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ABSTRACT

Reconfigurable architectures have gained popularity in recent years
as they allow the design of energy-efficient accelerators. Fine-grain
fabrics (e.g. FPGAs) have traditionally suffered from performance
and power inefficiencies due to bit-level reconfigurable abstractions.
Both fine-grain and coarse-grain architectures (e.g. CGRAs) tradi-
tionally require low level programming and suffer from long com-
pilation times. We address both challenges with Plasticine, a new
spatially reconfigurable architecture designed to efficiently execute
applications composed of parallel patterns. Parallel patterns have
emerged from recent research on parallel programming as powerful,
high-level abstractions that can elegantly capture data locality, mem-
ory access patterns, and parallelism across a wide range of dense
and sparse applications.

We motivate Plasticine by first observing key application charac-
teristics captured by parallel patterns that are amenable to hardware
acceleration, such as hierarchical parallelism, data locality, mem-
ory access patterns, and control flow. Based on these observations,
we architect Plasticine as a collection of Pattern Compute Units
and Pattern Memory Units. Pattern Compute Units are multi-stage
pipelines of reconfigurable SIMD functional units that can efficiently
execute nested patterns. Data locality is exploited in Pattern Memory
Units using banked scratchpad memories and configurable address
decoders. Multiple on-chip address generators and scatter-gather
engines make efficient use of DRAM bandwidth by supporting a
large number of outstanding memory requests, memory coalescing,
and burst mode for dense accesses. Plasticine has an area footprint
of 113 mm? in a 28nm process, and consumes a maximum power
of 49 W at a 1 GHz clock. Using a cycle-accurate simulator, we
demonstrate that Plasticine provides an improvement of up to 76.9x
in performance-per-Watt over a conventional FPGA over a wide
range of dense and sparse applications.

CCS CONCEPTS

* Hardware — Hardware accelerators; * Software and its engi-
neering — Retargetable compilers;
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1 INTRODUCTION

In the search for higher performance and energy efficiency, comput-
ing systems are steadily moving towards the use of specialized ac-
celerators [7, 9-11, 19, 33, 44]. Accelerators implement customized
data and control paths to suit a domain of applications, thereby
avoiding many of the overheads of flexibility in general-purpose
processors. However, specialization in the form of dedicated ASICs
is expensive due to the high NRE costs for design and fabrication, as
well as the high deployment and iteration times. This makes ASIC
accelerators impractical for all but the most ubiquitous applications.

Reconfigurable architectures like FPGAs offset the high NRE
fabrication costs by providing flexible logic blocks in a statically pro-
grammable interconnect to implement custom datapaths. In FPGAs,
these custom datapaths are configurable at the bit level, allowing
users to prototype arbitrary digital logic and take advantage of archi-
tectural support for arbitrary precision computation. This flexibility
has resulted in a number of successful commercial FPGA-based
accelerators deployed in data centers [28, 29, 37]. However, flex-
ibility comes at the cost of architectural inefficiencies. Bit-level
reconfigurability in computation and interconnect resources comes
with significant area and power overheads. For example, over 60%
of the chip area and power in an FPGA is spent in the programmable
interconnect [4, 5, 22, 35]. Long combinational paths through mul-
tiple logic elements limit the maximum clock frequency at which
an accelerator design can operate. These inefficiencies have moti-
vated the development of coarse-grain reconfigurable architectures
(CGRAs) with word-level functional units that match the compute
needs of most accelerated applications. CGRAs provide dense com-
pute resources, power efficiency, and clock frequencies up to an
order of magnitude higher than FPGAs. Modern commercial FPGA
architectures such as Intel’s Arria 10 and Stratix 10 device fami-
lies have evolved to include increasing numbers of coarse-grained
blocks, including integer multiply-accumulators (“DSPs”), floating
point units, pipelined interconnect, and DRAM memory controllers.
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Table 1: The parallel patterns in our programming model.

The interconnect in these FPGAs, however, remains fine-grained
to enable the devices to serve their original purpose as prototyping
fabrics for arbitrary digital logic.

Unfortunately, both FPGAs and previously proposed CGRAs
are difficult to use. Accelerator design typically involves low-level
programming models and long compilation times [3, 21, 22]. The
heterogeneity of resources in most CGRAs and in FPGAs with
coarse-grain blocks adds further complications. A promising ap-
proach towards simplifying accelerator development is to start with
domain-specific languages that capture high-level parallel patterns
such as map, reduce, filter, and flatmap [38, 41]. Parallel patterns
have been successfully used to simplify parallel programming and
code generation for a diverse set of parallel architectures including
multi-core chips [27, 34, 40] and GPUs [8, 23]. Recent work has
shown that parallel patterns can also be used to generate optimized
accelerators for FPGAs from high-level languages [15, 36]. In this
work, we focus on developing a coarse-grain, reconfigurable fabric
with direct architectural support for parallel patterns which is both
highly efficient in terms of area, power, and performance and easy
to use in terms of programming and compilation complexity.

We introduce Plasticine, a new spatially reconfigurable accelera-
tor architecture optimized for efficient execution of parallel patterns.
Plasticine is a two dimensional array of two kinds of coarse-grained
reconfigurable units: Pattern Compute Units (PCUs) and Pattern
Memory Units (PMUs). Each PCU consists of a reconfigurable
pipeline with multiple stages of SIMD functional units, with support
for cross-SIMD lane shifting and reduction. PMUs are composed
of a banked scratchpad memory and dedicated addressing logic and
address decoders. These units communicate with each other through
a pipelined static hybrid interconnect with separate bus-level and
word-level data, and bit-level control networks. The hierarchy in the
Plasticine architecture simplifies compiler mapping and improves
execution efficiency. The compiler can map inner loop computation
to one PCU such that most operands are transferred directly between
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functional units without scratchpad accesses or inter-PCU communi-
cation. The on-chip, banked scratchpads are configurable to support
streaming and double buffered accesses. The off-chip memory con-
trollers support both streaming (burst) patterns and scatter/gather
accesses. Finally, the on-chip control logic is configurable to support
nested patterns.

We have implemented Plasticine in Chisel [2], a Scala-based hard-
ware definition language. We obtain area estimates after synthesizing
the design using Synopsys Design Compiler, and power numbers
using simulation traces and PrimeTime. Using VCS and DRAM-
Sim?2 for cycle-accurate simulation, we perform detailed evaluation
of the Plasticine architecture on a wide range of dense and sparse
benchmarks in the domains of linear algebra, machine learning, data
analytics and graph analytics.

The rest of this paper is organized as follows: Section 2 reviews
the key concepts in parallel patterns and their hardware implementa-
tion. Section 3 introduces the Plasticine architecture and explores
key design tradeoffs. Section 4 evaluates the power and performance
efficiency of Plasticine versus an FPGA. Section 5 discusses related
work.

2 PARALLEL PATTERNS
2.1 Programming with Parallel Patterns

Parallel patterns are an extension to traditional functional program-
ming which capture parallelizable computation on both dense and
sparse data collections along with corresponding memory access
patterns. Parallel patterns enable simple, automatic program paral-
lelization rules for common computation tasks while also improving
programmer productivity through higher level abstractions. The
performance benefit from parallelization, coupled with improved
programmer productivity, has caused parallel patterns to become
increasingly popular in a variety of domains, including machine
learning, graph processing, and database analytics [38, 41]. Previ-
ous work has shown how parallel patterns can be used in functional
programming models to generate multi-threaded C++ for CPUs com-
parable to hand optimized code [40] and efficient accelerator designs
for FPGAs [1, 15, 36]. As with FPGAs and multi-core CPUs, knowl-
edge of data parallelism is vital to achieve good performance when
targeting CGRAs. This implicit knowledge makes parallel patterns a
natural programming model to drive CGRA design.

