

Locality-Aware Mapping of Nested Parallel Patterns on GPUs

HyoukJoong Lee*, Kevin Brown*, Arvind Sujeeth*, Tiark Rompf†‡, Kunle Olukotun*

*Pervasive Parallelism Laboratory, Stanford University

†Purdue University, ‡Oracle Labs

High-level Languages for GPUs

- Provide higher productivity and portable performance
- Parallel patterns are becoming a popular abstraction for computations
 - map, reduce, filter, groupby, ...
 - Supported by Copperhead, Lime, Accelerate, Thrust, ...
 - Provide high-level information on parallelism and internal communication
- Compilers often support a fixed mapping strategy for each pattern

Challenges

- Parallel patterns are often nested in applications
 - > 70% apps in Rodinia benchmark contain kernels with nested parallelism
- Efficiently mapping parallel patterns on GPUs becomes significantly difficult when patterns are nested
 - Many factors to consider together (e.g., coalescing, divergence, dynamic allocations)
 - Large space of possible mappings

```
// Pagerank algorithm
nodes map { n =>
    nbrsWeights = n.nbrs map { w =>
        getPrevPageRank(w) / w.degree
    }
    sumWeights = nbrsWeights reduce { (a,b) => a + b }
    ((1 - damp) / numNodes + damp * sumWeights
}
```


Existing Mapping Strategies

ID mapping

- Only parallelize one of the loops (often either inner-most or outer-most)
- Sequentially execute other loops
- Default mapping strategies for many compilers

Thread-block / thread mapping

- Assign each outer loop iteration to a thread-block
- Inner loop is parallelized by threads within a thread-block
- Bryan Catanzaro, et al. "Copperhead: Compiling an Embedded Data Parallel Language", PPoPP 2011

Warp-based mapping

- Assign a warp (32 SIMD execution unit) to one or more outer loop iterations
- Inner loop is parallelized by threads in a warp
- Sungpack Hong, et al. "Accelerating CUDA Graph Algorithms at Maximum Warp", PPoPP 201


```
m = Matrix.rand(nR,nC)
v = m.sumCols

map (i)
reduce(j)

m = Matrix.rand(nR,nC)
v = m.sumRows
```


Compiler Framework for Multi-Dimensional Mapping

Define Mapping Parameters

Flexible enough to cover existing mapping strategies

Logical Dimension: x, y, z, ...

Block Size: N

Degree of Parallelism (DOP): Span(n), Span(all), Split(k)

Compiler Overview

- Introduction
- Input and Output of Mapping Analysis
 - IR and Mapping Parameters
- Search for an Efficient Mapping
 - Mapping Constraints and Scores
 - Dynamic Memory Optimization
- Evaluation
- Conclusion

Intermediate Representation (IR)

- Input to our compiler analysis
- Based on existing parallel pattern languages / data parallel languages
- Structured computations and data structures
 - Computations

```
Pattern Example

map in map { e => e + 1 }

zinwith in  zinwith (in R) { (e \ e R) => e \ + e R }

// Pagerank algorithm
```

```
// Pagerank algorithm
nodes map { n =>
    nbrsWeights = n.nbrs map { w =>
        getPrevPageRank(w) / w.degree
    }
    sumWeights = nbrsWeights reduce { (a,b) => a + b }
    ((1 - damp) / numNodes + damp * sumWeights
}
```

We implemented a data-parallel language around the IR

Mapping Parameters

- Result of our compiler analysis
- For each nest level, (Dimension, Block Size, Degree of Parallelism)

```
Pattern (I) // Dim(Y), 16, Span(I)
Pattern (J) // Dim(X), 32, Span(all)
```

- Dimension
 - A logical dimension assigned to the index domain of a nest level
 - Compiler controls how indices in each dimension are mapped to HW threads
- Block size
 - Number of threads assigned for a given dimension
- Degree of Parallelism (DOP)
 - The amount of parallel computations enabled by a mapping
 - Controls how computations are assigned to threads
 - Span(n) and Split(k) decreases / increases DOP respectively

Degree of Parallelism (DOP)

Thread-block / thread mapping (DOP: I * min(J, MAX_BLOCK_SIZE))

```
Pattern (I) // assign a thread-block
Pattern (J) // threads (1024) in a block
Pattern (J) // DimY, I, Span(I)
Pattern (J) // DimX, I024, Span(all)
```

Warp-based mapping (DOP: I * min(J, WARP_SIZE))

```
Pattern (I) // assign a warp
Pattern (J) // threads (32) in a warp

Pattern (J) // DimY, 16, Span(I)
Pattern (J) // DimX, 32, Span(all)
```

- Flexible enough to cover existing mapping strategies
- More flexible than existing fixed strategies
- Provides a better view of similarities and differences between different mapping strategies

