
Locality-Aware Mapping of
Nested Parallel Patterns on GPUs

HyoukJoong Lee*, Kevin Brown*, Arvind Sujeeth*, Tiark Rompf†‡,

Kunle Olukotun*

*Pervasive Parallelism Laboratory, Stanford University

†Purdue University, ‡Oracle Labs

 Provide higher productivity and portable performance

 Parallel patterns are becoming a popular abstraction for computations

 map, reduce, filter, groupby, …

 Supported by Copperhead, Lime, Accelerate, Thrust, ..

 Provide high-level information on parallelism and internal communication

 Compilers often support a fixed mapping strategy for each pattern

High-level Languages for GPUs

f f f f

f f

f

f f f f f f out = in.map(f) out = in.reduce(f)

2

Challenges

 Parallel patterns are often nested in applications

 > 70% apps in Rodinia benchmark contain kernels with nested parallelism

 Efficiently mapping parallel patterns on GPUs becomes significantly

difficult when patterns are nested

 Many factors to consider together (e.g., coalescing, divergence, dynamic

allocations)

 Large space of possible mappings

// Pagerank algorithm
nodes map { n =>

nbrsWeights = n.nbrs map { w =>
getPrevPageRank(w) / w.degree

}
sumWeights = nbrsWeights reduce { (a,b) => a + b }
((1 - damp) / numNodes + damp * sumWeights

}

thread-blocks

threads in a block

3

warps

threads in a warp

threads

serialize

Existing Mapping Strategies

 1D mapping
 Only parallelize one of the loops (often either inner-most or outer-most)

 Sequentially execute other loops

 Default mapping strategies for many compilers

 Thread-block / thread mapping
 Assign each outer loop iteration to a thread-block

 Inner loop is parallelized by threads within a thread-block

 Bryan Catanzaro, et al. “Copperhead: Compiling an Embedded Data Parallel Language”,
PPoPP 2011

 Warp-based mapping
 Assign a warp (32 SIMD execution unit) to one or more outer loop iterations

 Inner loop is parallelized by threads in a warp

 Sungpack Hong, et al. “Accelerating CUDA Graph Algorithms at Maximum Warp”, PPoPP
2011

4

Issues with Existing Mappings

m = Matrix.rand(nR,nC)

v = m.sumCols

m = Matrix.rand(nR,nC)

v = m.sumRows

map (i)

reduce(j)

0

10

20

30

40

50

60

[64K,1K] [8K,8K] [1K,64K] [64K,1K] [8K,8K] [1K,64K]

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e 1D thread-block/thread warp-based

sumCols sumRows

limited

parallelism
non-coalesced

memory

5

Compiler Framework for
Multi-Dimensional Mapping

Code
Generation

Logical Dimension: x, y, z, ..
Block Size: N
Degree of Parallelism (DOP): Span(n), Span(all), Split(k)

IR Traversal &
Generate

Constraints

Search for an
Efficient Mapping
(Score Calculation)

Compiler
Front-end

Application Mapping Constraints
(e.g., Dim(x) for coalescing)

Memory Optimization
(layout, shared mem)

A Set of Templates
for Each Pattern

Selected

Mapping

IR IR with

Constraints

 Compiler Overview

 Define Mapping Parameters

 Flexible enough to cover existing mapping strategies

6

Outline

 Introduction

 Input and Output of Mapping Analysis
 IR and Mapping Parameters

 Search for an Efficient Mapping
 Mapping Constraints and Scores

 Dynamic Memory Optimization

 Evaluation

 Conclusion
7

Intermediate Representation (IR)

 Input to our compiler analysis

 Based on existing parallel pattern languages / data parallel languages

 Structured computations and data structures

 Computations

 Data structures: scalars, array, structs

 We implemented a data-parallel language around the IR

Pattern Example

map in map { e => e + 1 }

zipwith inA zipWith(inB) { (eA,eB) => eA + eB }

foreach inA foreach { e => if (e>0) inB(e) = true }

filter in filter { e => e > 0}

reduce in reduce { (e1,e2) => e1 + e2 }

groupby in groupBy { e => e.id }

8

// Pagerank algorithm

nodes map { n =>

nbrsWeights = n.nbrs map { w =>
getPrevPageRank(w) / w.degree

}

sumWeights = nbrsWeights reduce { (a,b) => a + b }
((1 - damp) / numNodes + damp * sumWeights