Like previous work on hardware generation from parallel pat-
terns [15, 36], our programming model is based on the parallel
patterns Map, FlatMap, Fold, and HashReduce. These patterns are
selected because they are most amenable to hardware acceleration.
Table 1 depicts conceptual examples of each pattern, where com-
putation is shown operating on four indices simultaneously. Every
pattern takes as input one or more functions and an index domain
describing the range of values that the pattern operates over. Each of
these patterns builds an output and reads from an arbitrary number
of input collections.

Map creates a single output element per index using the function
f, where each execution of f is guaranteed to be independent. The
number of output elements from Map is the same as the size of the
input iteration domain. Based on the number of collections read in f
and the access patterns of each read, Map can capture the behavior
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val a: [ ] // Mx N
2 val b: [ ] // NxP
3 val ¢ = Map(M, P){(i,]) =>
4 // Outer Map function (f1)
5 Fold(N) (0.0f) {k =>

6 // Inner map function (£2)
7 a(i k) * b(k,J)

8 Hxy) =>

9 // Combine function (r)

10 X +y

11 }

12 }

Figure 1: Example of using Map and Fold in a Scala-based lan-
guage for computing an untiled matrix multiplication using in-
ner products.

1 val CUTOFF: = Date("1998-12-01")
2 val lineltems: [Lineltem] = ...
val before = lineltems.filter{ item => item.date < CUTOFF }

5 val query = before.hashReduce{ item =>

6 // Key function (k)

7 (item.returnFlag, item.lineStatus)

8 H item =>

9 // Value function (v)

10 val quantity = item.quantity

price = item.extendedPrice

discount = item.discount

discountPrice = price x (1.0 — discount)

charge = price * (1.0 - discount) % (1.0 + item.tax)
count = 1

16 quantity, price, discount, discountedPrice, count)
1 H (a,b) =>

18 // Combine function (r) — combine using summation
19 val quantity = a.quantity + b.quantity

20 val price = a.price + b.price

21 val discount = a.discount + b.discount

22 val discountPrice = a.discountPrice + b.discountPrice
23 val count = a.count + b.count

24 (quantity, price, discount, discountPrice, count)
25 }

e T Sy
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Y
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(

Figure 2: Example of using filter (FlatMap) and HashReduce in
a Scala-based language, inspired by TPC-H query 1.

of a gather, a standard element-wise map, a zip, a windowed filter,
or any combination thereof.

FlatMap produces an arbitrary number of elements per index
using function g, where again function execution is independent. The
produced elements are concatenated into a flat output. Conditional
data selection (e.g. WHERE in SQL, filter in Haskell or Scala) is a
special case of FlatMap where g produces zero or one elements.

Fold first acts as a Map, producing a single element per index
using the function f; then reduces these elements using an associative
combine function r.

HashReduce generates a hash key and a value for every index
using functions k and v, respectively. Values with the same corre-
sponding key are reduced on the fly into a single accumulator using
an associative combine function r. HashReduce may either be dense,
where the space of keys is known ahead of time and all accumulators
can be statically allocated, or sparse, where the pattern may gener-
ate an arbitrary number of keys at runtime. Histogram creation is a
common, simple example of HashReduce where the key function
gives the histogram bin, the value function is defined to always be
"1", and the combine function is integer addition.

Figure 1 shows an example of writing an untiled matrix multi-
plication with an explicit parallel pattern creation syntax. In this
case, the Map creates an output matrix of size M x P. The Fold
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Programming Model Hardware

Pipelined compute

Compute Parallel patt
P aratiel patterns SIMD lanes
Intermediate scalars Distributed pipeline registers
On-Chip Tiled, linear accesses Bar?ked scratchpads
M Random reads Duplicated scratchpads
emor
y Streaming, linear accesses Banked FIFOs
Nested patterns Double buffering support
Off-Chip Linear accesses Burst commands
Memory Random reads/writes Gather/scatter support
Fold Cross-lane reduction trees
Interconnect .
FlatMap Cross-lane coalescing
Pattern indices Parallelizable counter chains
Control

Nested patterns Programmable control

Table 2: Programming model components and their corre-
sponding hardware implementation requirements.

produces each element of this matrix using a dot product over N
elements. Fold’s map function (£2) accesses an element of matrix
a and matrix b and multiplies them. Fold’s combine function (r)
defines how to combine arbitrary elements produced by £2, in this
case using summation.

Figure 2 gives an example of using parallel patterns in a Scala-
based language, where infix operators have been defined on collec-
tions which correspond to instantiations of parallel patterns. Note
that in this example, the £ilter on line 3 creates a FlatMap with
an index domain equal to the size of the 1ineItems collection.
The hashReduce on line 5 creates a HashReduce with an index
domain with the size of the before collection.

2.2 Hardware Implementation Requirements

Parallel patterns provide a concise set of parallel abstractions that
can succinctly express a wide variety of machine learning and data
analytic algorithms [8, 36, 38, 41]. By creating an architecture with
specialized support for these patterns, we can execute these algo-
rithms efficiently. This parallel pattern architecture requires several
key hardware features, described below and summarized in Table 2.

First, all four patterns express data-parallel computation where
operations on each index are entirely independent. An architecture
with pipelined compute organized into SIMD lanes exploits this
data parallelism to achieve a multi-element per cycle throughput.
Additionally, apart from the lack of loop-carried dependencies, we
see that functions f, g, k, and v in Table 1 are otherwise unrestricted.
This means that the architecture’s pipelined compute must be pro-
grammable in order to implement these functions.

Next, in order to make use of the high throughput available with
pipelined SIMD lanes, the architecture must be able to deliver high
on-chip memory bandwidth. In our programming model, intermedi-
ate values used within a function are typically scalars with statically
known bit widths. These scalar values can be stored in small, dis-
tributed pipeline registers.

Collections are used to communicate data between parallel pat-
terns. Architectural support for these collections depends on their
associated memory access patterns, determined by analyzing the
function used to compute the memory’s address. For simplicity,
we categorize access patterns as either statically predictable linear
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functions of the pattern indices or unpredictable, random accesses.
Additionally, we label accesses as either streaming, where no data
reuse occurs across a statically determinable number of function
executions, or tiled, where reuse may occur. We use domain knowl-
edge and compiler heuristics to determine if a random access may
exhibit reuse. Previous work has shown how to tile parallel patterns
to introduce statically sized windows of reuse into the application
and potentially increase data locality [36].

Collections with tiled accesses can be stored in local scratchpads.
To drive SIMD computation, these scratchpads should support mul-
tiple parallel address streams when possible. In the case of linear
accesses, address streams can be created by banking. Parallel ran-
dom reads can be supported by local memory duplication, while
random write commands must be sequentialized and coalesced.

Although streaming accesses inevitably require going to main
memory, the cost of main memory reads and writes can be minimized
by coalescing memory commands and prefetching data with linear
accesses. Local FIFOs in the architecture provide backing storage
for both of these optimizations.

These local memories allow us to exploit locality in the applica-
tion in order to minimize the number of costly loads or stores to
main memory [32]. Reconfigurable banking support within these
local memories increases the bandwidth available from these on-chip
memories, thus allowing better utilization of the compute. Double
buffering, generalized as N-buffering, support in scratchpads enables
coarse-grain pipelined execution of imperfectly nested patterns.

The architecture also requires efficient memory controllers to
populate local memories and commit calculated results. As with
on-chip memories, the memory controller should be specialized
to different access patterns. Linear accesses correspond to DRAM
burst commands, while random reads and writes in parallel patterns
correspond to gathers and scatters, respectively.

Fold and FlatMap also suggest fine-grained communication across
SIMD lanes. Fold requires reduction trees across lanes, while the
concatenation in FlatMayp is best supported by valid word coalescing
hardware across lanes.

Finally, all parallel patterns have one or more associated loop
indices. These indices can be implemented in hardware as paral-
lelizable, programmable counter chains. Since parallel patterns can
be arbitrarily nested, the architecture must also have programmable
control logic to determine when each pattern is allowed to execute.

