is parallelized by threads in a warp

Sungpack Hong, et al. “Accelerating CUDA Graph Algorithms at Maximum Warp”, PPoPP
2011

) it 7>
«d |ssues with Existing Mappings i =

m = Matrix.rand(nR,nC) » map (i) m = Matrix.rand(nR,nC)
v = m.sumCols reduce(j) V = m.sumRows
aEa m1D = thread-block/thread warp-based limited
= 60 ~ llelism
parallelis
: non-coalesced /
& 50 4 memory
5 40
(S
g —/
w 30
°
.g 20
©
e 10
S 0 -
2

[64K,1K]

[8K,8K]
sumCols

[1K,64K] [64K,1K] [8K,8K] [1K,64K]
sumRows

(@? Compiler Framework for L
«d Multi-Dimensional Mapping IBRATRY

m Define Mapping Parameters

» Flexible enough to cover existing mapping strategies

Logical Dimension: x, v, z, ..
Block Size: N
Degree of Parallelism (DOP): Span(n), Span(all), Split(k)

m Compiler Overview

Memory Optimization A Set of Templates
(layout, shared mem) for Each Pattern

Mapping Constraints

(e.g., Dim(x) for coalescing)

Application

IR Traversal & Search for an

Compiler o . Code
FrontF-)end Generate : Efficient Mapping B 4 Generation
Constraints IR with (Score Calculation) JREEEE:
Constraints Mapping

B o el > .
@ Outline LABORATORY =

® |nput and Output of Mapping Analysis
= IR and Mapping Parameters

Ay
/"E!//'«ﬂ Tt

P[RVASW[W:
PARALLELISM
Intermediate Representation (IR) Ui =

® |nput to our compiler analysis

m Based on existing parallel pattern languages / data parallel languages

m Structured computations and data structures

= Computations

map inmap { e=>e+ 1}

® We implemented a data-parallel language around the IR

6. P
@ Ma PpPINg Parameters LABORATORY e

m Result of our compiler analysis

m For each nest level, (Dimension, Block Size, Degree of Parallelism)

Pattern (1) /[Dim(Y), 16, Span(1)
Pattern (J) // Dim(X), 32, Span(all)

m Dimension

A logical dimension assigned to the index domain of a nest level

Compiler controls how indices in each dimension are mapped to HW threads
m Block size

Number of threads assigned for a given dimension

m Degree of Parallelism (DOP)
The amount of parallel computations enabled by a mapping
Controls how computations are assigned to threads

Span(n) and Split(k) decreases / increases DOP respectively

0 PERVASIVEW
% Degree of Parallelism (DOP) =

Dimlx, 64 M M
. 1 1
Dlln;)’_[D Block | - 2D Block | : >
32 ------I----! i -----------
i i Span
Span I i P
N
0 N (2)
Span (1) Span (all)
(@) Span(l) on both dimensions (b) Span(all) on Dim x and Span(2) on Dim y
M partial results
2D BIock—:§ 2D Block—> || 2D Block—> 2D Block——>
i |
i Span
N . : : (2)
Split (3) Combiner kernel

(c) Split(3) on Dim x and Span(2) on Dim y, launch an additional combiner kernel 10

€3 Comparison to .
o) Existing Mapping Strategies BORATRY i

®m Thread-block / thread mapping (DOP: | * min(], MAX_BLOCK_SIZE))

Pattern (l) /[assign a thread-block Pattern (1) /I DimY, I, Span(l)
Pattern (J) // threads (1024) in a block Pattern (J) // DimX, 1024, Span(all)

= Warp-based mapping (DOP: | * min(J, WARP_SIZE))

Pattern (1) /I assign a warp Pattern (1) /I DimY, 16, Span(l)
Pattern (J) // threads (32) in a warp Pattern (J) // DimX, 32, Span(all)

m Flexible enough to cover existing mapping strategies
m More flexible than existing fixed strategies

m Provides a better view of similarities and differences between different
mapping strategies .

B o el > 8
!i; Outllne LABORATORY =

m Search for an Efficient Mapping
= Mapping Constraints and Scores
= Dynamic Memory Optimization

. | P
@ Mapplng Constraints LABORATORY e

Prunes the mapping space
= Dynamically generated while traversing the IR

Constraints from common GPU optimizations (soft)
= Maximize memory coalescing
m Provide enough parallelism
= Avoid thread divergence

Constraints from GPU HW / programming model (hard)
= Max number of threads per block
m Synchronizations across thread-blocks is not available

Characteristics of parallel patterns (local / global)
= Pick the most conservative span type within the same nest level

@? mﬁﬁﬁ’?ﬁ?’nﬁpﬁf\
«J Soft Constraints B =

Each soft constraint has an intrinsic weight
= Based on empirical study of their relative impact on performance

» Multiplied by the number of times the code will be executed
Multiply by the pattern size, discount by the branching factor

Patternl with i in Domain(0,I) {
arraylD(i) # weight: ao*I
Pattern2 with j in Domain(0,3J) {

array2D(i,j) # weight: a*I*]

b}

m Exact values less important than the relative orderings
Effectively prioritize constraints applied in the inner-most nest level

Prioritizes more important soft constraint within the level

Soft constraints may conflict with each other "