}

Mapping Parameters

 Result of our compiler analysis

 For each nest level, (Dimension, Block Size, Degree of Parallelism)

 Dimension

 A logical dimension assigned to the index domain of a nest level

 Compiler controls how indices in each dimension are mapped to HW threads

 Block size

 Number of threads assigned for a given dimension

 Degree of Parallelism (DOP)

 The amount of parallel computations enabled by a mapping

 Controls how computations are assigned to threads

 Span(n) and Split(k) decreases / increases DOP respectively

Pattern (I) // Dim(Y), 16, Span(1)

Pattern (J) // Dim(X), 32, Span(all)

9

Degree of Parallelism (DOP)

M
Dim x, 64

..

:

Span (1)

Dim y

16
2D Block

N
Span

(1)

M

..

:

Span (all)

2D Block

Span

(2)N

32

(a) Span(1) on both dimensions (b) Span(all) on Dim x and Span(2) on Dim y

:

Split (3)

2D Block

Span

(2)N

32

(c) Split(3) on Dim x and Span(2) on Dim y, launch an additional combiner kernel

2D Block 2D Block

: :

M

2D Block

:

Combiner kernel

partial results

10

Comparison to
Existing Mapping Strategies

 Thread-block / thread mapping (DOP: I * min(J, MAX_BLOCK_SIZE))

 Warp-based mapping (DOP: I * min(J, WARP_SIZE))

 Flexible enough to cover existing mapping strategies

 More flexible than existing fixed strategies

 Provides a better view of similarities and differences between different

mapping strategies

Pattern (I) // assign a thread-block

Pattern (J) // threads (1024) in a block

Pattern (I) // DimY, 1, Span(1)

Pattern (J) // DimX, 1024, Span(all)

Pattern (I) // assign a warp

Pattern (J) // threads (32) in a warp

Pattern (I) // DimY, 16, Span(1)

Pattern (J) // DimX, 32, Span(all)

11

Outline

 Introduction

 Input and Output of Mapping Analysis
 IR and Mapping Parameters

 Search for an Efficient Mapping
 Mapping Constraints and Scores

 Dynamic Memory Optimization

 Evaluation

 Conclusion
12

Mapping Constraints

 Prunes the mapping space

 Dynamically generated while traversing the IR

 Constraints from common GPU optimizations (soft)

 Maximize memory coalescing

 Provide enough parallelism

 Avoid thread divergence

 Constraints from GPU HW / programming model (hard)

 Max number of threads per block

 Synchronizations across thread-blocks is not available

 Characteristics of parallel patterns (local / global)

 Pick the most conservative span type within the same nest level

13

 Each soft constraint has an intrinsic weight

 Based on empirical study of their relative impact on performance

 Multiplied by the number of times the code will be executed

 Multiply by the pattern size, discount by the branching factor

 Exact values less important than the relative orderings

 Effectively prioritize constraints applied in the inner-most nest level

 Prioritizes more important soft constraint within the level

 Soft constraints may conflict with each other

Soft Constraints

Pattern1 with i in Domain(0,I) {
array1D(i)
Pattern2 with j in Domain(0,J) {

array2D(i,j)
} }

14

weight: α*I

weight: α*I*J

Search for an Efficient Mapping

 Score calculation based on soft constraints

 Adds all the scores from satisfied soft constraints

 For unknown information at compile time, assume default values

 Adjust DOP

 Span(all) -> Split(k)

 Span(1) -> Span(n)

 Detailed decisions can also be adjusted at runtime

 Changes that can be made without changing the mapping structure (e.g., thread-
block size)

satisfied hard constraints

Entire mapping space:

exponential to the loop nests (base |DimSet| ∗ |SizeSet| ∗ |SpanSet|)

score x
score y

score z

15

Dynamic Memory Optimization

 Nested patterns may require dynamic allocations per thread

 Opt. 1: Allocate memory space for all threads before kernel launch (I*J)

 Opt. 2: Set proper offset and stride values for better memory accesses

 Array access at logical index [j] => physical index [offset + j * stride]

 Depends on the mapping decision from the analysis

collection map { i => // size I
res = map { j => / * some func */ } // size J
… // use of res