While many coarse-grained hardware accelerators have been pro-
posed, no single accelerator described by previous work has all of
these hardware features. This means that, while some of these accel-
erators can be targeted by parallel patterns, none of them can fully
exploit the properties of these patterns to achieve maximum per-
formance. Traditional FPGAs can also be configured to implement
these patterns, but with much poorer energy efficiency, as we show
in Section 4. We discuss related work further in Section 5.

3 THE PLASTICINE ARCHITECTURE

Plasticine is a tiled architecture consisting of reconfigurable Pattern
Compute Units (PCUs) and Pattern Memory Units (PMUs), which
we refer to collectively simply as “units”. Units communicate with
three kinds of static interconnect: word-level scalar, multiple-word-
level vector, and bit-level control interconnects. Plasticine’s array of
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units interfaces with DRAM through multiple DDR channels. Each
channel has an associated address management unit that arbitrates
between multiple address streams, and consists of buffers to support
multiple outstanding memory requests and address coalescing to
minimize DRAM accesses. Each Plasticine component is used to
map specific parts of applications: local address calculation is done in
PMUs, DRAM address computation happens in the DRAM address
management units, and the remaining data computation happens
in PCUs. Note that the Plasticine architecture is parameterized; we
discuss the sizing of these parameters in Section 3.7

3.1 Pattern Compute Unit

The PCU is designed to execute a single, innermost parallel pattern in
an application. As shown in Figure 3, the PCU datapath is organized
as a multi-stage, reconfigurable SIMD pipeline. This design enables
each PCU to achieve high compute density, and exploit both loop-
level parallelism across lanes and pipeline parallelism across stages.

Each stage of each SIMD lane is composed of a functional unit
(FU) and associated pipeline registers (PR). FUs perform 32 bit word-
level arithmetic and binary operations, including support for floating
point and integer operations. As the FUs in a single pipeline stage
operate in SIMD, each stage requires only a single configuration
register. Results from each FU are written to its associated register.
PRs in each lane are chained together across pipeline stages to allow
live values propagate between stages within the same lane. Cross-
lane communication between FUs is captured using two types of
intra-PCU networks: a reduction tree network that allows reducing
values from multiple lanes into a single scalar, and a shift network
which allows using PRs as sliding windows across stages to exploit
reuse in stencil applications. Both networks use dedicated registers
within PRs to minimize hardware overhead.

PCUs interface with the global interconnect using three kinds
of inputs and outputs (I0); scalar, vector, and control. Scalar IO
is used to communicate single words of data, such as the results
of Folds. Each vector 10 allows communicating one word per lane
in the PCU, and is used in cases such as reading and writing to
scratchpads in PMUs and transmitting intermediate data across a
long pipeline between multiple PCUs. Each vector and scalar input
is buffered using a small FIFO. Using input FIFOs decouples data
producers and consumers, and simplifies inter-PCU control logic by
making it robust to input delay mismatches. Control 10 is used to
communicate control signals such as the start or end of execution of
a PCU, or to indicate backpressure.

A reconfigurable chain of counters generates pattern iteration
indices and control signals to coordinate execution. PCU execution
begins when the control block enables one of the counters. Based on
the application’s control and data dependencies, the control block
can be configured to combine multiple control signals from both
local FIFOs and global control inputs to trigger PCU execution. The
control block is implemented using reconfigurable combinational
logic and programmable up-down counters for state machines.

3.2 Pattern Memory Unit

Figure 4 shows the architecture of a PMU. Each PMU contains a
programmer-managed scratchpad memory coupled with a reconfig-
urable scalar datapath intended for address calculation. As shown in
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Figure 3: Pattern Compute Unit (PCU) architecture. We show only 4 stages and 4 SIMD lanes, and omit some control signals.
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Figure 6: Sequential, coarse-grained pipelining, and streaming control schemes.

Figure 5, PMUs are used to distribute on-chip memory throughout
the Plasticine architecture. Plasticine makes a distinction between
the operations involved in memory addresses calculation and the
core computation underlying applications. Address calculation is
performed on the PMU datapath, while the core computation is per-
formed within the PCU. Several observations have motivated this
design choice: (i) Address calculation involves simple scalar math,
which requires simpler ALUs than the FUs in PCUs; (ii) Using mul-
tiple lanes for address computation is often unnecessary for most
on-chip access patterns; and (iii) Performing address calculation
within the PCU requires routing the addresses from the PCU to the
PMU, which occupies PCU stages and output links, and can lead to
PCU under-utilization.

The scratchpads are built with multiple SRAM banks matching
the number of PCU lanes. Address decoding logic around the scratch-
pad can be configured to operate in several banking modes to support
various access patterns. Strided banking mode supports linear access
patterns often found on dense data structures. FIFO mode supports
streaming accesses. Line buffer mode captures access patterns resem-
bling a sliding window. Duplication mode, where the contents are
duplicated across all memory banks, provides multiple read address
channels to support parallelized on-chip gather operations.

Just as banking is important to feed multiple SIMD units to sustain
compute throughput, N-buffering, or generalized double buffering,
is just as important to support coarse-grained pipelines. The PMU
scratchpad can be configured to operate as an N-buffer with any
of the banking modes described. N-buffers are implemented by
partitioning the address space in each SRAM bank into N disjoint
regions. Using write and read state information, an appropriate offset
is added to each bank’s local address to access the correct data.

A programmable counter chain and control block triggers PMU
execution similar to the PCU. Each PMU typically contains write
address calculation logic from the producer pattern, and read address
calculation logic from the consumer pattern. Based on the state of
the local FIFOs and external control inputs, the control block can
be configured to trigger the write address computation, read address
computation, or both, by enabling the appropriate counters.

3.3 Interconnect

Plasticine supports communication between PMUs, PCUs, and pe-
ripheral elements using three kinds of interconnect - scalar, vector,
and control. The networks differ in the granularity of data being
transferred; scalar networks operate at word-level granularity, vec-
tor networks operate at multiple word-level granularity, and control
networks operate at bit-level granularity. The topology of all three
networks is identical, and is shown in Figure 5. All networks are

statically configured. Links in network switches include registers to
avoid long wire delays.

Applications commonly contain nested pipelines, where the outer
pipeline levels only require counters and some reconfigurable con-
trol. In addition, as outer pipeline logic typically involves some level
of control signal synchronization, they are control hotspots which
require a large number of control and scalar inputs and outputs. To
handle outer pipeline logic in an efficient manner, scalar and control
switches share a reconfigurable control block and counters. Incorpo-
rating control logic within switches reduces routing to hotspots and
increases PCU utilization.

3.4 Off-chip Memory Access

Off-chip DRAM is accessed from Plasticine using 4 DDR memory
channels. Each DRAM channel is accessed using several address
generators (AG) on two sides of the chip, as shown in Figure 5. Each
AG contains a reconfigurable scalar datapath to generate DRAM
requests, similar in structure to the PMU datapath shown in Figure 4.
In addition, each AG contains FIFOs to buffer outgoing commands,
data, and incoming responses from DRAM. Multiple AGs connect
to an address coalescing unit, which arbitrates between the AGs and
processes memory requests.

AGs can generate memory commands that are either dense or
sparse. Dense requests are used to bulk transfer contiguous DRAM
regions, and are commonly used to read or write tiles of data. Dense
requests are converted to multiple DRAM burst requests by the
coalescing unit. Sparse requests enqueue a stream of addresses into
the coalescing unit. The coalescing unit uses a coalescing cache to
maintain metadata on issued DRAM requests and combines sparse
addresses that belong to the same DRAM request to minimize the
number of issued DRAM requests. In other words, sparse memory
loads trigger a gather operation in the coalescing unit, and sparse
memory stores trigger a scatter operation.