- Introduction
- Input and Output of Mapping Analysis
 - IR and Mapping Parameters
- Search for an Efficient Mapping
 - Mapping Constraints and Scores
 - Dynamic Memory Optimization
- Evaluation
- Conclusion

Mapping Constraints

- Prunes the mapping space
 - Dynamically generated while traversing the IR
- Constraints from common GPU optimizations (soft)
 - Maximize memory coalescing
 - Provide enough parallelism
 - Avoid thread divergence
- Constraints from GPU HW / programming model (hard)
 - Max number of threads per block
 - Synchronizations across thread-blocks is not available
- Characteristics of parallel patterns (local / global)
 - Pick the most conservative span type within the same nest level

Soft Constraints

- Each soft constraint has an intrinsic weight
 - Based on empirical study of their relative impact on performance
 - Multiplied by the number of times the code will be executed
 - Multiply by the pattern size, discount by the branching factor

```
Pattern1 with i in Domain(0,I) {
    array1D(i) # weight: α*I
    Pattern2 with j in Domain(0,J) {
        array2D(i,j) # weight: α*I*J
} }
```

- Exact values less important than the relative orderings
 - Effectively prioritize constraints applied in the inner-most nest level
 - Prioritizes more important soft constraint within the level
- Soft constraints may conflict with each other

Search for an Efficient Mapping

- Score calculation based on soft constraints
 - Adds all the scores from satisfied soft constraints
 - For unknown information at compile time, assume default values
- Adjust DOP
 - Span(all) -> Split(k)
 - Span(I) -> Span(n)
- Detailed decisions can also be adjusted at runtime
 - Changes that can be made without changing the mapping structure (e.g., threadblock size)

Dynamic Memory Optimization

Nested patterns may require dynamic allocations per thread

- Opt. I: Allocate memory space for all threads before kernel launch (I*J)
- Opt. 2: Set proper offset and stride values for better memory accesses
 - Array access at logical index [j] => physical index [offset + j * stride]
 - Depends on the mapping decision from the analysis

Code Generation

- Code generator has a set of high-level templates for each pattern
 - Just having a fixed template for each pattern is not sufficient
 - Different code structures are required for various mapping decisions
 - Generated code for sumRows example with below mapping parameters

```
Level 0: Dim(Y), 64, Span(I)
Level I: Dim(X), 32, Span(all)
```

```
global kernel(double *m, int cols, double *out) {
  int y = threadIdx.y + blockIdx.y * blockDim.y;
  shared double smem[64][32]; double local sum = 0.0;
                                                             local reduction
  for (int cidx = threadIdx.x; cidx < cols; cidx += 32)
                                                             on a registers
      local_sum += m[y*cols + cidx];
  smem[threadIdx.y][threadIdx.x] = local sum;
                                                             global reduction
  __syncthreads();
                                                             using shared mem
  /* reduce 32 values in smem[threadIdx.y][*]
                                                                   guarded
                                                                   instruction
  if(threadIdx.x == 0) out[y] = smem[threadIdx.y][0];
                                                                        17
```


- Introduction
- Input and Output of Mapping Analysis
 - IR and Mapping Parameters
- Search for an Efficient Mapping
 - Mapping Constraints and Scores
 - Dynamic Memory Optimization
- Evaluation
- Conclusion

- Performance comparison to manually optimized CUDA
 - Applications with nested kernels in Rodinia benchmark suite
- Flexibility of our mapping analysis
 - Compare against fixed 2D strategies
- Performance impact on real-world applications
- Correlation between score and performance
- System configuration
 - Intel Xeon X5550 (8 core, 96GB memory)
 - nVIDIA K20c GPU

Rodinia Benchmark Suite

- 28.6x speedup over ID mappings
- 24% slower than manually optimized CUDA code (7 out of 8)

Fixed 2D Mappings

- Implemented applications in different ways (R: row-major, C: column-major)
- Up to 9.6x faster compared to fixed 2D mappings
- Our compiler is not sensitive to how the application is written

Application Case Studies

- QPSCD: quadratic programming solver with a lock-free stochastic coordinate descent
- MSMBuilder: molecular dynamics simulations and building Markov State Models
- Naïve Bayes: spam document classifier

 More detailed analytical model is required to fine tune the weights (and remove false negatives)

Conclusion

- Nested parallel patterns cannot be efficiently mapped with existing fixed mapping strategies
- We implemented a compiler analysis and optimizations to automatically find an efficient mapping based on the context
 - Define a flexible mapping parameter
 - Add mapping constraints and calculate scores
 - Add memory locality optimizations
- We demonstrated with a set of applications that our compiler automatically generate high-performance GPU code, better than manually optimized code in some cases

Questions?