
Locality-Aware Mapping of 
Nested Parallel Patterns on GPUs

HyoukJoong Lee*, Kevin Brown*, Arvind Sujeeth*, Tiark Rompf†‡, 

Kunle Olukotun*

*Pervasive Parallelism Laboratory, Stanford University

†Purdue University, ‡Oracle Labs



 Provide higher productivity and portable performance

 Parallel patterns are becoming a popular abstraction for computations

 map, reduce, filter, groupby, …

 Supported by Copperhead, Lime, Accelerate, Thrust, ..

 Provide high-level information on parallelism and internal communication

 Compilers often support a fixed mapping strategy for each pattern

High-level Languages for GPUs
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Challenges

 Parallel patterns are often nested in applications

 > 70% apps in Rodinia benchmark contain kernels with nested parallelism

 Efficiently mapping parallel patterns on GPUs becomes significantly 

difficult when patterns are nested

 Many factors to consider together (e.g., coalescing, divergence, dynamic 

allocations)

 Large space of possible mappings

// Pagerank algorithm
nodes map { n =>

nbrsWeights = n.nbrs map { w =>
getPrevPageRank(w) / w.degree

}
sumWeights = nbrsWeights reduce { (a,b) => a + b }
((1 - damp) / numNodes + damp * sumWeights

}

thread-blocks

threads in a block
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Existing Mapping Strategies

 1D mapping
 Only parallelize one of the loops (often either inner-most or outer-most)

 Sequentially execute other loops

 Default mapping strategies for many compilers

 Thread-block / thread mapping
 Assign each outer loop iteration to a thread-block 

 Inner loop is parallelized by threads within a thread-block

 Bryan Catanzaro, et al. “Copperhead: Compiling an Embedded Data Parallel Language”, 
PPoPP 2011

 Warp-based mapping
 Assign a warp (32 SIMD execution unit) to one or more outer loop iterations

 Inner loop is parallelized by threads in a warp

 Sungpack Hong, et al. “Accelerating CUDA Graph Algorithms at Maximum Warp”, PPoPP
2011
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Issues with Existing Mappings

m = Matrix.rand(nR,nC)

v = m.sumCols

m = Matrix.rand(nR,nC)

v = m.sumRows

map (i)

reduce(j)
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Compiler Framework for 
Multi-Dimensional Mapping

Code 
Generation

Logical Dimension:  x, y, z, ..
Block Size:  N
Degree of Parallelism (DOP): Span(n), Span(all), Split(k)

IR Traversal &
Generate

Constraints

Search for an
Efficient Mapping
(Score Calculation)

Compiler
Front-end

Application Mapping Constraints
(e.g., Dim(x) for coalescing)

Memory Optimization
(layout, shared mem)

A Set of Templates 
for Each Pattern

Selected

Mapping

IR IR with 

Constraints

 Compiler Overview

 Define Mapping Parameters

 Flexible enough to cover existing mapping strategies
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Intermediate Representation (IR)

 Input to our compiler analysis

 Based on existing parallel pattern languages / data parallel languages

 Structured computations and data structures

 Computations

 Data structures: scalars, array, structs

 We implemented a data-parallel language around the IR

Pattern Example

map in map { e => e + 1 }

zipwith inA zipWith(inB) { (eA,eB) => eA + eB }

foreach inA foreach { e => if (e>0) inB(e) = true }

filter in filter { e => e > 0}

reduce in reduce { (e1,e2) => e1 + e2 }

groupby in groupBy { e => e.id }

8

// Pagerank algorithm

nodes map { n =>

nbrsWeights = n.nbrs map { w =>
getPrevPageRank(w) / w.degree

}

sumWeights = nbrsWeights reduce { (a,b) => a + b }
((1 - damp) / numNodes + damp * sumWeights

}



Mapping Parameters

 Result of our compiler analysis

 For each nest level, (Dimension, Block Size, Degree of Parallelism)

 Dimension

 A logical dimension assigned to the index domain of a nest level

 Compiler controls how indices in each dimension are mapped to HW threads

 Block size

 Number of threads assigned for a given dimension

 Degree of Parallelism (DOP)

 The amount of parallel computations enabled by a mapping

 Controls how computations are assigned to threads

 Span(n) and Split(k) decreases / increases DOP respectively

Pattern (I)          // Dim(Y), 16, Span(1)

Pattern (J)     // Dim(X), 32, Span(all)
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Degree of Parallelism (DOP)
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Comparison to 
Existing Mapping Strategies

 Thread-block / thread mapping (DOP: I * min(J, MAX_BLOCK_SIZE))

 Warp-based mapping (DOP: I * min(J, WARP_SIZE))

 Flexible enough to cover existing mapping strategies

 More flexible than existing fixed strategies 

 Provides a better view of similarities and differences between different 

mapping strategies

Pattern (I)        // assign a thread-block

Pattern (J)     // threads (1024) in a block

Pattern (I)          // DimY, 1, Span(1)