3.5 Control Flow

Plasticine uses a distributed and hierarchical control scheme that
minimizes synchronization between units in order to adapt to limited
bit-wise connectivity in the interconnect. We support three types
of controller protocols inferred from our high-level language con-
structs: (a) sequential execution, (b) coarse-grained pipelining, and
(c) streaming (Figure 6). These control schemes correspond to outer
loops in the input program, and determine how the execution of indi-
vidual units are scheduled relative to other units. Units are grouped
into hierarchical sets of controllers. The control scheme of sibling
controllers is based on the scheme of their immediate parent con-
troller.
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In a sequential parent controller, only one data dependent child
is active at any time. This is commonly used when a program has
loop-carried dependencies. To enforce data dependencies, we use
tokens, which are feed-forward pulse signals routed through the
control network. When the parent controller is enabled, a single
token is sent to all head children with no data dependencies on
their siblings. Upon completing execution, each child then passes its
token to consumers of its output data. Each controller is enabled only
when tokens from all dependent data sources are collected. Tokens
from the last set of controllers, whose data are not consumed by any
sibling controller in the same level of hierarchy, are sent back to the
parent. The parent combines the tokens and either sends tokens back
to the heads for the next iteration, or passes the token along at its
own hierarchy level when all of its iterations have finished.

In coarse-grained pipelines, child controllers are executed in a
pipelined fashion. To allow concurrent execution, the parent con-
troller sends N tokens to the heads, where N is the number of data
dependent children in the critical path. This allows all children to
be active in the steady state. To allow producers and consumers to
work on the same data across different iterations, each intermediate
memory is M-buffered, where M is the distance between the corre-
sponding producer and consumer on their data dependency path. To
prevent producers from overflowing the down-stream buffer, each
child controller handles backpressure by keeping track of available
down-stream buffer sizes using credits. The number of credits is
statically initialized to M. Each producer decrements its credit count
after producing all the data for the “current" iteration of the parent.
Similarly, the consumer sends a credit back through the network
after consuming all the data for the “current" iteration of the parent.
In the coarse-grained pipelining scheme, each child is enabled when
it has at least one token and one credit available.

Finally, child controllers with a streaming parent controller exe-
cute in a fine-grain pipelining fashion. This allows the compiler to
fit a large inner pattern body by concatenating multiple units to form
a large pipeline. In streaming mode, children communicate through
FIFOs. A controller is enabled when all FIFOs it reads from are not
empty and all FIFOs it writes to are not full. FIFOs are local to the
consumer controller, so enqueue and not empty signals are routed
from consumer to producer through the control network.

To enforce these control protocols, we implement specialized re-
configurable control blocks using statically programmable counters,
state machines and combinational lookup tables. Each PCU, PMU,
switch, and memory controller in the architecture has a control block.
In general, controllers without any children are mapped to PCUs,
while outer controllers are mapped to control logic in switches. This
mapping gives outer controllers, which often have many children
to synchronize with, a higher radix for communication. The hierar-
chy and distributed communication in Plasticine’s control scheme
allows the compiler to leverage the multiple levels of parallelism
available in nested parallel patterns with only minimum overhead
from bit-level reconfigurability.

3.6 Application Mapping

We begin with an application represented as a hierarchy of paralleliz-
able dataflow pipelines written in a parallel pattern-based language
called the Delite Hardware Definition Language (DHDL) [20]. Prior
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work [36] has shown how applications expressed in the parallel
patterns described in Section 2 can be automatically decomposed
into pipelines in DHDL. Pipelines in DHDL are either outer con-
trollers which contain only other pipelines, or inner controllers
which contain no other controllers, only dataflow graphs of compute
and memory operations.

To map DHDL to Plasticine, we first unroll outer pipelines using
user-specified or auto-tuned parallelization factors. The resulting
unrolled representation is then used to allocate and schedule virtual
PMUs and PCUs. These virtual units are an abstracted representation
of the units in Plasticine which have an infinite number of available
inputs, outputs, registers, compute stages, and counter chains. As
outer controllers contain no computation, only control logic, they
map to a virtual PCU with no compute stages, only control logic and
counter chains. The computation in inner controllers is scheduled
by linearizing the data flow graph and mapping the resulting list of
operations to virtual stages and registers. Each local memory maps
to a virtual PMU. Stages used to compute read and write addresses
for this memory are copied to the virtual PMUs.

We then map each virtual unit into a set of physical units by
partitioning its stages. Virtual PCUs are partitioned into multiple
PCUs, while PMUs become one PMU with zero or more supporting
PCUs. While graph partitioning is NP-hard in general, each virtual
unit tends to have far less than 200 compute stages with very few
cyclic dependencies. This means that a greedy algorithm with a
few simple heuristics can reasonably approximate a perfect phys-
ical unit partitioning. In our partitioning algorithm, we use a cost
metric which calculates the number of physical stages, live variables
per stage, and scalar and vector input/output buses required for a
given partitioning. Note that these communication and computation
costs are always statically predictable because we begin with a full
dataflow representation of the application. Using our heuristics, the
compiler selects a proposed partitioning where all PCUs and PMUs
are physically realizable given some chosen set of Plasticine archi-
tecture parameters (number of PCUs, PMUs, stages, lanes, buses,
etc.) and which maximize the ALU and local memory utilization.

Following partitioning, we generate the control logic correspond-
ing to the controller hierarchy as described in Section 3.5. We then
perform hierarchical binding of virtual hardware nodes to physical
hardware resources, including datapath and control path placement
and routing, register allocation of SIMD units, including mapping
stages to physical ALUs, and allocating scratchpads and control
resources. The hierarchical nature of Plasticine allows us to dramati-
cally reduce the search space with less than 1000 nodes in each level
of mapping.

Given this placement and routing information, we then generate a
Plasticine configuration description, akin to an assembly language,
which is used to generate a static configuration “bitstream” for the
architecture. The hierarchical architecture, coupled with the coarse
granularity of buses between compute units, allows our entire compi-
lation process to finish (or fail) in only a few minutes, as compared
to the hours it can take to generate FPGA configurations.

3.7 Architecture Sizing

Thus far, we have described a parameterized architecture composed
of, among other things, PCUs, PMUs, and interconnect. We now
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Figure 7: Area overhead (Areapcy /Minpcy — 1) while sweeping various Plasticine PCU parameters for a subset of our benchmarks.
Minpcy is benchmark-specific minimum possible area. Areas marked with an x denote invalid parameters for the given application.
a. Stages per PCU; b. Registers per FU with 6 stages; c¢. Scalar inputs per PCU with 6 stages and 6 registers; d. Scalar outputs per PCU
with 6 stages, 6 registers, and 6 scalar inputs; e. Vector inputs per PCU with 6 stages and 6 registers; and f. Vector outputs per PCU

with 6 stages, 6 registers, and 3 vector inputs.

Component Range Final Value
Lanes 4,8,16, 32 16
Stages 1-16 6
Pattern Registers/Stage 2-16
Compute Scalar Inputs 1-16 6
Unit Scalar Outputs 1-6 5
Vector Inputs 1-10 3
Vector Outputs 1-6 3
Bank Size 4,8, 16, 32, 64KB 16KB
Scratchpad Banks ~ Number of PCU Lanes 16
Total Scratchpad Bank size * banks 256KB
Stages 1-16 4
Pattern Registers/Stage 2-16 6
Memory Scalar Inputs 1-16 4
Unit Scalar Outputs 0-6 0
Vector Inputs 1-10 3
Vector Outputs 1-6 1
Architecture PCUs — 64
PMUs — 64

Table 3: Design space and final selected parameters.

describe our process for tuning the PCU and PMU parameters to
create the final Plasticine architecture that we evaluate in Section 4.
Table 3 summarizes the architecture parameters under consideration,
the possible values for each, and the final value we selected. To
improve the probability of application routability, we restrict PMUs
and PCUs to be homogeneous across the architecture.

In selecting design parameters, we first prune the space by analyz-
ing the characteristics of the benchmarks listed in Table 4. Based on
models of the performance of each benchmark, we determine that
the ideal inner controller parallelization factor across all benchmarks
is between 8 and 32. In Plasticine, this corresponds to Pattern Com-
pute Units with between 8 and 32 SIMD lanes. We select a balanced
architecture with 16 lanes. Vectors of 16, 4 byte words also conve-
niently match our main memory’s burst size of 64 bytes. For the
PMU scratchpads, we found that ideal tile sizes for our benchmarks
are at most 4000 words per bank. We therefore set the PMU to have
16 configurable, 16KB banks, for a total of 256KB per PMU.