(‘ PERVASIVE
% Search for an Efficient Mapping Pffa%%%ﬁwpl%

Entire mapping space:
exponential to the loop nests (base |DimSet| * [SizeSet| * |SpanSet|)

m Score calculation based on soft constraints
= Adds all the scores from satisfied soft constraints
» For unknown information at compile time, assume default values

m Adjust DOP
= Span(all) -> Split(k)
= Span(l) -> Span(n)
m Detailed decisions can also be adjusted at runtime

» Changes that can be made without changing the mapping structure (e.g., thread-
block size)

@ PERVASIV[PEI;
» PARALLELISM ;
@ Dynamic Memory Optimization Wi i

m Nested patterns may require dynamic allocations per thread

collection map { i => // size I
res = map { j => / * some func */ } // size]
// use of res each thread allocates memory of size |
}

m Opt. |: Allocate memory space for all threads before kernel launch (I*))

m Opt. 2: Set proper offset and stride values for better memory accesses
= Array access at logical index [j] => physical index [offset + j * stride]

= Depends on the mapping decision from the analysis

offset =
stride =

J _offset=i*J

(DimX) stride = 1

I (DimY) B o

PERVASIVE
Code Generation oot s

m Code generator has a set of high-level templates for each pattern
Just having a fixed template for each pattern is not sufficient
Different code structures are required for various mapping decisions

Generated code for sumRows example with below mapping parameters

Level 0: Dim(Y), 64, Span(l)
Level I: Dim(X), 32, Span(all)

__global__ kernel(double *m, int cols, double *out) {
int y = threadIdx.y + blockIdx.y * blockDim.y;
__shared _ double smem[64][32]; double local sum = 0.0;

for (int cidx = threadIdx.x; cidx < cols; cidx += 32) local reduction
local sum += m[y*cols + cidx]; 4r””’ on a registers

smem[threadIdx.y][threadIldx.x] = local sum;)

syncthreads(); globa] reduction

/ using|shared mem
/* reduce 32 values in smem[threadIdx.y][*] */

guarded
if(threadIdx.x == @) out[y] = smem[threadIdx.y][9]; éf,,»””—lnﬂwucuon

17

@ P
@_3] Outline p s =

m Evaluation

B .
@ Evaluation LABORATORY -

m Performance comparison to manually optimized CUDA
Applications with nested kernels in Rodinia benchmark suite

m Flexibility of our mapping analysis
Compare against fixed 2D strategies

m Performance impact on real-world applications

m Correlation between score and performance

m System configuration
Intel Xeon X5550 (8 core, 96GB memory)
nVIDIA K20c GPU

@ PERVASIVE W
. e . PARALLELISM W2
@ Rodinia Benchmark Suite LABRATOY =

® Manual ™ MultiDim ™ 1-D —_——
GEJ 6.0 15.7 40.1 25.4 19.160.8
=
C 5.0
2 4.0
B 4.
2 3.0
g 3.
w
- 2.0
N
= 1.0
E 0.0
2 Gaussian BFS Hotspot Mandelbrot Srad Pathfinder LUD
limination j \)

m 28.6x speedup over |D mappings
m 24% slower than manually optimized CUDA code (7 out of 8)

20

A PERVASE
% Fixed 2D Mappings Pffﬁ%%%?&%

B MultiDim ® ThreadBlock/Thread = Warp-based
€30 9.15.6 9.6 6.6

Gaussian Gaussian Hotspot Hotspot Mandelbrot Mandelbrot Srad Srad
Elimination Elimination (R) (C) (R) (C) (R) (C)
(R) (€)

m Implemented applications in different ways (R: row-major, C: column-major)

m Up to 9.6x faster compared to fixed 2D mappings

m Our compiler is not sensitive to how the application is written

21

@ PERVASIVE W
. . . PARMLLELISH [
@_%j Application Case Studies BRI =

8 CPU m 1D GPU B MultiDim Data Transfer

B
o

w
o

1.13

=
o
|

0.4 ///

QPSCD Hogwild MSMBuilder Nalve Bayes

Normalized Execution Time
N
o
|

ot
o
|

m QPSCD: quadratic programming solver with a lock-free stochastic coordinate descent
= MSMBuilder: molecular dynamics simulations and building Markov State Models

= Naive Bayes: spam document classifier

22

(%1 Performance and mggfygﬁ%m
@ Mapping Scores Y | |

1000 o
) $ 3
© *e ¢ ;
A oot
3100 *sd
=)
g ,®warp-based mapping
lz ¢ " 2 L * PR
6 10 . .
5 false negatives ¢, ¢
o o o ¢ , ¢ best performance regjon
2 IS S x>
1 I I I I]
0.00 0.50 1.00 1.50 2.00 2.50
Score

m More detailed analytical model is required to fine tune the weights (and

remove false negatives)
23

& .
@ Conclusion LABORATORY =

® Nested parallel patterns cannot be efficiently mapped with
existing fixed mapping strategies

® We implemented a compiler analysis and optimizations to
automatically find an efficient mapping based on the context
Define a flexible mapping parameter
Add mapping constraints and calculate scores

Add memory locality optimizations

= We demonstrated with a set of applications that our
compiler automatically generate high-performance GPU
code, better than manually optimized code in some cases

24

@? mﬁﬂ'ﬁﬁ'sﬁ?ﬁl;
«d Thank You! s I V=

B Questions!

25