Pattern (J)     // DimX, 1024, Span(all)

Pattern (I)        // assign a warp 

Pattern (J)     // threads (32) in a warp

Pattern (I)          // DimY, 16, Span(1)

Pattern (J)     // DimX, 32, Span(all)
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Mapping Constraints

 Prunes the mapping space 

 Dynamically generated while traversing the IR

 Constraints from common GPU optimizations (soft)

 Maximize memory coalescing

 Provide enough parallelism

 Avoid thread divergence

 Constraints from GPU HW / programming model (hard)

 Max number of threads per block

 Synchronizations across thread-blocks is not available

 Characteristics of parallel patterns (local / global)

 Pick the most conservative span type within the same nest level
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 Each soft constraint has an intrinsic weight

 Based on empirical study of their relative impact on performance

 Multiplied by the number of times the code will be executed

 Multiply by the pattern size, discount by the branching factor

 Exact values less important than the relative orderings

 Effectively prioritize constraints applied in the inner-most nest level

 Prioritizes more important soft constraint within the level

 Soft constraints may conflict with each other

Soft Constraints

Pattern1 with i in Domain(0,I) {
array1D(i)
Pattern2 with j in Domain(0,J) {

array2D(i,j)  
} }
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# weight: α*I*J



Search for an Efficient Mapping

 Score calculation based on soft constraints

 Adds all the scores from satisfied soft constraints

 For unknown information at compile time, assume default values

 Adjust DOP

 Span(all) -> Split(k)

 Span(1) -> Span(n)

 Detailed decisions can also be adjusted at runtime

 Changes that can be made without changing the mapping structure (e.g., thread-
block size)

satisfied hard constraints

Entire mapping space:

exponential to the loop nests (base |DimSet| ∗ |SizeSet| ∗ |SpanSet|)

score x
score y

score z
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Dynamic Memory Optimization

 Nested patterns may require dynamic allocations per thread

 Opt. 1: Allocate memory space for all threads before kernel launch (I*J)

 Opt. 2: Set proper offset and stride values for better memory accesses

 Array access at logical index [j] => physical index [offset + j * stride]

 Depends on the mapping decision from the analysis

collection map { i =>                     // size I
res = map { j => / * some func */ }   // size J
…  // use of res   

}

J
(DimX)

I (DimY)

I
(DimX)

J (DimY)

offset = i * J
stride = 1

offset = i
stride = I
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each thread allocates memory of size J



Code Generation

 Code generator has a set of high-level templates for each pattern

 Just having a fixed template for each pattern is not sufficient

 Different code structures are required for various mapping decisions

 Generated code for sumRows example with below mapping parameters

__global__ kernel(double *m, int cols, double *out) {
int y = threadIdx.y + blockIdx.y * blockDim.y;
__shared__ double smem[64][32]; double local_sum = 0.0;

for (int cidx = threadIdx.x; cidx < cols; cidx += 32)
local_sum += m[y*cols + cidx];

smem[threadIdx.y][threadIdx.x] = local_sum;
__syncthreads();

/* reduce 32 values in smem[threadIdx.y][*] */

if(threadIdx.x == 0) out[y] = smem[threadIdx.y][0];
}

guarded

instruction

local reduction

on a registers

global reduction

using shared mem

Level 0: Dim(Y), 64, Span(1)

Level 1: Dim(X), 32, Span(all)
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Evaluation

 Performance comparison to manually optimized CUDA

 Applications with nested kernels in Rodinia benchmark suite

 Flexibility of our mapping analysis

 Compare against fixed 2D strategies

 Performance impact on real-world applications

 Correlation between score and performance

 System configuration

 Intel Xeon X5550 (8 core, 96GB memory)

 nVIDIA K20c GPU
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Rodinia Benchmark Suite
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 28.6x speedup over 1D mappings

 24% slower than manually optimized CUDA code (7 out of 8)

20



Fixed 2D Mappings
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 Implemented applications in different ways (R: row-major, C: column-major)

 Up to 9.6x faster compared to fixed 2D mappings

 Our compiler is not sensitive to how the application is written
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Application Case Studies
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 QPSCD: quadratic programming solver with a lock-free stochastic coordinate descent

 MSMBuilder: molecular dynamics simulations and building Markov State Models

 Naïve Bayes: spam document classifier
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Performance and  
Mapping Scores
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 More detailed analytical model is required to fine tune the weights (and 

remove false negatives) 



Conclusion

 Nested parallel patterns cannot be efficiently mapped with 

existing fixed mapping strategies

 We implemented a compiler analysis and optimizations to 

automatically find an efficient mapping based on the context

 Define a flexible mapping parameter

 Add mapping constraints and calculate scores

 Add memory locality optimizations

 We demonstrated with a set of applications that our 

compiler automatically generate high-performance GPU 

code, better than manually optimized code in some cases
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Thank You!

 Questions?
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