We next search the remaining architectural space to select the
number of stages, registers per stage, inputs, and outputs per PCU. In
our programming model, parallelizing outer controllers corresponds
in hardware to duplicating inner controllers. This means that we
can assume that, to a first order, outer loop parallelization in a
given application will not change its ideal PCU parameters, only
the required number of PCUs. We therefore fix each benchmark
with realistic parallelization factors and use these benchmarks to
determine how to minimize the total PCU area while maximizing
useful compute capacity. Note that we must also allow the number of
required PCUs to vary, as these parameters directly impact how many
physical PCUs a virtual PCU will require. Given the minimized PCU
design, we can then create a Plasticine architecture with maximum
performance for a given total chip area budget.
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We use a model-driven, brute force search to tune each architec-
tural parameter across different applications. To drive this search,
we use benchmark-normalized area overhead as a cost metric for
useful PCU area. When tuning a parameter, we sweep its value.
For each proposed value, we sweep the remaining space to find the
minimum possible PCU Area (Areapcy ). We then normalize these
areas based on their minimum (Minpcy ) and report the overhead of
each possible parameter value as Areapcy /Minpcy — 1. The area of
a single PCU is modeled as the sum of the area of its control box,
FUs, pipeline registers, input FIFOs, and output crossbars. The total
number of PCUs required for a given set of design parameters is
calculated using the mapping procedure outlined in Section 3.6.

In our studies, we found that the ordering of parameters during
tuning made little difference to the final architectural design. For
simplicity, we report a search procedure using one possible ordering,
but any ordering would result in the same final parameter values.

We first examine the space defined by the number of stages per
physical PCU. All other parameters are left unrestricted. Figure 7a
shows the estimated area overheads after sweeping the number of
stages between 4 and 16. Here, we see that the ideal number of
stages per PCU is 5 or 6 for most benchmarks. In these benchmarks,
the amount of compute per pattern is fairly small, allowing patterns
to be mapped to a single PCU. At least 5 stages are required for a
full cross-lane reduction tree within the PCU. In BlackScholes, the
core compute pipeline has around 80 stages. This is long enough
that stages per PCU has little impact on average FU utilization.
In TPCHQG6, the core computation is 16 stages long, meaning the
area overhead is minimized at 8 and 16 stages (even divisors of the
compute). We select 6 stages per PCU as a balanced architecture
across all of our benchmarks. This choice means that applications
like TPCHQG6 with a relatively small number of operations that does
not divide evenly by 6 will underutilize PCU partitions, but this is
an inevitable consequence of partitioning over homogeneous units.

We next determine the number of registers per FU. We again
sweep the parameter space, fixing the number of stages at 6 but
leaving all other parameters unrestricted. From Figure 7b, we see
that the ideal number of registers across most applications is between
4 and 6. This directly corresponds to the maximum number of live
values at any given point in each PCU’s pipeline of stages. Below
4 registers, PCUs are constrained by the number of live values they
can hold at a given time, causing extraneous partitioning. Above 8
registers per FU, the cost of the unused registers becomes noticeable
relative to the total PCU area. We select 6 registers per FU.

Following the same procedure, we determine the number of scalar
inputs and outputs. Scalar logic is relatively cheap, but, like registers,
lack of available scalar inputs or outputs can cause logic to be
split across many PCUs, creating large overheads from unutilized
logic. Thus, we see in Figure 7(c,d) that each benchmark has some
minimum number of inputs and outputs required, after which adding
more of either has little impact. We select 6 scalar inputs and 5 scalar
outputs, as this minimizes area overhead across all benchmarks.

Finally, we tune the vector inputs and outputs per PCU in the
same manner. Vectors are tuned separately from scalars, as the two
use different interconnect paths between PCUs and different regis-
ters within PCUs. Note here that vector inputs are associated with
input FIFOs, which represent a sizeable fraction of PCU area. We
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Benchmark Data Size(s) Data Type
Inner Product 768,000,000 float32
Outer Product 76,800 x 76,800 float32
Black-Scholes 96,000,000 entries float32
TPC-H Query 6 960,000,000 entries int32
GEMM 47 x 7,680 * 7,680 x 3,840 float32
GDA 3,840,000 points; 96 dims float32
LogReg 5 iters; 1,536 points; 384 dims float32
SGD 30 iters; 38,400 points; 768 dims float32
Kmeans 50 iters; 1,536 points; 96 dims; K =20 float32
CNN model size 884736, data size 57600 float32
SMDV 3,840 x 3,840 with E[NNZ],pq. =60  float32
PageRank 100 iters; 7,680 pages int32
BFS Eledges],oqe = 8 % 10 layers int32

Table 4: Evaluation benchmarks.

therefore want to minimize vector inputs as much as possible. How-
ever, as seen in Figure 7e, due to limitations in splitting across PCUs,
BlackScholes and GDA are restricted to having at least 3 vector
inputs. Figure 7f shows that vector outputs are relatively inexpensive
and have little impact on required design area. We thus choose 3
vector inputs and 3 vector outputs per PCU.

Using a similar approach, we also select the PMU parameters
given in Table 3. Note that the number of vector inputs and outputs
for PMUs trivially correspond to the read, write, and data buses
of the scratchpad. PMUs currently never use scalar outputs, as the
compiler always maps the results of memory reads to vector buses.

After this tuning process, we now have a tuned PCU and PMU
design. Based on profiling of each benchmark, we choose 16 x 8
units. We also experimented with multiple ratios of PMUs to PCUs.
We choose a 1:1 ratio of PMUs to PCUs. While larger ratios (e.g.
2:1 PMUs to PCUs) improved unit utilization on some benchmarks,
these ratios were less energy efficient.

4 EVALUATION

In this section, we evaluate the performance and power efficiency of
Plasticine against a commercial Stratix V FPGA. We compare the
runtime and power of the Plasticine architecture to efficient FPGA
implementations for benchmarks taken from the machine learning,
data analytics, and graph processing domains. FPGAs are widely
available with mature toolchain support, which makes it possible to
obtain performance data on real hardware.

4.1 Benchmarks

We developed a set of benchmarks that stress a variety of properties
of the two architectures, such as dense data processing and data-
dependent memory access. We use real-world applications to guide
the design of these benchmarks to ensure that Plasticine is capable of
doing useful work. Table 4 provides a summary of the applications.

Among the dense applications, inner product, outer product, and
GEMM (single precision general matrix multiplication) are funda-
mental linear algebra operations and at the core of many algorithms.
TPC-H Query 6 is a simple filter-reduce kernel that demonstrates
database query functionality. Black-Scholes is a computation-heavy
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finance algorithm with extremely deep pipelines. Gaussian Discrim-
inant Analysis (GDA) and Stochastic Gradient Descent (SGD) are
common machine learning algorithms that involve relatively compli-
cated memory accesses and exhibit many choices for parallelization.
K-means clustering groups a set of input points by iteratively cal-
culating the k best cluster centroids. K-means is written using a
dense HashReduce to calculate the next iteration’s centroids. Convo-
lutional Neural Network (CNN) is an important machine learning
kernel used for image classification. CNNs involve multiple layers
of computation, where each layer involves several 3D convolution
operations on an input feature map.

The sparse applications involve data-dependent accesses to mem-
ory and non-deterministic computation. Sparse matrix-dense vector
(SMDV) multiplication is another fundamental linear algebra ker-
nel used in many sparse iterative methods and optimization algo-
rithms. PageRank is a popular graph algorithm that involves off-chip
sparse data gathering to iteratively update page rankings. Breadth-
First Search (BFS) is another graph algorithm that performs a data-
dependent, frontier-based traversal and uses data scatters to store
information about each node.