}

J
(DimX)

I (DimY)

I
(DimX)

J (DimY)

offset = i * J
stride = 1

offset = i
stride = I

16

each thread allocates memory of size J

Code Generation

 Code generator has a set of high-level templates for each pattern

 Just having a fixed template for each pattern is not sufficient

 Different code structures are required for various mapping decisions

 Generated code for sumRows example with below mapping parameters

__global__ kernel(double *m, int cols, double *out) {
int y = threadIdx.y + blockIdx.y * blockDim.y;
__shared__ double smem[64][32]; double local_sum = 0.0;

for (int cidx = threadIdx.x; cidx < cols; cidx += 32)
local_sum += m[y*cols + cidx];

smem[threadIdx.y][threadIdx.x] = local_sum;
__syncthreads();

/* reduce 32 values in smem[threadIdx.y][*] */

if(threadIdx.x == 0) out[y] = smem[threadIdx.y][0];
}

guarded

instruction

local reduction

on a registers

global reduction

using shared mem

Level 0: Dim(Y), 64, Span(1)

Level 1: Dim(X), 32, Span(all)

17

Outline

 Introduction

 Input and Output of Mapping Analysis
 IR and Mapping Parameters

 Search for an Efficient Mapping
 Mapping Constraints and Scores

 Dynamic Memory Optimization

 Evaluation

 Conclusion
18

Evaluation

 Performance comparison to manually optimized CUDA

 Applications with nested kernels in Rodinia benchmark suite

 Flexibility of our mapping analysis

 Compare against fixed 2D strategies

 Performance impact on real-world applications

 Correlation between score and performance

 System configuration

 Intel Xeon X5550 (8 core, 96GB memory)

 nVIDIA K20c GPU

19

Rodinia Benchmark Suite

1.2
0.7

0.4
1.0

1.4 1.7
2.3

1.2

4.6

1.8
2.3

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Nearest
Neighbor

Gaussian
Elimination

BFS Hotspot Mandelbrot Srad Pathfinder LUDN
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Manual MultiDim 1-D

15.7 40.1 25.4 19.160.8

 28.6x speedup over 1D mappings

 24% slower than manually optimized CUDA code (7 out of 8)

20

Fixed 2D Mappings

1.1

1.6

1.1
1.5

1.8

1.01.0

1.5

1.0

1.5 1.6

1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gaussian
Elimination

(R)

Gaussian
Elimination

(C)

Hotspot
(R)

Hotspot
(C)

Mandelbrot
(R)

Mandelbrot
(C)

Srad
(R)

Srad
(C)N

o
rm

al
iz

e
d

 E
xe

cu
ti

o
n

 T
im

e

MultiDim ThreadBlock/Thread Warp-based
9.15.6 9.6 6.6

 Implemented applications in different ways (R: row-major, C: column-major)

 Up to 9.6x faster compared to fixed 2D mappings

 Our compiler is not sensitive to how the application is written

21

Application Case Studies

2.0

3.6

0.36

0.2
0.4

0.080.0

1.0

2.0

3.0

4.0

QPSCD Hogwild MSMBuilder Naïve Bayes

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

8 CPU 1D GPU MultiDim

1.13
0.85

Data Transfer

 QPSCD: quadratic programming solver with a lock-free stochastic coordinate descent

 MSMBuilder: molecular dynamics simulations and building Markov State Models

 Naïve Bayes: spam document classifier

22

Performance and
Mapping Scores

1

10

100

1000

0.00 0.50 1.00 1.50 2.00 2.50

Ex
e

cu
ti

o
n

 T
im

e
 (

Lo
g

Sc
al

e
)

Score

best performance region
false negatives

warp-based mapping

23

 More detailed analytical model is required to fine tune the weights (and

remove false negatives)

Conclusion

 Nested parallel patterns cannot be efficiently mapped with

existing fixed mapping strategies

 We implemented a compiler analysis and optimizations to

automatically find an efficient mapping based on the context

 Define a flexible mapping parameter

 Add mapping constraints and calculate scores

 Add memory locality optimizations

 We demonstrated with a set of applications that our

compiler automatically generate high-performance GPU

code, better than manually optimized code in some cases

24

Thank You!

 Questions?

25