We implement each of these benchmarks in the Delite Hardware
Definition Language (DHDL), a specialized language based on par-
allel patterns for writing applications for spatial architectures [20].
In DHDL, applications are specified as hierarchies of parallelizable
dataflow pipelines. Previous work [36] has shown that DHDL can
be automatically generated from parallel patterns, and can be used
to generate efficient hardware accelerator designs for FPGAs [20].

4.2 Plasticine Design

We implement the Plasticine architecture in Chisel [2] using the
selected parameters listed in Table 3. The architecture is organized
as a 16x8 array of units, with a 1:1 ratio of PMUs to PCUs. This
design is synthesized using Synopsys Design Compiler with a 28nm
technology library. Critical paths in the design have been optimized
for a clock frequency of 1 GHz. Total chip area estimates are ob-
tained after synthesis. Local scratchpad and FIFO sizes are obtained
using Synopsys Memory Compiler with a 28nm library. We profile
single PCU, PMU, and AG power using Synopsys PrimeTime with
RTL traces. Static power for the entire chip and dynamic power for
utilized units are included in the total power. Table 5 provides the
component-wise area breakdown for Plasticine at an area footprint
of 112.77mm?. The final Plasticine architecture has a peak float-
ing point performance of 12.3 single-precision TFLOPS and a total
on-chip scratchpad capacity of 16 MB.

Execution times for Plasticine are obtained from cycle-accurate
simulations performed using Synopsys VCS coupled with DRAM-
Sim?2 [39] to measure off-chip memory access times. We configure
DRAMSim?2 to model a memory system with 4 DDR3-1600 chan-
nels, giving a theoretical peak bandwidth of 51.2 GB/s.

We modify the DHDL compiler to generate static configurations
for Plasticine using the procedure outlined in Section 3.6. Using
the modified compiler, each benchmark is compiled to a Plasticine
configuration, which is used to program the simulator. Total reported
runtime for Plasticine begins after data is copied into the accelera-
tor’s main memory, and ends when execution on the accelerator is
complete (i.e. before copying data back to the host).
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Component Area (mm?)  Area (%)
FUs 0.622 73.32
Registers 0.144 16.97

PCU

(48.16%) FIFOs 0.082 9.65
Control 0.001 0.06
Total (single PCU) 0.849 100.00
Scratchpad (256KB) 0.477 89.73
FIFOs 0.024 4.52

PMU .

(30.2%) Registers 0.023 4.28
FUs 0.007 1.29
Control 0.001 0.18
Total (single PMU) 0.532 100.00

Interconnect

(16.66%) 18.796 100.00

Memory Controller 4 Coalescing Units,
(4.98%) 34 AGs 5.616 100.00

64 PCUs, 64 PMUs,
Memory Controller,
Interconnect

Plasticine

112.796 100.00

Table 5: Plasticine area breakdown.

4.3 Plasticine Design Overheads

We first examine the area overheads of design decisions within the
Plasticine architecture. Each decision is isolated and evaluated based
on an idealized architecture. These architectures are normalized
such that, given a 1 GHz clock and fixed local memory sizes, the
performance of each benchmark is the same as its performance on the
final Plasticine architecture. These design decisions (columns a. — e.
in Table 6) allow an arbitrary number of PCUs and PMUs for each
benchmark. This is done to isolate the quality of the choice from an
application’s utilization of a fixed size architecture.

We first evaluate the cost of partitioning an application into coarse-
grain PCUs and PMUs. Here, we compare the projected areas of
benchmark-specific ASIC designs to an idealistic Plasticine architec-
ture with heterogeneous PCUs and PMUs. For a given benchmark,
ASIC area is estimated as the sum of the area of its compute and
memory resources. The area of each of these resources was charac-
terized using Synopsys DC. The Plasticine architecture has all of
the features described in Section 3, including configuration logic,
configurable banked memories, and statically configurable ALUs.
Column a. of Table 6 shows the projected costs of such a heteroge-
neous architecture relative to the projected area of the benchmark-
specific chip design. Relative to ASIC designs, the area overhead
of reconfigurable units is on average about 2.8 x. This is the base
overhead of Plasticine’s reconfigurability, primarily concentrated in
making memory controllers configurable and converting compute
logic from fixed operations to reconfigurable FUs.

While use of heterogeneous units is ideal for area utilization, it
creates an intractable mapping problem and does not generalize
across different applications. In column b. of Table 6, we show the
cost of moving from a heterogeneous architecture to an architec-
ture still with heterogeneous PCUs but a single homogeneous PMU
design. We still allow this PMU design to be unique for each bench-
mark, but within a single benchmark we size the PMU scratchpads
based on the largest scratchpad the program requires. The average
overhead from moving to uniform PMUs is 1.4 x, with particularly
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Coarse Homogeneous Generalized

Benchmark a. b. PMUs ¢. PCUs d. PMUs e. PCUs

Inner Product 2.64 | 1.21 (3.18) ] 2.66 (8.45) | 1.53 (12.92) | 1.02 (13.18)
Outer Product 154 | 207 (3.18) | 1.83 (5.81) | 1.00  (5.81) | 1.02  (5.95)
Black-Scholes | 2.05 | 1.05 (2.15) | 1.59 (343) | 1.I8 (4.04) | 1.10  (4.46)
TPCH-Query 6 | 2.26 | 1.I5 (2.59) | 3.90 (10.10) | 1.24 (12.49) | 1.I5 (14.32)
GEMM 163 | 1.45 (2.36) | 1.62 (3.82) | 1.00  (3.83) | 1.02  (3.92)
GDA 195 | 1.79 (3.50) | 3.03 (10.59) | 1.34 (14.19) | 1.01 (14.38)
LogReg 155 | 191 (296) | 1.73  (5.12) | 1.00  (5.13) | 1.02  (5.20)
SGD 7.67 | .09 (8.40) | 1.82 (1531) | 1.41 (21.61) | 1.02 (21.98)
Kmeans 281 | 1.88 (529) | 1.74  (9.19) | 1.00  (9.20) | 1.02  (9.42)
SMDV 503 | 1.24 (626) | 4.04 (2531) | 1.36 (3451) | 1.06 (36.73)
PageRank 7.4 | 118 (8.41) | 3.39 (28.51) | 1.46 (41.73) | 1.03 (42.83)
BFS 291 | 1.38 (4.02) | 214 (8.61) | 1.21 (10.40) | 1.03 (10.70)
GeoMean | 277 | 141 (392)| 232 (9.07) | 1.21 (11.00) | 1.04 (11.46)

Table 6: Estimated successive and (cumulative) area overheads
of a. generalizing ASICs into reconfigurable, heterogeneous
PCUs and PMUs; b. restricting the architecture to homoge-
neous PMUs; c. further restricting the architecture to homoge-
neous PCUs; d. generalizing homogeneous PMUs across appli-
cations; e. generalizing homogeneous PCUs across applications.

large overheads for applications with drastically varying memory
sizes. OuterProduct, for example, uses local memories for tiles of
vectors of size N and an output tile of size N2. In ASIC design, static
knowledge about the target application allows specialization of each
local memory to exactly the size and number of banks needed, thus
saving a significant amount of area on SRAM. In Plasticine, we opt
for uniformly sized memory units as they simplify mapping and
improve the likelihood that a given application will be routable.

Column c. shows the overheads of further restricting the PCUs
to also be homogeneous, but still vary across benchmarks. The
overhead here is particularly high for applications like PageRank
with a large number of sequential loops. The bodies of all patterns
are mapped to PCUs, but because each PCU is fixed to 16 lanes,
most of the lanes in sequential loops, and therefore most of the area,
is unused, leading to overheads of up to 8.4 x. Similarly, applications
like TPCHQ6 with widely varying compute pipeline lengths tend to
under-utilize the stages within homogeneous PCUs.

We next show the area overheads after selecting a single set of
PMU parameters across all applications. As described in Section 3.7,
this sets the total size of scratchpads in all benchmarks to 256KB
each. While this local memory capacity is essential to the perfor-
mance of applications like GEMM and OuterProduct [33], other
applications have much smaller local memory requirements. As seen
in column d, this unutilized SRAM capacity has an average chip
area overhead of 1.2x.

Column e. lists the results of also generalizing PCUs across ap-
plications using the values obtained in Section 3.7. Here, we see
that the remaining overhead is small compared to the cost of ho-
mogenizing the units, with an average of only 5% and a maximum
of 15% for BlackScholes. This suggests that much of the variation
in PCU requirements across applications is already represented by
the variety of loops within a single application. This in turn makes
generalization of compute across applications relatively inexpensive.

Cumulatively, we estimate that our homogeneous, generalized,
unit based architecture has an average area overhead of 3.9x to
42.8 x compared to application-specific chip designs with the same
performance. This overhead of course varies significantly based
on the local memory and compute requirements of the benchmark.
While the PCU and PMU utilizations of the final, fixed size Plasticine
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architecture, later shown in Table 7, tend to be less than 100%, we
do not view this in itself as an area overhead. Instead, the Plasticine
architecture is considered a “sufficiently large” fabric which can be
used to implement the ideal architectures listed in column e., and
the remaining unit resources can be clock gated.

4.4 FPGA Design

We next compare the performance and power of Plasticine to an
FPGA. We use the DHDL compiler to generate VHDL, which in
turn is used to generate a bitstream for the FPGA using Altera’s syn-
thesis tools. We run each synthesized benchmark on an Altera 28nm
Stratix V FPGA, which interfaces with a host CPU controller via
PClIe. The FPGA has a 150 MHz fabric clock, a 400 MHz memory
controller clock, and 48 GB of dedicated off-chip DDR3-800 DRAM
with 6 channels and a peak bandwidth of 37.5 GB/s. Execution times
for the FPGA are reported as an average of 20 runs. Like Plasticine,
timing starts after copy of data from the host to the FPGA’s dedicated
DRAM completes and finishes when FPGA execution completes.
We also obtain FPGA power estimates for each benchmark using
Altera’s PowerPlay tool after benchmark placement and routing.

4.5 Plasticine versus FPGA

Table 7 shows the utilization, power, performance, and performance-
per-Watt of Plasticine relative to the Stratix V FPGA across our
set of benchmarks. The table shows that Plasticine achieves higher
energy efficiency over an FPGA. Table 7 shows the resource utiliza-
tion on both platforms for each benchmark. We discuss individual
benchmark results below.

Inner product and TPC-H Query 6 both achieve speedups of 1.4 %,
respectively. Both benchmarks are memory bandwidth bound, where
a large amount of data is streamed from DRAM through a datapath
with minimal compute. Hence, the performance difference corre-
sponds to the difference in the achievable main memory bandwidth
on the respective platforms. The power consumption on Plasticine is
comparable to the FPGA as well, as a majority of PCUs and half the
PMUs are unused and therefore power gated.

Outer product is also bandwidth bound, but contains some tempo-
ral locality, and hence can benefit from larger tile sizes. The FPGA is
limited by the number of large memories with many ports that it can
instantiate, which in turn limits exploitable inner loop parallelism
and potential overlap between compute and DRAM communication.
Native support for banked, buffered scratchpads allows Plasticine to
better exploit SIMD and pipelined parallelism, thereby achieving a
speedup of 6.7 .

Black-Scholes streams several floating point arrays from DRAM
through a pipeline of floating point operations. The large amount
of floating point operations per DRAM access makes it compute-
bound on most architectures. While the deeply pipelined nature of
Black-Scholes makes it an ideal candidate for FPGA acceleration,
the FPGA runs out of area to instantiate compute resources long
before it can saturate its main memory bandwidth. Plasticine, on the
other hand, has a much higher floating point unit capacity. Black-
Scholes on Plasticine can be sufficiently parallelized to the point
of being memory bound. From Table 7, we can see that using 65%
of PCUs, Black-Scholes maximizes DRAM bandwidth utilization,
achieving a speedup of 5.1 x.
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Utilization (%) Power (W) Plasticine / FPGA
FPGA Plasticine FPGA Plasticine
Benchmark Logic Memory ‘ PCU PMU AG FU  Register Power Performance Perf/W
Inner Product 24.3 335 172 25.0 47.1 69.8 10.2 21.8 18.9 0.9 1.4 1.6
Outer Product 38.2 71.4 15.6 469 88.2 21.6 12.8 24.4 26.9 1.1 6.7 6.1
Black-Scholes 68.9 100.0 65.6 219 412 25.1 53.4 28.3 24.7 0.9 5.1 5.8
TPCH-Query 6 | 24.3 334 28.1 25.0 47.1 170.8 20.2 21.7 20.5 0.9 1.4 1.5
GEMM 40.4 94.8 344  68.8 97.1 56.0 8.6 25.6 34.6 1.4 33.0 24.4
GDA 53.6 96.8 89.1 87.5 44.1 8.1 11.2 26.5 41.0 1.5 40.0 259
LogReg 28.4 73.4 51.6  68.8 8.8 302 12.3 22.9 28.6 1.2 11.4 9.2
SGD 60.1 58.2 6.3 9.4 8.8 343 7.2 25.6 10.7 0.4 6.7 15.9
Kmeans 42.1 65.4 10.9 17.2 88 355 10.9 23.9 12.9 0.5 6.1 11.3
CNN 86.8 99.0 489 984 100.0 62.5 25.0 34.4 42.6 1.2 95.1 76.9
SMDV 27.3 31.0 43.8 15.6 294 104 2.7 21.5 19.3 0.9 8.3 9.3
PageRank 31.3 334 28.1 20.3 20.6 3.9 1.9 21.9 17.1 0.8 14.2 18.2
BFS 25.3 459 18.8 15.6 11.8 3.1 1.5 21.9 14.0 0.6 7.3 11.4

Table 7: Resource utilization, power, performance, and performance-per-Watt comparisons between Plasticine and FPGA.

GEMM and GDA are compute-bound, with ample temporal
and spatial locality. On Plasticine, GEMM achieves a speedup of
33.0x. GDA performs similarly with a speedup of 40.0x. Plas-
ticine can exploit greater locality by loading larger tiles into the
banked scratchpads, and hides DRAM communication latency by
configuring scratchpads as double buffers. On the FPGA, creating
banked, double-buffered tiles exhausts BRAM resources before com-
pute resources, thereby limiting compute throughput. In the current
mapping of GEMM to Plasticine, each PCU multiplies two tiles
by successively performing pipelined inner products in its datap-
ath. Parallelism is achieved within the PCU across the lanes, and
across PCUs where multiple tiles are processed in parallel. More
parallelism is achieved by processing more input tiles in parallel. As
a result, in the current scheme GEMM performance is limited by the
number of AGs, as more AGs are required to load multiple input
tiles. In addition, since each PCU performs an inner product, FUs
that are not part of the reduction network are under-utilized. More
sophisticated mapping schemes, along with more hardware support
for inter-stage FU communication within PCUs, can further increase
compute utilization and hence improve performance [31].

CNN is another compute-intensive benchmark where Plasticine
outperforms the FPGA, in this case by 95.1 x. Plasticine’s perfor-
mace is due to much higher compute density and its ability to capture
the locality of kernel weights and partial results within PMUs. To
efficiently exploit sliding window reuse in CNN, scratchpads are
configured as line buffers to avoid unnecessary DRAM refetches.
Each PCU performs a single 3D convolution by reading the kernel
weights from a PMU and producing the output feature map into
another PMU. The shift network between FUs in the PCUs enables
data reuse within sliding windows and accumulation of partial sums
within the pipeline registers, which minimizes scratchpad reads and
writes. CNN is currently mapped onto Plasticine such that each PCU
requires 2 PMUs; one PMU to hold kernel weights, the other PMU
to store output feature map. As Plasticine is configured with 1:1
PCU:PMU ratio, this caps the PCU utilization at 49.0% while max-
imizing PMU and AG utilization. More optimized mapping using
greater PMU sharing could overcome this limitation.

LogReg is a compute heavy benchmark where large tile sizes
are used to capture locality. Parallelism is exploited at the outer
loop level by processing multiple tiles in parallel, and at the inner

loop using SIMD lanes within PCUs. Currently, the compiler ex-
ploits inner loop parallelism only within the SIMD lanes of a single
PCU, and does not split the inner loop across multiple PCUs. Plas-
ticine achieves a speedup of 11.4x by processing more input tiles in
parallel at a faster clock rate than the FPGA.

SGD and Kmeans have sequential outer loops and parallelizable
inner loops. The inherently sequential nature of these applications
results in a speedup of 6.7x and 6.1 respectively on Plasticine,
largely due to Plasticine’s higher clock frequency. However, as Plas-
ticine needs only a few PCUs to exploit the limited parallelism, most
of the unused resources can be power gated, resulting in performance-
per-Watt improvements of 39.8x and 12.3x respectively.

SMDV, PageRank, and BFS achieve speedups of 8.3x, 14.2x,
and 7.3 respectively on Plasticine. Performance of these sparse
benchmarks is limited by DDR random access DRAM bandwidth.
SMDV and PageRank perform only sparse loads (gather), while BFS
performs a gather and a scatter in every iteration. Scatter and gather
engines are implemented on the FPGA using soft logic. The outer
loop of these benchmarks is parallelized to generate multiple parallel
streams of sparse memory requests, which maximizes the number of
outstanding memory requests after address coalescing. The FPGA
platform used in the baseline is limited in its random access DRAM
bandwidth, as all the channels operate in ‘ganged’ mode as one
wide DRAM channel. FPGA platforms with multiple independent
DRAM channels can in theory perform better than our FPGA base-
line for sparse applications. However, scatter-gather units still have
to be implemented in soft logic. Scatter-gather units require large
amounts of local memory, but local memories (BRAM) are often a
critical resource on FPGAs that can limit the number of outstanding
memory requests and the efficacy of address coalescing. In addition,
FPGA fabric clocks are typically slower than DRAM clocks, cre-
ating another bottleneck in harnessing random access bandwidth.
Dedicated hardware like the coalescing units in Plasticine allows
DRAM bandwidth to be used in a much more efficient manner.

In summary, Plasticine can maximize DRAM bandwidth utiliza-
tion for streaming applications like Inner Product and TPC-H Q6,
and sustain compute throughput for deeply pipelined datapaths to
make applications like Black-Scholes memory-bound. Plasticine
captures data locality and communication patterns in PMUs and
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inter-PCU networks for applications like GEMM, GDA, CNN, Lo-
gReg, SGD, and Kmeans. Finally, by supporting a large number
of outstanding memory requests with address coalescing, DRAM
bandwidth is effectively utilized for scatter and gather operations in
SMDV, Pagerank, and BFS.

5 RELATED WORK

Table 2 introduced key architectural features required to efficiently
execute parallel patterns. We now discuss the significant related
work associated with these features.

Reconfigurable scratchpads: Several of the previously proposed
reconfigurable fabrics lack support for reconfigurable, distributed
scratchpad memories. Without the ability to reconfigure the on-chip
memory system with the different banking and buffering strategies
needed to support parallel patterns, the memory system becomes the
bottleneck for many workloads.

For example, ADRES [25], DySER [17], Garp [6], and Tar-
tan [26] closely couple a reconfigurable fabric with a CPU. These ar-
chitectures access main memory through the cache hierarchy shared
with the host CPU. ADRES and DySER tightly integrate the recon-
figurable fabric into the execution stage of the processor pipeline,
and hence depend on the processor’s load/store unit for memory
accesses. ADRES consists of a network of functional units, recon-
figurable elements with register files, and a shared multi-ported
register file. DySER is a reconfigurable array with a statically con-
figured interconnect designed to execute innermost loop bodies in
a pipelined fashion. However, dataflow graphs with back-edges or
feedback paths are not supported, which makes it challenging to exe-
cute patterns such as Fold and nested parallel patterns. Garp consists
of a MIPS CPU core and an FPGA-like coprocessor. The bit-level
static interconnect of the co-processor incurs the same reconfigura-
tion overheads as a traditional FPGA, restricting compute density.
Piperench [16] consists of a pipelined sequence of “stripes” of func-
tional units (FUs). A word-level crossbar separates each stripe. Each
FU has an associated register file which holds temporary results.
Tartan consists of a RISC core and an asynchronous, coarse-grained
reconfigurable fabric (RF). The RF architecture is hierarchical with
a dynamic interconnect at the topmost level, and a static intercon-
nect in the inner level. The architecture of the innermost RF core is
modeled after Piperench [16].

Reconfigurable datapaths Architectures with reconfigurable func-
tional units consume less power as they do not incur the overheads
of traditional instruction pipelines such as instruction fetch, decode,
and register file access. These overheads account for about 40% of
the datapath energy on the CPU [18] and about 30% of the total
dynamic power on the GPU [24]. Furthermore, using a reconfig-
urable datapath in place of a conventional instruction pipeline in
a GPU reduces energy consumption by about 57% [43]. The Raw
microprocessor [42] is a tiled architecture where each tile consists of
a single-issue in-order processor, a floating point unit, a data cache,
and a software-managed instruction cache. Tiles communicate with
their nearest neighbors using pipelined, word-level static and dy-
namic networks. Plasticine does not incur the overheads of dynamic
networks and general purpose processors mentioned above. Using
hardware managed caches in place of reconfigurable scratchpads
reduces power and area efficiency in favor of generality.
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Dense datapaths and hierarchical pipelines: Plasticine’s hier-
archical architecture, with dense pockets of pipelined SIMD func-
tional units and decentralized control, enables capturing a substantial
amount of data communication within PCUs and efficiently exploit-
ing coarse-grained pipeline parallelism in applications. In contrast,
architectures that lack hierarchal support for nested pipelining in
the architecture use their global interconnect to communicate most
results. Hence, the interconnect can be a bandwidth, power, or area
bottleneck. For example, RaPiD [12] is a one-dimensional array of
ALUEs, registers, and memories with hardware support for static and
dynamic control. A subsequent research project called Mosaic [13]
includes a static hybrid interconnect along with hardware support to
switch between multiple interconnect configurations. RaPiD’s linear
pipeline enforces a rigid control flow which makes it difficult to
exploit nested parallelism. HRL [14] combines coarse-grained and
fine-grained logic blocks with a hybrid static interconnect. While a
centralized scratchpad enables some on-chip buffering, the architec-
ture is primarily designed for memory-intensive applications with
little locality and nested parallelism. Triggered instructions [30] is an
architecture consisting of coarse-grained processing elements (PEs)
of ALUs and registers in a static interconnect. Each PE contains a
scheduler and a predicate register to implement dataflow execution
using triggers and guarded actions. The control flow mechanism
used in Plasticine has some similarities with Triggered instructions.
While this architecture has the flexibility to exploit nested parallelism
and locality, the lack of hierarchy increases communication over
the global interconnect which can create bottlenecks, and reduces
compute density in the datapath.

6 CONCLUSION

In this paper we describe Plasticine, a novel reconfigurable archi-
tecture for efficiently executing both sparse and dense applications
composed of parallel patterns. We identify the key computational
patterns needed to capture sparse and dense algorithms and describe
coarse-grained Pattern and Memory Compute Units capable of ex-
ecuting parallel patterns in a pipelined, vectorized fashion. These
units exploit information about hierarchical parallelism, locality and
memory access patterns within our programming model. We then
use design-space exploration to guide the design of the Plasticine
architecture and create a full software-hardware programming stack
to map applications to an intermediate representation, which is then
executed on Plasticine. We show that, for an area budget of 113 mmz,
Plasticine provides up to 95 x improvement in performance and up to
77x improvement in performance-per-Watt compared to an FPGA
in a similar process technology.
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